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e-mail: asaumard@gmail.com

and

Jon A. Wellner†

Department of Statistics, Box 354322
University of Washington
Seattle, WA 98195-4322

e-mail: jaw@stat.washington.edu

Abstract: We review and formulate results concerning log-concavity and
strong-log-concavity in both discrete and continuous settings. We show how
preservation of log-concavity and strong log-concavity on R under con-
volution follows from a fundamental monotonicity result of Efron (1965).
We provide a new proof of Efron’s theorem using the recent asymmetric
Brascamp-Lieb inequality due to Otto and Menz (2013). Along the way we
review connections between log-concavity and other areas of mathematics
and statistics, including concentration of measure, log-Sobolev inequalities,
convex geometry, MCMC algorithms, Laplace approximations, and machine
learning.

AMS 2000 subject classifications: Primary 60E15, 62E10; secondary
62H05.
Keywords and phrases: Concave, convex, convolution, inequalities, log-
concave, monotone, preservation, strong log-concave.

Received April 2014.

Contents

1 Introduction: Log-concavity . . . . . . . . . . . . . . . . . . . . . . . . 47
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Log-concavity and strong log-concavity: Definitions and basic results . 48
3 Log-concavity and strong log-concavity: Preservation theorems . . . . 57

3.1 Preservation of log-concavity . . . . . . . . . . . . . . . . . . . . 57
3.1.1 Preservation by affine transformations . . . . . . . . . . . 57
3.1.2 Preservation by products . . . . . . . . . . . . . . . . . . 57

∗Research supported in part by NI-AID grant 2R01 AI29168-04, a PIMS post-doctoral
fellowship and post-doctoral Fondecyt Grant 3140600.

†Research supported in part by NSF Grant DMS-1104832, NI-AID grant 2R01 AI291968-
04, and the Alexander von Humboldt Foundation.

45

http://projecteuclid.org/ssu
http://dx.doi.org/10.1214/14-SS107
mailto:asaumard@gmail.com
mailto:jaw@stat.washington.edu


46 A. Saumard and J. A. Wellner

3.1.3 Preservation by marginalization . . . . . . . . . . . . . . . 58
3.1.4 Preservation under convolution . . . . . . . . . . . . . . . 60
3.1.5 Preservation by (weak) limits . . . . . . . . . . . . . . . . 62

3.2 Preservation of strong log-concavity . . . . . . . . . . . . . . . . 63
4 Log-concavity and ultra-log-concavity for discrete distributions . . . . 65
5 Regularity and approximations of log-concave functions . . . . . . . . 68

5.1 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Efron’s theorem and more on preservation of log-concavity and strong
log-concavity under convolution in 1-dimension . . . . . . . . . . . . . 72
6.1 Efron’s monotonicity theorem . . . . . . . . . . . . . . . . . . . . 72
6.2 First use of Efron’s theorem: Strong log-concavity is preserved by

convolution via scores . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3 A special case of Efron’s theorem via symmetrization . . . . . . . 75
6.4 Alternative proof of Efron’s theorem via asymmetric Brascamp-

Lieb inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7 Preservation of log-concavity and strong log-concavity under convo-

lution in R
d via Brascamp-Lieb inequalities and towards a proof via

scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1 Strong log-concavity is preserved by convolution (again): Proof

via second derivatives and a Brascamp-Lieb inequality . . . . . . 79
7.2 Strong log-concavity is preserved by convolution (again): Towards

a proof via scores and a multivariate Efron inequality . . . . . . 81
8 Peakedness and log-concavity . . . . . . . . . . . . . . . . . . . . . . . 83
9 Some open problems and further connections with log-concavity . . . 85

9.1 Two questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.2 Cross-connections with the families of hyperbolically monotone

densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.3 Log-convexity and completely monotone functions . . . . . . . . 86
9.4 Suprema of Gaussian processes . . . . . . . . . . . . . . . . . . . 86
9.5 Gaussian correlation conjecture . . . . . . . . . . . . . . . . . . . 87
9.6 Further connections with Poincaré, Sobolev, and log-Sobolev in-
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1. Introduction: Log-concavity

Log-concave distributions and various properties related to log-concavity play
an increasingly important role in probability, statistics, optimization theory,
econometrics and other areas of applied mathematics. In view of these devel-
opments, the basic properties and facts concerning log-concavity deserve to be
more widely known in both the probability and statistics communities. Our goal
in this survey is to review and summarize the basic preservation properties which
make the classes of log-concave densities, measures, and functions so important
and useful. In particular we review preservation of log-concavity and “strong
log-concavity” (to be defined carefully in section 2) under marginalization, con-
volution, formation of products, and limits in distribution. The corresponding
notions for discrete distributions (log-concavity and ultra log-concavity) are also
reviewed in section 4.

A second goal is to acquaint our readers with a useful monotonicity theorem
for log-concave distributions on R due to Efron (1965), and to briefly discuss
connections with recent progress concerning “asymmetric” Brascamp-Lieb in-
equalities. Efron’s theorem is reviewed in Section 6.1, and further applications
are given in the rest of Section 6.

There have been several reviews of developments connected to log-concavity
in the mathematics literature, most notably Das Gupta (1980) and Gardner
(2002). We are not aware of any comprehensive review of log-concavity in the
statistics literature, although there have been some review type papers in econo-
metrics, in particular An (1998) and Bagnoli and Bergstrom (2005). Given the
pace of recent advances, it seems that a review from a statistical perspective is
warranted.

Several books deal with various aspects of log-concavity: the classic books by
Marshall and Olkin (1979) (see also Marshall, Olkin and Arnold (2011)) and
Dharmadhikari and Joag-Dev (1988) both cover aspects of log-concavity the-
ory, but from the perspective of majorization in the first case, and a perspective
dominated by unimodality in the second case. Neither treats the important no-
tion of strong log-concavity. The recent book by Simon (2011) perhaps comes
closest to our current perspective with interesting previously unpublished ma-
terial from the papers of Brascamp and Lieb in the 1970’s and a proof of the
Brascamp and Lieb result to the effect that strong log-concavity is preserved
by marginalization. Unfortunately Simon does not connect with recent termi-
nology and other developments in this regard and focuses on convexity theory
more broadly. Villani (2003) (chapter 6) gives a nice treatment of the Brunn-
Minkowski inequality and related results for log-concave distributions and den-
sities with interesting connections to optimal transportation theory. His chapter
9 also gives a nice treatment of the connections between log-Sobolev inequalities
and strong log-concavity, albeit with somewhat different terminology. Ledoux
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(2001) is, of course, a prime source for material on log-Sobolev inequalities and
strong log concavity. The nice book on stochastic programming by Prékopa
(1995) has its chapter 4 devoted to log-concavity and s-concavity, but has no
treatment of strong log-concavity or inequalities related to log-concavity and
strong log-concavity. In this review we will give proofs of some key results in
the body of the review, while proofs of supporting results are postponed to
Section 11 (Appendix B).

1.1. Notation

We attempt to use standard notation from modern convex analysis as presented
by Boyd and Vandenberghe (2004). In particular, if f ∈ C1, then ∇f denotes
the gradient of f , and if f ∈ C2, then ∇2f denotes the Hessian of f and we write
∇2f � 0 if the Hessian of f is positive semidefinite. We let λ denote Lebesgue
measure on R

d.

2. Log-concavity and strong log-concavity: Definitions and basic
results

We begin with some basic definitions of log-concave densities and measures
on R

d.

Definition 2.1. (0-d): A density function p with respect to Lebesgue measure
λ on (Rd,Bd) is log-concave if p = e−ϕ where ϕ is a convex function from R

d

to (−∞,∞]. Equivalently, p is log-concave if p = exp(ϕ̃) where ϕ̃ = −ϕ is a
concave function from R

d to [−∞,∞).

We will usually adopt the convention that p is lower semi-continuous and
ϕ = − log p is upper semi-continuous. Thus {x ∈ R

d : p(x) > t} is open,
while {x ∈ R

d : ϕ(x) ≤ t} is closed. We will also say that a non-negative and
integrable function f from R

d to [0,∞) is log-concave if f = e−ϕ where ϕ is
convex even though f may not be a density; that is

∫

Rd fdλ ∈ (0,∞).
Many common densities are log-concave; in particular all Gaussian densities

pµ,Σ(x) = (2π|Σ|)−d/2 exp
(

−1

2
(x− µ)TΣ−1(x− µ)

)

with µ ∈ R
d and Σ positive definite are log-concave. Gaussian measures on

R
d corresponding to singular covariance matrices are log-concave as measures

(as defined below in Definition 2.4) with log-concave Gaussian densities on ap-
propriate lower dimensional subspaces as will become clear in the development
below. All uniform densities of the form

pC(x) = 1C(x)/λ(C),

for some open bounded convex subset C ⊂ R
d, are log-concave. With C open,

p is lower semi-continuous in agreement with our convention noted above; of
course taking C closed leads to upper semi-continuity of p.
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In the case d = 1, log-concave functions and densities are related to several
other important classes. The following definition goes back to the work of Pólya
and Schoenberg.

Definition 2.2. Let p be a function on R (or some subset of R), and let x1 <
· · · < xk, y1 < · · · < yk. Then p is said to be a Pólya frequency function of
order k (or p ∈ PFk) if det(p(xi−yj)) ≥ 0 for all such choices of the x’s and y’s.
If p is PFk for every k, then p ∈ PF∞, the class of Pólya frequency functions
of order ∞.

A connecting link to Pólya frequency functions and to the notion of mono-
tone likelihood ratios, which is of some importance in statistics, is given by the
following proposition:

Proposition 2.3.
(a) The class of log-concave functions on R coincides with the class of Pólya
frequency functions of order 2.
(b) A density function p on R is log-concave if and only if the translation family
{p(·− θ) : θ ∈ R} has monotone likelihood ratio: i.e. for every θ1 < θ2 the ratio
p(x− θ2)/p(x− θ1) is a monotone nondecreasing function of x.

Proof. See Section 11.

Definition 2.4. (0-m): A probability measure P on (Rd,Bd) is log-concave if
for all non-empty sets A,B ∈ Bd and for all 0 < θ < 1 we have

P (θA + (1− θ)B) ≥ P (A)θP (B)1−θ.

It is well-known that log-concave measures have sub-exponential tails, see
Borell (1983) and Section 5.1 below. To accommodate densities having tails
heavier than exponential, the classes of s-concave densities and measures are of
interest.

Definition 2.5. (s-d): A density function p with respect to Lebesgue measure
λ on an convex set C ⊂ R

d is s-concave if

p(θx+ (1 − θ)y) ≥Ms(p(x), p(y); θ)

where the generalized mean Ms(u, v; θ) is defined for u, v ≥ 0 by

Ms(u, v; θ) ≡







(θus + (1− θ)vs)1/s, s 6= 0,
uθv1−θ, s = 0,
min{u, v}, s = −∞,
max{u, v}, s = +∞.

Definition 2.6. (s-m): A probability measure P on (Rd,Bd) is s-concave if for
all non-empty sets A,B in Bd and for all θ ∈ (0, 1),

P (θA+ (1 − θ)B) ≥Ms(P (A), P (B); θ)

where Ms(u, v; θ) is as defined above.
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These classes of measures and densities were studied by Prékopa (1973) in the
case s = 0 and for all s ∈ R by Borell (1974, 1975); Brascamp and Lieb (1976),
and Rinott (1976). The main results concerning these classes are nicely sum-
marized by Dharmadhikari and Joag-Dev (1988); see especially sections 2.3–2.8
(pages 46–66) and section 3.3 (pages 84–99). In particular we will review some
of the key results for these classes in the next section. For bounds on densities
of s-concave distributions on R see Doss and Wellner (2013); for probability
tail bounds for s-concave measures on R

d, see Bobkov and Ledoux (2009). For
moment bounds and concentration inequalities for s-concave distributions with
s < 0 see Adamczak et al. (2012) and Guédon (2012), section 3.

A key theorem connecting probability measures to densities is as follows:

Theorem 2.7. Suppose that P is a probability measure on (Rd,Bd) such that
the affine hull of supp(P ) has dimension d. Then P is a log-concave measure if
and only if it has a log-concave density function p on R

d; that is p = eϕ with ϕ
concave satisfies

P (A) =

∫

A

pdλ for A ∈ Bd.

This is due to Prékopa (1971, 1973). Rinott (1976) gave a simpler proof; see
Dharmadhikari and Joag-Dev (1988), Theorem 2.8, page 51.

For the correspondence between s-concave measures and t-concave densities,
see Borell (1975), Brascamp and Lieb (1976) section 3, Rinott (1976), and Dhar-
madhikari and Joag-Dev (1988). The fundamental inequality connecting these
notions is what has come to be known as the Borell-Brascamp-Lieb inequality:

Proposition 2.8. Suppose that 0 < λ < 1, −1/d ≤ s ≤ ∞, and let f, g, h :
R
d → ∞) be integrable functions such that

h((1− λ)x + λy) ≥Ms(f(x), g(y), λ) for all x, y ∈ R
d

where Ms(u, v; θ) is the generalized mean of u, v of order s as in Definition 2.5.
Then

∫

Rd

h(x)dx ≥Ms/(sd+1)

(∫

Rd

f(x)dx,

∫

Rd

g(x)dx, λ

)

where, by convention, s/(sd + 1) = −∞ when s = −1/d and s/(sd + 1) = 1/d
when s = +∞.

See the excellent review of Gardner (2002) for the current terminology and a
thorough explanation of the genesis of this inequality in relation to the classical
Brunn-Minkowski and Prékopa-Leindler inequalities.

One of our main goals here is to review and summarize what is known con-
cerning the (smaller) classes of (what we call) strongly log-concave densities.
This terminology is not completely standard. Other terms used for the same or
essentially the same notion include:

• Log-concave perturbation of Gaussian; Villani (2003), Caffarelli (2000),
pages 290–291.

• Gaussian weighted log-concave; Brascamp and Lieb (1976) pages 379, 381.
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• Uniformly convex potential : Bobkov and Ledoux (2000), abstract and page
1034, Gozlan and Léonard (2010), Section 7.

• Strongly convex potential : Caffarelli (2000).

In the case of real-valued discrete variables the comparable notion is called
ultra log-concavity; see e.g. Johnson, Kontoyiannis and Madiman (2013); Liggett
(1997), and Johnson (2007). We will re-visit the notion of ultra log-concavity in
Section 4.

Our choice of terminology is motivated in part by the following definition
from convexity theory: following Rockafellar and Wets (1998), page 565, we say
that a proper convex function h : Rd → R is strongly convex if there exists a
positive number c such that

h(θx+ (1 − θ)y) ≤ θh(x) + (1− θ)h(y)− 1

2
cθ(1 − θ)‖x− y‖2

for all x, y ∈ R
dand θ ∈ (0, 1). It is easily seen that this is equivalent to convexity

of h(x)−(1/2)c‖x‖2 (see Rockafellar and Wets (1998), Exercise 12.59, page 565):
convexity of h(x)− (1/2)c‖x‖2 holds if and only if

h(θx+(1−θ)y)− 1

2
c‖θx+(1−θ)y‖2 ≤ θh(x)+(1−θ)h(y)− cθ

2
‖x‖2− c(1− θ)

2
‖y‖2

for all x, y ∈ R
dand θ ∈ (0, 1). Rearranging this inequality yields the inequality

of the previous display.
Thus our first definition of strong log-concavity of a density function p on R

d

is as follows:

Definition 2.9. For any σ2 > 0 define the class of strongly log-concave densi-
ties with variance parameter σ2, or SLC1(σ

2, d) to be the collection of density
functions p of the form

p(x) = g(x)φσ2I(x)

for some log-concave function g where, for a positive definite matrix Σ and
µ ∈ R

d, φΣ(· − µ) denotes the Nd(µ,Σ) density given by

φΣ(x− µ) = (2π|Σ|)−d/2 exp
(

−1

2
(x− µ)TΣ−1(x− µ)

)

. (2.1)

If a random vector X has a density p of this form, then we also say that X
is strongly log-concave.

Note that this agrees with the definition of strong convexity given above
since,

h(x) ≡ − log p(x) = − log g(x) + d log(σ
√
2π) +

|x|2
2σ2

,

so that

− log p(x)− |x|2
2σ2

= − log g(x) + d log(σ
√
2π)
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is convex; i.e. − log p(x) is strongly convex with c = 1/σ2. Notice however that
if p ∈ SLC1(σ

2, d) then larger values of σ2 correspond to smaller values of
c = 1/σ2, and hence p becomes less strongly log-concave as σ2 increases. Thus
in our definition of strong log-concavity the coefficient σ2 measures the “flatness”
of the convex potential

It will be useful to relax this definition in two directions: by allowing the
Gaussian distribution to have a non-singular covariance matrix Σ other than
the identity matrix and perhaps a non-zero mean vector µ. Thus our second
definition is as follows.

Definition 2.10. Let Σ be a d× d positive definite matrix and let µ ∈ R
d. We

say that a random vector X and its density function p are strongly log-concave
and write p ∈ SLC2(µ,Σ, d) if

p(x) = g(x)φΣ(x− µ) for x ∈ R
d

for some log-concave function g where φΣ(· − µ) denotes the Nd(µ,Σ) density
given by (2.1).

Note that SLC2(0, σ
2I, d) = SLC1(σ

2, d) as in Definition 2.9. Furthermore,
if p ∈ SLC2(µ,Σ, d) with Σ non-singular, then we can write

p(x) = g(x)
φΣ(x− µ)

φΣ(x)
· φΣ(x)

φσ2I(x)
φσ2I(x)

= g(x) exp(µTΣ−1x− (1/2)µTΣ−1µT )

· exp
(

−1

2
xT (Σ−1 − 1

σ2
I)x

)

· φσ2I(x)

≡ h(x)φσ2I(x),

where Σ−1 − I/σ2 is positive definite if 1/σ2 is smaller than the smallest eigen-
value of Σ−1. In this case, h is log-concave, so p ∈ SLC1(σ

2, d).

Example 2.11 (Gaussian densities). If X ∼ p where p is the Nd(0,Σ) density
with Σ positive definite, then X (and p) is strongly log-concave SLC2(0,Σ, d)
and hence also log-concave. In particular for d = 1, if X ∼ p where p is the
N1(0, σ

2) density, then X (and p) is SLC1(σ
2, 1) = SLC2(0, σ

2, 1) and hence
is also log-concave. Note that ϕ′′

X(x) ≡ (− log p)′′(x) = 1/σ2 is constant in this
latter case.

Example 2.12 (Logistic density). If X ∼ p where p(x) = e−x/(1 + e−x)2 =
(1/4)/(cosh(x/2))2, then X (and p) is log-concave and even strictly log-concave
since ϕ′′

X(x) = (− log p)′′(x) = 2p(x) > 0 for all x ∈ R, but X is not strongly
log-concave.

Example 2.13 (Bridge densities). If X ∼ pθ where, for θ ∈ (0, 1),

pθ(x) =
sin(πθ)

2π(cosh(θx) + cos(πθ))
,
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then X (and pθ) is log-concave for θ ∈ (0, 1/2], but fails to be log-concave for
θ ∈ (1/2, 1). For θ ∈ (1/2, 1), ϕ′′

θ (x) = (− log pθ)
′′(x) is bounded below, by some

negative value depending on θ, and hence these densities are semi-log-concave
in the terminology of Cattiaux and Guillin (2013) who introduce this further
generalization of log-concave densities by allowing the constant in the definition
of a class of strongly log-concave densities to be negative as well as positive.
This particular family of densities on R was introduced in the context of binary
mixed effects models by Wang and Louis (2003).

Example 2.14 (Subbotin density). If X ∼ pr where pr(x) = Cr exp(−|x|r/r)
for x ∈ R and r > 0 where Cr = 1/[2Γ(1/r)r1/r−1], then X (and pr) is log-
concave for all r ≥ 1. Note that this family includes the Laplace (or double
exponential) density for r = 1 and the Gaussian (or standard normal) density
for r = 2. The only member of this family that is strongly log-concave is p2, the
standard Gaussian density, since (− log p)′′(x) = (r − 1)|x|r−2 for x 6= 0.

Example 2.15 (Supremum of Brownian bridge). If U is a standard Brownian
bridge process on [0, 1], Then P (sup0≤t≤1 U(t) > x) = exp(−2x2) for x > 0,
so the density is f(x) = 4x exp(−2x2)1(0,∞)(x), which is strongly log concave
since (− log f)′′(x) = 4+x−2 ≥ 4. This is a special case of the Weibull densities
fβ(x) = βxβ−1 exp(−xβ) which are log-concave if β ≥ 1 and strongly log-
concave for β ≥ 2. For more about suprema of Gaussian processes, see Section
9.4 below.

For further interesting examples, see Dharmadhikari and Joag-Dev (1988)
and Prékopa (1995).

There exist many ways to strengthen the property of log-concavity. One very
interesting strengthened property is log-concavity of order p. This is a one-
dimensional notion.

Definition 2.16. A random variable ξ > 0 is said to have a log-concave distri-
bution of order p ≥ 1, if it has a density of the form f(x) = xp−1g(x), x > 0,
where the function g is log-concave on (0,∞).

Notice that the notion of log-concavity of order 1 coincides with the notion of
log-concavity for positive random variables. Furthermore, it is easily seen that
log-concave variables of order p > 1 are also strictly log-concave in the sense that
their potential is strictly convex. Indeed, with the notations of Definition 2.16
and setting f = exp(−ϕf ) and g = exp(−ϕg), we get

ϕf (x) = ϕg (x) − (p− 1) log (x)

where − log is strictly convex.

Example 2.17. The Gamma distribution with α ≥ 1 degrees of freedom, which
has the density f(x) = Γ(α)−1xα−1e−x1(0,∞)(x) is log-concave of order α.

Example 2.18. The Beta distribution Bα,β with parameters α ≥ 1 and β ≥
1 is log-concave of order α. We recall that its density g is given by g(x) =
B(α, β)−1xα−1(1− x)β−11(0,1)(x).
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Example 2.19. The Weibull density with parameter β ≥ 1, given by hβ(x) =
βxβ−1 exp(−xβ)1(0,∞)(x) is log-concave of order β.

It is worth noticing that when X is a log-concave vector in R
d with spherically

invariant distribution, then the Euclidian norm of X , denoted ‖X‖, follows
a log-concave distribution of order d − 1 (this is easily seen by transforming
to polar coordinates; see Bobkov (2003) for instance). Hence, the notion of
log-concavity of order p is of interest when dealing with problems in greater
dimension. More generally, a systematic way to reduce a problem defined by d-
dimensional integrals to a problem involving one-dimensional integrals is given
by the “localization lemma” of Lovász and Simonovits (1993); see also Kannan,
Lovász and Simonovits (1997). We will not further review this notion and we
refer to Bobkov (2003, 2010) and Bobkov and Madiman (2011) for nice results
related in particular to concentration of log-concave variables of order p.

The following sets of equivalences for log-concavity and strong log-concavity
will be useful and important. To state these equivalences we need the following
definitions from Simon (2011), page 199. First, a subset A of Rd is balanced
(Simon (2011)) or centrally symmetric (Dharmadhikari and Joag-Dev (1988)) if
x ∈ A implies −x ∈ A.

Definition 2.20. A nonnegative function f on R
d is convexly layered if {x :

f(x) > α} is a balanced convex set for all α > 0. It is called even, radial
monotone if (i) f(−x) = f(x) and (ii) f(rx) ≥ f(x) for all 0 ≤ r ≤ 1 and all
x ∈ R

d.

Proposition 2.21 (Equivalences for log-concavity). Let p = e−ϕ be a den-
sity function with respect to Lebesgue measure λ on R

d; that is, p ≥ 0 and
∫

Rd pdλ = 1. Suppose that ϕ ∈ C2. Then the following are equivalent:

(a) ϕ = − log p is convex; i.e. p is log-concave.
(b) ∇ϕ = −∇p/p : Rd → R

d is monotone:

〈∇ϕ(x2)−∇ϕ(x1), x2 − x1〉 ≥ 0 for all x1, x2 ∈ R
d.

(c) ∇2ϕ � 0.
(d) Ja(x; p) = p(a+ x)p(a− x) is convexly layered for each a ∈ R

d.
(e) Ja(x; p) is even and radially monotone.
(f) p is mid-point log-concave: for all x1, x2 ∈ R

d,

p

(
1

2
x1 +

1

2
x2

)

≥ p(x1)
1/2p(x2)

1/2.

The equivalence of (a), (d), (e), and (f) is proved by Simon (2011), page
199, without assuming that p ∈ C2. The equivalence of (a), (b), and (c) under
the assumption ϕ ∈ C2 is classical and well-known. This set of equivalences
generalizes naturally to handle ϕ /∈ C2, but ϕ proper and upper semicontinuous
so that p is lower semicontinuous; see Section 5.2 below for the adequate tools
of convex regularization.

In dimension 1, Bobkov (1996) proved the following further characterizations
of log-concavity on R.
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Proposition 2.22 (Bobkov (1996)). Let µ be a nonatomic probability measure
with distribution function F = µ((−∞, x]), x ∈ R. Set a = inf{x ∈ R : F (x) >
0} and b = sup{x ∈ R : F (x) < 1}. Assume that F strictly increases on (a, b),
and let F−1 : (0, 1) → (a, b) denote the inverse of F restricted to (a, b). Then
the following properties are equivalent:

(a) µ is log-concave;
(b) for all h > 0, the function Rh(p) = F (F−1(p) + h) is concave on (a, b);
(c) µ has a continuous, positive density f on (a, b) and, moreover, the function
I(p) = f(F−1(p)) is concave on (0, 1).

Properties (b) and (c) of Proposition 2.22 were first used in Bobkov (1996)
along the proofs of his description of the extremal properties of half-planes for
the isoperimetric problem for log-concave product measures on R

d. In Bobkov
and Madiman (2011) the concavity of the function I(p) = f(F−1(p)) defined
in point (c) of Proposition 2.22, plays a role in the proof of concentration and
moment inequalities for the following information quantity: − log f(X) where
X is a random vector with log-concave density f . Recently, Bobkov and Ledoux
(2014) used the concavity of I to prove upper and lower bounds on the variance
of the order statistics associated to an i.i.d. sample drawn from a log-concave
measure on R. The latter results allow then the authors to prove refined bounds
on some Kantorovich transport distances between the empirical measure associ-
ated to the i.i.d. sample and the log-concave measure on R. For more facts about
the function I for general measures on R and in particular, its relationship to
isoperimetric profiles, see Appendix A.4-6 of Bobkov and Ledoux (2014).

Example 2.23. If µ is the standard Gaussian measure on the real line, then I
is symmetric around 1/2 and there exist constants 0 < c0 ≤ c1 <∞ such that

c0t
√

log (1/t) ≤ I (t) ≤ c1t
√

log (1/t),

for t ∈ (0, 1/2] (see Bobkov and Ledoux (2014) p. 73).

We turn now to similar characterizations of strong log-concavity.

Proposition 2.24 (Equivalences for strong log-concavity, SLC1). Let p = e−ϕ

be a density function with respect to Lebesgue measure λ on R
d; that is, p ≥ 0

and
∫

Rd pdλ = 1. Suppose that ϕ ∈ C2. Then the following are equivalent:

(a) p is strongly log-concave; p ∈ SLC1(σ
2, d).

(b) ρ(x) ≡ ∇ϕ(x) − x/σ2 : Rd → R
d is monotone:

〈ρ(x2)− ρ(x1), x2 − x1〉 ≥ 0 for all x1, x2 ∈ R
d.

(c) ∇ρ(x) = ∇2ϕ− I/σ2 � 0.
(d) For each a ∈ R

d the function

Jφa (x; p) ≡
p(a+ x)p(a− x)

φσ2I/2(x)

is convexly layered.
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(e) The function Jφa (x; p) in (d) is even and radially monotone for all a ∈ R
d.

(f) For all x, y ∈ R
d,

p

(
1

2
x+

1

2
y

)

≥ p(x)1/2p(y)1/2 exp

(
1

8
|x− y|2

)

.

Proof. See Section 11.

We investigate the extension of Proposition 2.22 concerning log-concavity
on R, to the case of strong log-concavity. (The following result is apparently
new.) Recall that a function h is strongly concave on (a, b) with parameter
c > 0 (or c-strongly concave), if for any x, y ∈ (a, b), any θ ∈ (0, 1),

h(θx+ (1− θ)y) ≥ θh(x) + (1 − θ)h(y) +
1

2
cθ(1 − θ)‖x− y‖2.

Proposition 2.25. Let µ be a nonatomic probability measure with distribution
function F = µ((−∞, x]), x ∈ R. Set a = inf{x ∈ R : F (x) > 0} and b =
sup{x ∈ R : F (x) < 1}, possibly infinite. Assume that F strictly increases on
(a, b), and let F−1 : (0, 1) → (a, b) denote the inverse of F restricted to (a, b).
Suppose that X is a random variable with distribution µ. Then the following
properties hold:

(i) If X ∈ SLC1(c, 1), c > 0, then I(p) = f(F−1(p)) is (c‖f‖∞)−1-strongly
concave and (c−1

√

Var(X))-strongly concave on (0, 1).
(ii) The converse of point (i) is false: there exists a log-concave variable X

which is not strongly log-concave (for any parameter c > 0) such that the
associated I function is strongly concave on (0, 1).

(iii) There exist a strongly log-concave random variable X ∈ SLC(c, 1) and
h0 > 0 such that the function Rh0

(p) = F (F−1(p)+h0) is concave but not
strongly concave on (a, b).

(iv) There exists a log-concave random variable X which is not strongly log-
concave (for any positive parameter), such that for all h > 0, the function
Rh0

(p) = F (F−1(p) + h) is strongly concave on (a, b).

Proof. See Section 11.

From (i) and (ii) in Proposition 2.25, we see that the strong concavity of the
function I is a necessary but not sufficient condition for the strong log-concavity
of X . Points (iii) and (iv) state that no relations exist in general between the
strong log-concavity of X and strong concavity of its associated function Rh.

The following proposition gives a similar set of equivalences for our second
definition of strong log-concavity, Definition 2.10.

Proposition 2.26 (Equivalences for strong log-concavity, SLC2). Let p = e−ϕ

be a density function with respect to Lebesgue measure λ on R
d; that is, p ≥ 0

and
∫

Rd pdλ = 1. Suppose that ϕ ∈ C2. Then the following are equivalent:

(a) p is strongly log-concave; p ∈ SLC2(µ,Σ, d) with Σ > 0, µ ∈ R
d.

(b) ρ(x) ≡ ∇ϕ(x) − Σ−1(x − µ) : Rd → R
d is monotone:

〈ρ(x2)− ρ(x1), x2 − x1〉 ≥ 0 for all x1, x2 ∈ R
d.
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(c) ∇ρ(x) = ∇2ϕ− Σ−1 ≥ 0.
(d) For each a ∈ R

d, the function

Jφa (x; p) = p(a+ x)p(a− x)/φΣ/2(x)

is convexly layered.
(e) For each a ∈ R

d the function Jφa (x; p) in (d) is even and radially monotone.
(f) For all x, y ∈ R

d,

p

(
1

2
x+

1

2
y

)

≥ p(x)1/2p(y)1/2 exp

(
1

8
(x− y)TΣ−1(x− y)

)

.

Proof. To prove Proposition 2.26 it suffices to note the log-concavity of g(x) =
p(x)/φΣ/2(x) and to apply Proposition 2.21 (which holds as well for log-concave
functions). The claims then follow by straightforward calculations; see Section 11
for more details.

3. Log-concavity and strong log-concavity: Preservation theorems

Both log-concavity and strong log-concavity are preserved by a number of op-
erations. Our purpose in this section is to review these preservation results and
the methods used to prove such results, with primary emphasis on: (a) affine
transformations, (b) marginalization, (c) convolution. The main tools used in
the proofs will be: (i) the Brunn-Minkowski inequality; (ii) the Brascamp-Lieb
Poincaré type inequality; (iii) Prékopa’s theorem; (iv) Efron’s monotonicity the-
orem.

3.1. Preservation of log-concavity

3.1.1. Preservation by affine transformations

Suppose that X has a log-concave distribution (or probability measure) P on
(Rd,Bd), and let A be a non-zero real matrix of order m× d. Then consider the
distribution Q of Y = AX on R

m.

Proposition 3.1 (log-concavity of measures is preserved by affine transforma-
tions). The probability measure Q on R

m defined by Q(B) = P (AX ∈ B) for
B ∈ Bm is a log-concave probability measure. If P is non-degenerate log-concave
on R

d with density p and m = d with A of rank d, then Q is non-degenerate
with log-concave density q.

Proof. See Dharmadhikari and Joag-Dev (1988), Lemma 2.1, page 47.

3.1.2. Preservation by products

Now let P1 and P2 be log-concave probability measures on (Rd1 ,Bd1) and
(Rd2 ,Bd2) respectively. Then we have the following preservation result for the
product measure P1 × P2 on (Rd1 × R

d2 ,Bd1 × Bd2):
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Proposition 3.2 (log-concavity of measures is preserved by products). If P1

and P2 are log-concave probability measures then the product measure P1 × P2

is a log-concave probability measure.

Proof. See Dharmadhikari and Joag-Dev (1988), Theorem 2.7, page 50. A key
fact used in this proof is that if a probability measure P on (Rd,Bd) assigns
zero mass to every hyperplane in R

d, then log-concavity of P holds if and only
if P (θA+(1− θ)B) ≥ P (A)θP (B)1−θ for all rectangles A,B with sides parallel
to the coordinate axes; see Dharmadhikari and Joag-Dev (1988), Theorem 2.6,
page 49.

3.1.3. Preservation by marginalization

Now suppose that p is a log-concave density on R
m+n and consider the marginal

density q(y) =
∫

Rm p(x, y)dx. The following result due to Prékopa (1973) con-
cerning preservation of log-concavity was given a simple proof by Brascamp and
Lieb (1976) (Corollary 3.5, page 374). In fact they also proved the whole family
of such results for s-concave densities.

Theorem 3.3 (log-concavity of densities is preserved by marginalization;
Prékopa’s theorem). Suppose that p is log-concave on R

m+n and let q(y) =
∫

Rm p(x, y)dx. Then q is log-concave.

This theorem is a center-piece of the entire theory. It was proved indepen-
dently by a number of mathematicians at about the same time: these include
Prékopa (1971, 1973), building on Borell (1974, 1975); Brascamp and Lieb (1974,
1975, 1976); Dinghas (1957), and Rinott (1976). Simon (2011), page 310, gives
a brief discussion of the history, including an unpublished proof of Theorem 3.3
given in Brascamp and Lieb (1974). Many of the proofs (including the proofs
in Borell (1975); Brascamp and Lieb (1975), and Rinott (1976)) are based fun-
damentally on the Brunn-Minkowski inequality; see the informative reviews of
Das Gupta (1980); Gardner (2002), and Maurey (2005) for useful surveys.

We give two proofs here. The first proof is a transportation argument from
Ball, Barthe and Naor (2003); the second is a proof from Brascamp and Lieb
(1974) which has recently appeared in Simon (2011).

Proof (Via transportation). We can reduce to the case n = 1 since it suffices
to show that the restriction of q to a line is log-concave. Next note that an
inductive argument shows that the claimed log-concavity holds for m + 1 if it
holds for m, and hence it suffices to prove the claim for m = n = 1.

Since log-concavity is equivalent to mid-point log concavity (by the equiva-
lence of (a) and (e) in Proposition 2.21), we only need to show that

q

(
u+ v

2

)

≥ q(u)1/2q(v)1/2 (3.2)

for all u, v ∈ R. Now define

f(x) = p(x, u), g(x) = p(x, v), h(x) = p(x, (u + v)/2).
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Then (3.2) can be rewritten as

∫

h(x)dx ≥
(∫

f(x)dx)

)1/2(∫

g(x)dx

)1/2

.

From log-concavity of p we know that

h

(
z + w

2

)

= p

(
z + w

2
,
u+ v

2

)

≥ p(z, u)1/2p(w, v)1/2 = f(z)1/2g(w)1/2. (3.3)

By homogeneity we can arrange f, g, and h so that
∫
f(x)dx =

∫
g(x)dx = 1;

if not, replace f and g with f̃ and g̃ defined by f̃(x) = f(x)/
∫
f(x′)dx′ =

f(x)/q(u) and g̃(x) = g(x)/
∫
g(x′)dx′ = g(x)/q(v).

Now for the transportation part of the argument: let Z be a real-valued
random variable with distribution function K having smooth density k. Then
define maps S and T by K(z) = F (S(z)) and K(z) = G(T (z)) where F and G
are the distribution functions corresponding to f and g. Then

k(z) = f(S(z))S′(z) = g(T (z))T ′(z)

where S′, T ′ ≥ 0 since the same is true for k, f , and g, and it follows that

1 =

∫

k(z)dz =

∫

f(S(z))1/2g(T (z))1/2(S′(z))1/2(T ′(z))1/2dz

≤
∫

h

(
S(z) + T (z)

2

)

(S′(z))1/2(T ′(z))1/2dz

≤
∫

h

(
S(z) + T (z)

2

)

· S
′(z) + T ′(z)

2
dz

=

∫

h(x)dx

by the inequality (3.3) in the first inequality and by the arithmetic - geometric
mean inequality in the second inequality.

Proof (Via symmetrization). By the same induction argument as in the first
proof we can suppose that m = 1. By an approximation argument we may
assume, without loss of generality that p has compact support and is bounded.

Now let a ∈ R
n and note that

Ja(y; q) = q(a+ y)q(a− y)

=

∫ ∫

p(x, a+ y)p(z, a− y)dxdz

= 2

∫ ∫

p(u+ v, a+ y)p(u− v, a− y)dudv

= 2

∫ ∫

Ju,a(v, y; p)dudv
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where, for (u, a) fixed, the integrand is convexly layered by Proposition 2.21
(d). Thus by the following Lemma 3.4, the integral over v is an even lower semi-
continuous function of y for each fixed u, a. Since this class of functions is closed
under integration over an indexing parameter (such as u), the integration over
u also yields an even radially monotone function, and by Fatou’s lemma Ja(y; g)
is also lower semicontinuous. It then follows from Proposition 2.21 again that g
is log-concave.

Lemma 3.4. Let f be a lower semicontinuous convexly layered function on
R
n+1 written as f(x, t), x ∈ R

n, t ∈ R. Suppose that f is bounded and has
compact support. Let

g(x) =

∫

R

f(x, t)dt.

Then g is an even, radially monotone, lower semicontinuous function.

Proof. First note that sums and integrals of even radially monotone functions
are again even and radially monotone. By the wedding cake representation

f(x) =

∫ ∞

0

1{f(x) > t}dt,

it suffices to prove the result when f is the indicator function of an open balanced
convex set K. Thus we define

K(x) = {t ∈ R : (x, t) ∈ K}, for x ∈ R
n.

Thus K(x) = (c(x), d(x)), an open interval in R and we see that

g(x) = d(x)− c(x).

But convexity of K implies that c(x) is convex and d(x) is concave,and hence
g(x) is concave. Since K is balanced, it follows that c(−x) = −d(x), or d(−x) =
−c(x), so g is even. Since an even concave function is even radially monotone,
and lower semicontinuity of g holds by Fatou’s lemma, the conclusion follows.

3.1.4. Preservation under convolution

Suppose that X,Y are independent with log-concave distributions P and Q on
(Rd,Bd), and let R denote the distribution of X+Y . The following result asserts
that R is log-concave as a measure on R

d.

Proposition 3.5 (log-concavity of measures is preserved by convolution). Let P
and Q be two log-concave distributions on (Rd,Bd) and let R be the convolution
defined by R(B) =

∫

Rd P (B − y)dQ(y) for B ∈ Bd. Then R is log-concave.

Proof. If P and Q are log-concave measures on R
d, then P ×Q is a log-concave

measure on R
d×R

d by Proposition 3.2. Furthermore, log-concavity is preserved
by affine transformations by Proposition 3.1, so with A = (Id×d, Id×d) where
Id×d is the d × d identity matrix and Z = (XT , Y T )T ∼ P ×Q it follows that
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R, the law of AZ = X + Y is a log-concave measure on R
d. This is essentially

the proof of Borell (1974, 1975).
It is instructive to consider this argument in the case when p and q have

densities with respect to Lebesgue measure. Then P (A) =
∫

A p(x)dx, Q(B) =
∫

B
q(y)dy where p and q are log-concave by Theorem 2.7, and h(x, y) = p(x −

y)q(y) is a log-concave density (by preservation of log-concavity under products
and linear transformations), and hence

r(x) =

∫

Rd

h(x, y)dy =

∫

Rd

p(x− y)q(y)dy

is log-concave (a log-concave density) by Theorem 3.3. Then Theorem 2.7 implies
that R(A) =

∫

A r(x)dx is a log-concave measure.

Proposition 3.5 was proved when d = 1 by Schoenberg (1951) who used the
PF2 terminology of Pólya frequency functions. In fact all the Pólya frequency
classes PFk, k ≥ 2, are closed under convolution as shown by Karlin (1968);
see Marshall, Olkin and Arnold (2011), Lemma A.4 (page 758) and Proposition
B.1, page 763. The first proof of Proposition 3.5 when d ≥ 2 is apparently due
to Davidovič, Korenbljum and Hacet (1969). While the proof given above using
Prékopa’s theorem is simple and quite basic, there are at least two other proofs
according as to whether we use:

(a) the equivalence between log-concavity and monotonicity of the scores of f ,
or
(b) the equivalence between log-concavity and non-negativity of the matrix of
second derivatives (or Hessian) of − log f , assuming that the second derivatives
exist.

The proof in (a) relies on Efron’s inequality when d = 1, and was noted by
Wellner (2013) in parallel to the corresponding proof of ultra log-concavity in
the discrete case given by Johnson (2007); see Theorem 4.1. We will return to
this in Section 6. For d > 1 this approach breaks down because Efron’s theorem
does not extend to the multivariate setting without further hypotheses. Possible
generalizations of Efron’s theorem will be discussed in Section 7. The proof in
(b) relies on a Poincaré type inequality of Brascamp and Lieb (1976). These
three different methods are of some interest since they all have analogues in the
case of proving that strong log-concavity is preserved under convolution.

It is also worth noting the following difference between the situation in one
dimension and the result for preservation of convolution in higher dimensions: as
we note following Theorems 29 and 33, Ibragimov (1956a) and Keilson and Ger-
ber (1971) showed that in the one-dimensional continuous and discrete settings
respectively that if p⋆q is unimodal for every unimodal q, then p is log-concave.
The analogue of this for d > 1 is more complicated in part because of the great
variety of possible definitions of “unimodal” in this case; see Dharmadhikari
and Joag-Dev (1988) chapters 2 and 3 for a thorough discussion. In particu-
lar Sherman (1955) provided the following counterexample when the notion of
unimodality is taken to be centrally symmetric convex unimodality; that is, the
sets Sc(p) ≡ {x ∈ R

d : p(x) ≥ c} are symmetric and convex for each c ≥ 0.
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Fig 1. Sherman’s example, h = p ⋆ q.

Let p be the uniform density on [−1, 1]2 (so that p(x) = (1/4)1[−1,1]2(x)); then
p is log-concave. Let q be the density given by 1/12 on [−1, 1]2 and 1/24 on
([−1, 1] × (1, 5]) ∪ ([−1, 1] × [−5,−1)). Thus q is centrally symmetric convex
(and hence also quasi-concave, q ∈ P−∞ as in Definition 2.5. But h = p ⋆ q is
not centrally symmetric convex (and also is not quasi-concave), since the sets
Sc(h) are not convex: see Figure 1.

3.1.5. Preservation by (weak) limits

Now we consider preservation of log-concavity under convergence in distribution.

Proposition 3.6 (log-concavity is preserved under convergence in distribution).
Suppose that {Pn} is a sequence of log-concave probability measures on R

d, and
suppose that Pn →d P0. Then P0 is a log-concave probability measure.

Proof. See Dharmadhikari and Joag-Dev (1988), Theorem 2.10, page 53.

Note that the limit measure in Proposition 3.6 might be concentrated on
a proper subspace of R

d. If we have a sequence of log-concave densities pn
which converge pointwise to a density function p0, then by Scheffé’s theorem
we have pn → p0 in L1(λ) and hence dTV (Pn, P0) → 0. Since convergence
in total variation implies convergence in distribution we conclude that P0 is
a log-concave measure where the affine hull of supp(P0) has dimension d and
hence P0 is the measure corresponding to p0 which is necessarily log-concave by
Theorem 2.7.

Recall that the class of normal distributions on R
d is closed under all the oper-

ations discussed above: affine transformation, formation of products, marginal-
ization, convolution, and weak limits. Since the larger class of log-concave distri-
butions on R

d is also preserved under these operations, the preservation results
of this section suggest that the class of log-concave distributions is a very natu-
ral nonparametric class which can be viewed naturally as an enlargement of the
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class of all normal distributions. This has stimulated much recent work on non-
parametric estimation for the class of log-concave distributions on R and R

d:
for example, see Dümbgen and Rufibach (2009), Cule and Samworth (2010),
Cule, Samworth and Stewart (2010), Walther (2009), Balabdaoui, Rufibach and
Wellner (2009), and Henningsson and Astrom (2006), and see Section 9.14 for
further details.

3.2. Preservation of strong log-concavity

Here is a theorem summarizing several preservation results for strong log-concav-
ity. Parts (a), (b), and (d) were obtained by Henningsson and Astrom (2006).

Theorem 3.7 (Preservation of strong log-concavity).

(a) (Linear transformations) Suppose that X has density p ∈ SLC2(0,Σ, d)
and let A be a d × d nonsingular matrix. Then Y = AX has density q ∈
SLC2(0, AΣA

T , d) given by q(y) = p(A−1y)det(A−1).
(b) (Convolution) If Z = X + Y where X ∼ p ∈ SLC2(0,Σ, d) and Y ∼ q ∈
SLC2(0,Γ, d) are independent, then Z = X + Y ∼ p ⋆ q ∈ SLC2(0,Σ + Γ, d).
(c) (Product distribution) If X ∼ p ∈ SLC2(0,Σ,m) and Y ∼ q ∈ SLC2(0,Γ, n),
then

(X,Y ) ∼ p · q ∈ SLC2

(

0,

(
Σ 0
0 Γ

)

,m+ n

)

.

(d) (Product function) If p ∈ SLC2(0,Σ, d) and q ∈ SLC2(0,Γ, d), then h given
by h(x) = p(x)q(x) (which is typically not a probability density function) satisfies
h ∈ SLC2(0, (Σ

−1 + Γ−1)−1).

Part (b) of Theorem 3.7 is closely related to the following result which builds
upon and strengthens Prékopa’s Theorem 3.3. It is due to Brascamp and Lieb
(1976) (Theorem 4.3, page 380); see also Simon (2011), Theorem 13.13, page 204.

Theorem 3.8 (Preservation of strong log-concavity under marginalization).
Suppose that p ∈ SLC2(0,Σ,m+ n). Then the marginal density q on R

n given
by

q(x) =

∫

Rm

p(x, y)dy

is strongly log-concave: q ∈ SLC2(0,Σ11,m) where

Σ =

(
Σ11 Σ12

Σ21 Σ22

)

. (3.4)

Proof. Since p ∈ SLC2(0,Σ,m+ n) we can write

p(x, y) = g(x, y)φΣ(x, y)

= g(x, y)
1

(2π|Σ|)(m+n)/2
exp

(

−1

2
(xT , yT )

(
Σ11 Σ12

Σ21 Σ22

)−1(
x
y

))
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where g is log-concave. Now the Gaussian term in the last display can be written
as

φY |X(y|x) · φX(x)

=
1

(2π|Σ22·1|)n/2
exp

(

−1

2
(y − Σ21Σ

−1
11 x)

TΣ−1
22·1(y − Σ21Σ

−1
11 x)

)

· 1

(2π|Σ11|)m/2
exp

(

−1

2
xTΣ−1

11 x

)

where Σ22·1 ≡ Σ22 − Σ21Σ
−1
11 Σ12, and hence

q(x) =

∫

Rn

g(x, y)
1

(2π|Σ22·1|)n/2

· exp
(

−1

2
(y − Σ21Σ

−1
11 x)

TΣ−1
22·1(y − Σ21Σ

−1
11 x)

)

dy

· 1

(2π|Σ11|)m/2
exp

(

−1

2
xTΣ−1

11 x

)

=

∫

Rn

g(x, ỹ +Σ21Σ
−1
11 x) ·

1

(2π|Σ22·1|)n/2
exp

(

−1

2
ỹTΣ−1

22·1ỹ

)

dỹ

· 1

(2π|Σ11|)m/2
exp(−(1/2)xTΣ−1

11 x)

≡ h(x)φΣ11
(x)

where

h(x) ≡
∫

Rn

g(x, ỹ +Σ21Σ
−1
11 x) ·

1

(2π|Σ22·1|)n/2
exp

(

−1

2
ỹTΣ−1

22·1ỹ

)

dỹ

is log-concave: g is log-concave, and hence g̃(x, ỹ) ≡ g(x, ỹ + Σ21Σ
−1
11 x) is log-

concave; the product g̃(x, ỹ) · exp(−(1/2)ỹTΣ−1
22·1ỹ) is (jointly) log-concave; and

hence h is log-concave by Prékopa’s Theorem 3.3.

Proof. (Theorem 3.7): (a) The density q is given by q(y) = p(A−1y) det(A−1)
by a standard computation. Then since p ∈ SLC2(0,Σ, d) we can write

q(y) = g(A−1y) det(A−1)φΣ(A
−1y) = g(A−1y)φAΣAT (y)

where g(A−1y) is log-concave by Proposition 3.1.
(b) If p ∈ SLC2(0,Σ, d) and q ∈ SLC2(0,Γ, d), then the function

h(z, x) = p(x)q(z − x)

is strongly log-concave jointly in x and z: since

xTΣ−1x+ (z − x)TΓ−1(z − x)

= zT (Σ + Γ)−1z + (x− Cz)T (Σ−1 + Γ−1)(x− Cz)



Log-concavity and strong log-concavity 65

where C ≡ (Σ−1 + Γ−1)−1Γ−1, it follows that

h(z, x) = gp(x)gq(z − x)φΣ(x)φΓ(z − x)

= g(z, x)φΣ+Γ(z) · φΣ−1+Γ−1(x− Cz)

is jointly log-concave. Hence it follows that

p ⋆ q(z) =

∫

Rd

h(z, x)dx = φΣ+Γ(z)

∫

Rd

g(z, x)φΣ−1+Γ−1(x − Cz)dx

≡ φΣ+Γ(z)g0(z)

where g0(z) is log-concave by Prékopa’s theorem, Theorem 3.3.
(c) This is easy since

p(x)q(y) = gp(x)gq(y)φΣ(x)φΓ(y) = g(x, y)φΣ̃(x, y)

where Σ̃ is the given 2d× 2d block diagonal matrix and g is jointly log-concave
(by Proposition 3.2).
(d) Note that

p(x)q(x) = gp(x)gq(x)φΣ(x) · φΓ(x) ≡ g0(x)φ(Σ−1+Γ−1)−1(x)

where g0 is log-concave.

4. Log-concavity and ultra-log-concavity for discrete distributions

We now consider log-concavity and ultra-log-concavity in the setting of discrete
random variables. Some of this material is from Johnson, Kontoyiannis and
Madiman (2013) and Johnson (2007).

An integer-valued random variable X with probability mass function {px :
x ∈ Z} is log-concave if

p2x ≥ px+1px−1 for all x ∈ Z (4.5)

and {px} has no internal zeros. Logarithmically concave sequences were first
studied by Fekete (1912), who introduced the more general notion of multiple
positive sequences. Fekete (1912) showed that the convolution of two log-concave
sequences is again log-concave, and in, in particular, this holds for log-concave
probability mass functions.

If we define the score function ϕ by

ϕ(x) ≡ px+1/px,

then log-concavity of {px} is equivalent to ϕ being decreasing (nonincreasing).
A stronger notion, analogous to strong log-concavity in the case of continuous

random variables, is that of ultra-log-concavity: for any λ > 0 define ULC(λ)
to be the class of integer-valued random variables X with mean EX = λ such
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that the probability mass function px satisfies

xp2x ≥ (x + 1)px+1px−1 for all x ≥ 1. (4.6)

Then the class of ultra log-concave random variables is ULC = ∪λ>0ULC(λ).
Note that (4.6) is equivalent to log-concavity of x 7→ px/πλ,x where πλ,x =
e−λλx/x! is the Poisson distribution on N, and hence ultra-log-concavity corre-
sponds to p being log-concave relative to πλ (or p ≤lc πλ) in the sense defined
by Whitt (1985). Equivalently, px = hxπλ,x where h is log-concave. When we
want to emphasize that the mass function {px} corresponds to X , we also write
pX(x) instead of px.

If we define the relative score function ρ by

ρ(x) ≡ (x + 1)px+1

λpx
− 1,

then X ∼ p ∈ ULC(λ) if and only if ρ is decreasing (nonincreasing). Note that

ρ(x) =
(x+ 1)ϕ(x)

λ
− 1 =

(x+ 1)ϕ(x)

λ
− (x+ 1)πλ,x+1

λπλ,x
.

Our main interest here is the preservation of log-concavity and ultra-log-
concavity under convolution.

Theorem 4.1. (a) (Fekete (1912)) The class of log-concave distributions on Z

is closed under convolution. If U ∼ p and V ∼ q are independent and p and q
are log-concave, then U + V ∼ p ⋆ q is log-concave.
(b) (Walkup (1976), Liggett (1997)) The class of ultra-log-concave distributions
on Z is closed under convolution. More precisely, these classes are closed un-
der convolution in the following sense: if U ∈ ULC(λ) and V ∈ ULC(µ) are
independent, then U + V ∈ ULC(λ+ µ).

In connection with part (a) of this Theorem, Keilson and Gerber (1971)
proved more: analogously to Ibragimov (1956a) they showed that p is strongly
unimodal (i.e. X + Y ∼ p ⋆ q with X,Y independent is unimodal for every
unimodal q on Z) if and only if X ∼ p is log-concave.

Liggett’s proof of (b) proceeds by direct calculation; see also Walkup (1976).
For recent alternative proofs of this property of ultra-log-concave distributions,
see Gurvits (2009) and Kahn and Neiman (2011). A relatively simple proof
is given by Johnson (2007) using results from Kontoyiannis, Harremoës and
Johnson (2005) and Efron (1965), and that is the proof we will summarize here.
See Nayar and Oleszkiewicz (2012) for an application of ultra log-concavity and
Theorem 4.1 to finding optimal constants in Khinchine inequalities.

Before proving Theorem 4.1 we need the following lemma giving the score
and the relative score of a sum of independent integer-valued random variables.

Lemma 4.2. If X,Y are independent non-negative integer-valued random vari-
ables with mass functions p = pX and q = pY then:



Log-concavity and strong log-concavity 67

(a) ϕX+Y (z) = E{ϕX(X)|X + Y = z}.
(b) If, moreover, X and Y have means µ and ν respectively, then with α =
µ/(µ+ ν),

ρX+Y (z) = E{αρX(X) + (1− α)ρY (Y )
∣
∣X + Y = z}.

Proof. For (a), note that with Fz ≡ pX+Y (z) we have

ϕX+Y (z) =
pX+Y (z + 1)

pX+Y (z)
=
∑

x

p(x)q(z + 1− x)

Fz

=
∑

x

p(x)

p(x− 1)
· p(x− 1)q(z + 1− x)

Fz

=
∑

x

p(x+ 1)

p(x)
· p(x)q(z − x)

Fz
.

To prove (b) we follow Kontoyiannis, Harremoës and Johnson (2005), page 471:
using the same notation as in (a),

ρX+Y (z) =
(z + 1)pX+Y (z + 1)

(µ+ ν)pX+Y (z)
− 1

=
∑

x

(z + 1)p(x)q(z + 1− x)

(µ+ ν)Fz
− 1

=
∑

x

{
xp(x)q(z + 1− x)

(µ+ ν)Fz
+

(z − x+ 1)p(x)q(z + 1− x)

(µ+ ν)Fz

}

− 1

= α

{
∑

x

xpX(x)

µp(x− 1)
· p(x− 1)q(z − x+ 1)

Fz
− 1

}

+ (1− α)

{
∑

x

z − x+ 1

ν

q(z − x+ 1)

q(z − x)
· p(x)q(z − x)

Fz
− 1

}

=
∑

x

p(x)q(z − x)

Fz
{αρX(x) + (1− α)ρY (z − x)} .

Proof. Theorem 4.1: (b) This follows from (b) of Lemma 4.2 and Theorem 1 of
Efron (1965), upon noting Efron’s remark 1, page 278, concerning the discrete
case of his theorem: for independent log-concave random variables X and Y
and a measurable function Φ monotone (decreasing here) in each argument,
E{Φ(X,Y )|X + Y = z} is a monotone decreasing function of z: note that log-
concavity of X and Y implies that

Φ(x, y) =
µ

µ+ ν
ρX(x) +

ν

µ+ ν
ρY (y)

is a monotone decreasing function of x and y (separately) since the relative
scores ρX and ρY are decreasing. Thus ρX+Y is a decreasing function of z, and
hence X + Y ∈ ULC(µ+ ν).
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(a) Much as in part (b), this follows from (a) of Lemma 4.2 and Theorem 1
of Efron (1965), upon replacing the relative scores ρX and ρY by scores ϕX and
ϕY and by taking Φ(x, y) = ϕX(x).

For interesting results concerning the entropy of discrete random variables,
Bernoulli sums, log-concavity, and ultra-log-concavity, see Johnson, Kontoyian-
nis and Madiman (2013), Ehm (1991), and Johnson (2007). For recent results
concerning nonparametric estimation of a discrete log-concave distribution, see
Balabdaoui et al. (2013) and Balabdaoui (2014). It follows from Ehm (1991) that
the hypergeometric distribution (sampling without replacement count of “suc-
cesses”) is equal in distribution to a Bernoulli sum; hence the hypergeometric
distribution is ultra-log-concave.

5. Regularity and approximations of log-concave functions

5.1. Regularity

The regularity of a log-concave function f = exp(−ϕ) depends on the regularity
of its convex potential ϕ. Consequently, log-concave functions inherit the special
regularity properties of convex functions.

Any log-concave function is nonnegative.When the function f is a log-concave
density (with respect to the Lebesgue measure), which means that f integrates
to 1, then it is automatically bounded. More precisely, it has exponentially
decreasing tails and hence, it has finite Ψ1 Orlicz norms; for example, see Borell
(1983) and Ledoux (2001). The following lemma gives a pointwise estimate of
the density.

Theorem 5.1 (Cule and Samworth (2010), Lemma 1). Let f be a log-concave
density on R

d. Then there exist af = a > 0 and bf = b ∈ R such that f(x) ≤
e−a‖x‖+b for all x ∈ R

d.

For d = 1, Theorem 5.1 is an immediate consequence of Lemma 10 of Schoen-
berg (1951). Similarly, strong log-concavity implies a finite Ψ2 Orlicz norm
(see Ledoux (2001) Theorem 2.15, page 36, Villani (2003), Theorem 9.9, page
280, Bobkov (1999), and Bobkov and Götze (1999)).

For other pointwise bounds on log-concave densities themselves, see Devroye
(1984), Dümbgen and Rufibach (2009) and Lovász and Vempala (2007).

As noticed in Cule and Samworth (2010), Theorem 5.1 implies that if a
random vector X has density f , then the moment generating function of X is
finite in an open neighborhood of the origin. Bounds can also be obtained for
the supremum of a log-concave density as well as for its values on some special
points in the case where d = 1.

Proposition 5.2. Let X be a log-concave random variable, with density f on
R and median m. Then

1

12Var (X)
≤ f (m)

2 ≤ 1

2Var (X)
, (5.7)
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1

12Var (X)
≤ sup

x∈R

f (x)2 ≤ 1

Var (X)
, (5.8)

1

3e2Var (X)
≤ f (E [X ])

2 ≤ 1

Var (X)
. (5.9)

Proposition 5.2 can be found in Bobkov and Ledoux (2014), Proposition
B.2. See references therein for historical remarks concerning these inequalities.
Proposition 5.2 can also be seen as providing bounds for the variance of a log-
concave variable. See Kim and Samworth (2014), section 3.2, for some further
results of this type.

Notice that combining (5.7) and (5.8) we obtain the inequality supx∈R
f(x) ≤

2
√
3f(m). In fact, the concavity of the function I defined in Proposition 2.22

allows to prove the stronger inequality supx∈R
f(x) ≤ 2f(m). Indeed, with the

notations of Proposition 2.22, we have I(1/2) = f(m) and for any x ∈ (a, b),
there exists t ∈ (0, 1) such that x = F−1(t). Hence,

2f (m) = 2I

(
1

2

)

= 2I

(
t

2
+

1− t

2

)

≥ 2

(
1

2
I (t) +

1

2
I (1− t)

)

≥ I (t) = f (x) .

A classical result on continuity of convex functions is that any real-valued
convex function ϕ defined on an open set U ⊂ R

d is locally Lipschitz and in
particular, ϕ is continuous on U . For more on continuity of convex functions
see Section 3.5 of Niculescu and Persson (2006). Of course, any continuity of ϕ
(local or global) corresponds to the same continuity of f .

For an exposé on differentiability of convex functions, see Niculescu and Pers-
son (2006) (in particular sections 3.8 and 3.11; see also Alberti and Ambrosio
(1999) section 7). A deep result of Alexandroff (1939) is the following (we re-
produce here Theorem 3.11.2 of Niculescu and Persson (2006)).

Theorem 5.3 (Alexandroff (1939)). Every convex function ϕ on R
d is twice

differentiable almost everywhere in the following sense: f is twice differentiable
at a, with Alexandrov Hessian ∇2f(a) in Sym+(d,R) (the space of real symmet-
ric d × d matrices), if ∇f(a) exists, and if for every ε > 0 there exists δ > 0
such that

‖x− a‖ < δ implies sup
y∈∂f(x)

∥
∥y −∇f (a)−∇2f (a) (x− a)

∥
∥ ≤ ε ‖x− a‖ .

Here ∂f(x) is the subgradient of f at x (see Definition 8.3 in Rockafellar and
Wets (1998)). Moreover, if a is such a point, then

lim
h→0

f (a+ h)− f (a)− 〈∇f (a) , h〉 − 1
2

〈
∇2f (a)h, h

〉

‖h‖2
= 0.

We immediately see by Theorem 5.3, that since ϕ is convex and f = exp(−ϕ),
it follows that f is almost everywhere twice differentiable. For further results in
the direction of Alexandrov’s theorem see Dudley (1977, 1980).
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5.2. Approximations

Again, if one wants to approximate a non-smooth log-concave function f =
exp(−ϕ) by a sequence of smooth log-concave functions, then convexity of the
potential ϕ can be used to advantage. For an account about approximation of
convex functions see Niculescu and Persson (2006), section 3.8.

On the one hand, if ϕ ∈ L1
loc(R

d) the space of locally integrable functions,
then the standard use of a regularization kernel (i.e. a one-parameter family of
functions associated with a mollifier) to approximate ϕ preserves the convexity
as soon as the mollifier is nonnegative. A classical result is that this gives in
particular approximations of ϕ in Lp spaces, p ≥ 1, as soon as ϕ ∈ Lp(Rd).

On the other hand, infimal convolution (also called epi-addition, see Rock-
afellar and Wets (1998)) is a nonlinear analogue of mollification that gives a
way to approximate a lower semicontinuous proper convex function from below
(section 3.8, Niculescu and Persson (2006)). More precisely, take two proper
convex functions f and g from R

d to R ∪ {∞}, which means that the functions
are convex and finite for at least one point. The infimal convolution between f
and g, possibly taking the value −∞, is

(f ⊙ g) (x) = inf
y∈Rn

{f (x− y) + g (y)} .

Then, f ⊙ g is a proper convex function as soon as f ⊙ g(x) > −∞ for all
x ∈ R

d. Now, if f is a lower semicontinuous proper convex function on R
d, the

Moreau-Yosida approximation fε of f is given by

fε (x) =

(

f ⊙ 1

2ε
‖·‖2

)

(x)

= inf
y∈Rn

{

f (y) +
1

2ε
‖x− y‖2

}

for any x ∈ R
d and ε > 0. The following theorem can be found in Alberti

and Ambrosio (1999) (Proposition 7.13), see also Barbu and Precupanu (1986),
Brézis (1973) or Niculescu and Persson (2006).

Theorem 5.4. The Moreau-Yosida approximates fε are C1,1 (i.e. differentiable
with Lipschitz derivative) convex functions on R

d and fε → f as ε → 0. More-
over, ∂fε = (εI + (∂f)−1)−1 as set-valued maps.

An interesting consequence of Theorem 5.4 is that if two convex and proper
lower semicontinuous functions agree on their subgradients, then they are equal
up to a constant (corollary 2.10 in Brézis (1973)).

Approximation by a regularization kernel and Moreau-Yosida approximation
have different benefits. While a regularization kernel gives the most differentia-
bility, the Moreau-Yosida approximation provides an approximation of a convex
function from below (and so, a log-concave function from above). It is thus pos-
sible to combine these two kinds of approximations and obtain the advantages
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of both. For an example of such a combination in the context of a (multival-
ued) stochastic differential equation and the study of the so-called Kolmogorov
operator, see Barbu and Da Prato (2008).

When considering a log-concave random vector, the following simple con-
volution by Gaussian vectors gives an approximation by log-concave vectors
that have C∞ densities and finite Fisher information matrices. In the context of
Fisher information, regularization by Gaussians was used for instance in Port
and Stone (1974) to study the Pitman estimator of a location parameter.

Proposition 5.5 (convolution by Gaussians). Let X be a random vector in
R
d with density p w.r.t. the Lebesgue measure and G a d-dimensional standard

Gaussian variable, independent of X. Set Z = X + σG, σ > 0 and pZ =
exp(−ϕZ) the density of Z. Then:

(i) If X is log-concave, then Z is also log-concave.
(ii) If X is strongly log-concave, X ∈ SLC1(τ

2, d)then Z is also strongly log-
concave; Z ∈ SLC1(τ

2 + σ2, d).
(iii) Z has a positive density pZ on R

d. Furthermore, ϕZ is C∞ on R
d and

∇ϕZ (z) = σ−2
E [σG |X + σG = z ]

= E [ρσG (σG) |X + σG = z ] , (5.10)

where ρσG(x) = σ−2x is the score of σG.
(iv) The Fisher information matrix for location J(Z) = E[∇ϕZ ⊗∇ϕZ(Z)], is

finite and we have J(Z) � J(σG) = σ−4Id as symmetric matrices.

Proof. See Section 11.

Convolution by Gaussians is a standard preprocessing step when studying
concentration properties of isotropic log-concave measures. Indeed, it ensures
the existence of super-Gaussian marginals in every directions (see Klartag and
Milman (2012) for a definition of super-Gaussianity of marginals). However, as
noticed in Klartag and Milman (2012) (see also references therein), convolu-
tion by Gaussians has the disadvantage of destroying small-ball information.
An alternative is proposed by the authors of the latter paper, that enables to
encompass this information. Namely, the authors consider the convolution of a
measure with a random orthogonal image of itself.

We now give a second approximation tool, that allows to approximate any
log-concave density by strongly log-concave densities.

Proposition 5.6. Let f be a log-concave density on R
d. Then for any c > 0,

the density

hc (x) =
f (x) e−c‖x‖

2/2

∫

Rd f (v) e−c‖v‖
2/2dv

, x ∈ R
d,

is SLC1(c
−1, d) and hc → f as c → 0 in Lp, p ∈ [1,∞]. More precisely, there

exists a constant Af > 0 depending only on f , such that for any ε > 0,

sup

{

sup
x∈Rd

|hc (x)− f (x)| ;
(∫

Rd

|hc (x) − f (x)|p dx
)1/p

}

≤ Afc
1−ε.
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Proof. See Section 11.

Finally, by combining Proposition 5.6 and 5.5, we obtain the following ap-
proximation lemma.

Proposition 5.7. For any log-concave density on R
d, there exists a sequence

of strongly log-concave densities that are C∞, have finite Fisher information
matrices and that converge to f in Lp(Leb), p ∈ [1,∞].

Proof. Approximate f by a strongly log-concave density h as in Proposition 5.6.
Then approximate h by convolving with a Gaussian density. In the two steps
the approximations can be as tight as desired in Lp, for any p ∈ [1,∞]. The fact
that the convolution with Gaussians for a (strongly) log-concave density (that
thus belongs to any Lp(Leb), p ∈ [1,∞]) gives approximations in Lp, p ∈ [1,∞]
is a simple application of general classical theorems about convolution in Lp
(see for instance Rudin (1987), p. 148).

6. Efron’s theorem and more on preservation of log-concavity and
strong log-concavity under convolution in 1-dimension

Another way of proving that strong log-concavity is preserved by convolution in
the one-dimensional case is by use of a result of Efron (1965). This has already
been used by Johnson, Kontoyiannis and Madiman (2013) and Johnson (2007)
to prove preservation of ultra log-concavity under convolution (for discrete ran-
dom variables), and by Wellner (2013) to give a proof that strong log-concavity
is preserved by convolution in the one-dimensional continuous setting. These
proofs operate at the level of scores or relative scores and hence rely on the
equivalences between (a) and (b) in Propositions 2.21 and 2.24. Our goal in this
section is to re-examine Efron’s theorem, briefly revisit the results of Johnson,
Kontoyiannis and Madiman (2013) and Wellner (2013), give alternative proofs
using second derivative methods via symmetrization arguments, and to provide
a new proof of Efron’s theorem using some recent results concerning asymmetric
Brascamp-Lieb inequalities due to Menz and Otto (2013) and Carlen, Cordero-
Erausquin and Lieb (2013).

6.1. Efron’s monotonicity theorem

The following monotonicity result is due to Efron (1965).

Theorem 6.1 (Efron). Suppose that Φ : Rm → R where Φ is coordinatewise
non-decreasing and let

g(z) ≡ E






Φ(X1, . . . , Xm)

∣
∣
∣
∣

m∑

j=1

Xj = z






,

where X1, . . . , Xm are independent and log-concave. Then g is non-decreasing.
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Remark 6.2. As noted by Efron (1965), Theorem 6.1 continues to hold for
integer valued random variables which are log-concave in the sense that px ≡
P (X = x) for x ∈ Z satisfies p2x ≥ px+1px−1 for all x ∈ Z.

In what follows, we will focus on Efron’s theorem for m = 2. As it is shown
in Efron (1965), the case of a pair of variables (m = 2) indeed implies the
general case with m ≥ 2. Let us recall the argument behind this fact, which
involves preservation of log-concavity under convolution. In fact, stability under
convolution for log-concave variables is not needed to prove Efron’s theorem
for m = 2 as will be seen from the new proof of Efron’s theorem given here in
Section 6.4, so it is consistent to prove the preservation of log-concavity under
convolution via Efron’s theorem for m = 2.

Proposition 6.3. If Theorem 6.1 is satisfied for m = 2, then it is satisfied for
m ≥ 2.

Proof. We proceed as in Efron (1965) by induction on m ≥ 2. Let (X1, . . . , Xm)
be a m-tuple of log-concave variables, let S =

∑m
i=1Xi be their sum and set

Λ (t, u) = E

[

Φ (X1, . . . , Xm)

∣
∣
∣
∣
∣

m−1∑

i=1

Xi = t, Xm = u

]

.

Then
E [Φ (X1, . . . , Xm) |S = s ] = E [Λ (T,Xm) |T +Xm = s ] ,

where T =
∑m−1

i=1 Xi. Hence, by the induction hypothesis for functions of two
variables, it suffices to prove that Λ is coordinatewise non-decreasing. As T is a
log-concave variable (by preservation of log-concavity by convolution), Λ(t, u) is
non-decreasing in t by the induction hypothesis for functions of m−1 variables.
Also Λ(t, u) is non-decreasing in u since Φ is non-decreasing in its last argument.

Efron (1965) also gives the following corollaries of Theorem 6.1 above.

Corollary 6.4. Let {Φt(x1, . . . , xm) : t ∈ T } be a family of measurable func-
tions increasing in every argument for each fixed value of t, and increasing in t
for each fixed value of x1, x2, . . . , xm. Let X1, . . . , Xm be independent and log-
concave and write S ≡

∑m
j=1Xj. Then

g(a, b) = E

{

Φa+b−S(X1, . . . , Xm)

∣
∣
∣
∣
a ≤ S ≤ a+ b

}

is increasing in both a and b.

Corollary 6.5. Suppose that the hypotheses of Theorem 6.1 hold and that A =
{x = (x1, . . . , xm) ∈ R

m : aj ≤ xj ≤ bj} with −∞ ≤ aj < bj ≤ ∞ is a rectangle
in R

m. Then

g(z) ≡ E






Φ(X1, . . . , Xm)

∣
∣
∣
∣

m∑

j=1

Xj = z, (X1, . . . , Xm) ∈ A







is a non-decreasing function of z.
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The following section will give applications of Efron’s theorem to preservation
of log-concavity and strong log-concavity in the case of real-valued variables.

6.2. First use of Efron’s theorem: Strong log-concavity is preserved
by convolution via scores

Theorem 6.6 (log-concavity and strong log-concavity preserved by convolution
via scores).

(a) (Ibragimov (1956b)) If X and Y are independent and log-concave with den-
sities p and q respectively, then X + Y ∼ p ⋆ q is also log-concave.
(b) If X ∈ SLC1(σ

2, 1) and Y ∈ SLC1(τ
2, 1) are independent, then X + Y ∈

SLC1(σ
2 + τ2, 1).

Actually, Ibragimov (1956b) proved more: he showed that p is strongly uni-
modal (i.e. X+Y ∼ p⋆q with X,Y independent is unimodal for every unimodal
q on R) if and only if X is log-concave.

Proof. (a) From Proposition 2.21 log-concavity of p and q is equivalent to
monotonicity of their score functions ϕ′

p = (− log p)′ = −p′/p a.e. and ϕ′
q =

(− log q)′ = −q′/q a.e. respectively. From the approximation scheme described
in Proposition 5.5 above, we can assume that both p and q are absolutely con-
tinuous. Indeed, Efron’s theorem applied to formula (5.10) of Proposition 5.5
with m = 2 and Φ(x, y) = ρσG(x), gives that the convolution with a Gaussian
variable preserves log-concavity. Then, from Lemma 3.1 of Johnson and Barron
(2004),

E

{

ρX(X)

∣
∣
∣
∣
X + Y = z

}

= ρX+Y (z).

Thus by Efron’s theorem with m = 2 and

Φ(x, y) = ρY (y),

we see that E{Φ(X,Y )|X + Y = z} = ϕ′
p⋆q(z) is a monotone function of z, and

hence by Proposition 2.21, (a) if and only if (b), log-concavity of the convolution
p ⋆ q = pX+Y holds.

(b) The proof of preservation of strong log-concavity under convolution for p
and q strong log-concave on R is similar to the proof of (a), but with scores re-
placed by relative scores, but it is interesting to note that a symmetry argument
is needed. From Proposition 2.24 strong log-concavity of p and q is equivalent
to monotonicity of their relative score functions ρp(x) ≡ ϕ′

p(x) − x/σ2 and
ρq(x) ≡ ϕ′

q(x) − x/τ2 respectively. Now we take m = 2, λ ≡ σ2/(σ2 + τ2), and
define

Φ(x, y) = λρp(x) + (1− λ)ρq(y).

Thus Φ is coordinate-wise monotone and by using Lemma 7.2 with d = 1 we
find that

E{Φ(X,Y )|X + Y = z} = ϕ′
p⋆q(z)−

z

σ2 + τ2
= ρp⋆q(z).
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Hence it follows from Efron’s theorem that the relative score ρp⋆q of the convo-
lution p ⋆ q, is a monotone function of z. By Proposition 2.24(b) it follows that
p ⋆ q ∈ SLC1(σ

2 + τ2, 1).

6.3. A special case of Efron’s theorem via symmetrization

We now consider a particular case of Efron’s theorem. Our motivation is as fol-
lows: in order to prove that strong log-concavity is preserved under convolution,
recall that we need to show monotonicity in z of

ρX+Y (z) = E

{
σ2

σ2 + τ2
ρX(X) +

τ2

σ2 + τ2
ρY (Y )

∣
∣
∣
∣
X + Y = z

}

.

Thus we only need to consider functions Φ of the form

Φ(X,Y ) = Ψ (X) + Γ (Y ) ,

where Ψ and Γ are non-decreasing, and show the monotonicity of

E

{

Φ(X,Y )

∣
∣
∣
∣
X + Y = z

}

for functions Φ of this special form. By symmetry betweenX and Y , this reduces
to the study of the monotonicity of

E

{

Ψ(X)

∣
∣
∣
∣
X + Y = z

}

.

We now give a simple proof of this monotonicity in dimension 1.

Proposition 6.7. Let Ψ : R → R be non-decreasing and suppose that X ∼ fX,
Y ∼ fY are independent and that fX , fY are log-concave. If the function η :
R → R given by

η(z) ≡ E

{

Ψ(X)

∣
∣
∣
∣
X + Y = z

}

is well-defined (Ψ integrable with respect to the conditional law of X + Y ), then
it is non-decreasing.

Proof. First notice that by truncating the values of Ψ and using the monotone
convergence theorem, we assume that Ψ is bounded. Moreover, by Proposi-
tion 5.5, we may assume that fY is C1 with finite Fisher information, thus
justifying the following computations. We write

E

{

Ψ(X)

∣
∣
∣
∣
X + Y = z

}

=

∫

R

Ψ(x)
fX (x) fY (z − x)

Fz
dx,

where

Fz =

∫

R

fX (x) fY (z − x) dx > 0.
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Moreover, with fX = exp(−ϕX) and fY = exp(−ϕY ),

∂

∂z

(

Ψ(x)
fX (x) fY (z − x)

Fz

)

= −Ψ(x)ϕ′
Y (z − x)

fX (x) fY (z − x)

Fz

+ Ψ(x)
fX (x) fY (z − x)

Fz

∫

R

ϕ′
Y (z − x)

fX (x) fY (z − x)

Fz
dx ,

where ϕ′
Y (y) = −f ′

Y (y)/fY (y). As fX is bounded (see Section 5.1) and Y has
finite Fisher information, we deduce that

∫

R
|ϕ′
Y (z − x)|fX(x)fY (z − x)dx is

finite. Then,

∂

∂z

(

E
{

Ψ(X)
∣
∣
∣X + Y = z

})

= −E
{

Ψ(X) · ϕ′
Y (Y )

∣
∣
∣X + Y = z

}

+ E
{

Ψ(X)
∣
∣
∣X + Y = z

}

E
{

ϕ′
Y (Y )

∣
∣
∣X + Y = z

}

= −Cov
{

Ψ(X) , ϕ′
Y (Y )

∣
∣
∣X + Y = z

}

.

If we show that the latter covariance is negative, the result will follow. Let
(X̃, Ỹ ) be an independent copy of (X,Y ). Then

E
{(

Ψ(X)−Ψ
(

X̃
))(

ϕ′
Y (Y )− ϕ′

Y

(

Ỹ
))∣
∣
∣X̃ + Ỹ = z,X + Y = z

}

= 2Cov
{

Ψ(X) , ϕ′
Y (Y )

∣
∣
∣X + Y = z

}

.

Furthermore, since X ≥ X̃ implies Y ≤ Ỹ under the given condition [X + Y =
z, X̃ + Ỹ = z],

E
{(

Ψ(X)−Ψ
(

X̃
))(

ϕ′
Y (Y )− ϕ′

Y

(

Ỹ
)) ∣
∣
∣X̃ + Ỹ = z,X + Y = z

}

= 2E







(

Ψ(X)−Ψ(X̃)
)

︸ ︷︷ ︸

≥0

(

ϕ′
Y (Y )− ϕ′

Y (Ỹ )
)

︸ ︷︷ ︸

≤0

1{X≥X̃}
∣
∣
∣
∣
X + Y = z, X̃ + Ỹ = z







≤ 0.

This proves Proposition 6.7.

6.4. Alternative proof of Efron’s theorem via asymmetric
Brascamp-Lieb inequalities

Now our goal is to give a new proof of Efron’s Theorem 6.1 in the case m =
2 using results related to recent asymmetric Brascamp-Lieb inequalities and
covariance formulas due to Menz and Otto (2013).
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Theorem 6.8 (Efron). Suppose that Φ : R2 → R, such that Φ is coordinatewise
non-decreasing and let

g(z) ≡ E

{

Φ(X,Y )

∣
∣
∣
∣
X + Y = z

}

,

where X and Y are independent and log-concave. Then g is non-decreasing.

Proof. Notice that by truncating the values of Φ and using the monotone con-
vergence theorem, we may assume that Φ is bounded. Moreover, by convolving
Φ with a positive kernel, we preserve coordinatewise monotonicity of Φ and we
may assume that Φ is C1. As Φ is taken to be bounded, choosing for instance
a Gaussian kernel, it is easily seen that we can ensure that ∇Φ is uniformly
bounded on R

2. Indeed, if

Ψσ2 (a, b) =

∫

R2

Φ(x, y)
1

2πσ2
e−‖(a,b)−(x,y)‖2/2σ2

dxdy,

then

∇Ψσ2 (a, b) = −
∫

R2

Φ(x, y)
‖(a, b)− (x, y)‖

2πσ4
e−‖(a,b)−(x,y)‖2/2σ2

dxdy,

which is uniformly bounded in (a, b) whenever Φ is bounded. Notice also that by
Lemma 5.7, it suffices to prove the result for strictly (or strongly) log-concave
variables that have C∞ densities and finite Fisher information. We write

N (z) =

∫

R

fX (z − y) fY (y) dy

and

g(z) =

∫

R

Φ (z − y, y)
fX (z − y) fY (y)

N (z)
dy,

with fX = exp(−ϕX) and fY = exp(−ϕY ) the respective strictly log-concave
densities of X and Y . We denote by µX and µY respectively the distributions
of X and Y . Since ϕ′

X is L2(µX) (which means that µX has finite Fisher infor-
mation) and fY is bounded (see Theorem 5.1), we get that f ′

X(z − y)fY (y) =
−ϕ′

X(z−y)fX(z−y)fY (y) is integrable and so N is differentiable with gradient
given by

N ′ (z) = −
∫

R

ϕ′
X (z − y) fX (z − y) fY (y)dy.

By differentiating with respect to z inside the integral defining g we get

d

dz

(

Φ (z − y, y)
fX (z − y) fY (y)

∫

R
fX (z − y′) fY (y′) dy′

)

(6.11)

= (∂1Φ) (z − y, y)
fX (z − y) fY (y)

N (z)
− Φ (z − y, y)ϕ′

X (z − y)
fX (z − y) fY (y)

N (z)

+ Φ (z − y, y)
fX (z − y) fY (y)

N (z)

∫

R

ϕ′
X (z − y)

fX (z − y) fY (y)

N (z)
dy.
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We thus see that the quantity in (6.11) is integrable (with respect to Lebesgue
measure) and we get

g′ (z) = E [(∂1Φ) (X,Y ) |X + Y = z ]− Cov [Φ (X,Y ) , ϕ′
X (X) |X + Y = z ] .

(6.12)
Now, by symmetrization we have

Cov [Φ (X,Y ) , ϕ′
X (X) |X + Y = z ]

= E

[(

Φ (X,Y )− Φ
(

X̃, Ỹ
))

·
(

ϕ′
X (X)− ϕ′

X

(

X̃
))

1{X≥X̃}
∣
∣
∣X + Y = z, X̃ + Ỹ = z

]

= E

[(
∫ X

X̃

(∂1Φ− ∂2Φ) (u, z − u) du

)

·
(

ϕ′
X (X)− ϕ′

X

(

X̃
))

︸ ︷︷ ︸

≥0

1{X≥X̃}
∣
∣
∣X + Y = z, X̃ + Ỹ = z

]

≤ E

[(
∫ X

X̃

(∂1Φ) (u, z − u) du

)

·
(

ϕ′
X (X)− ϕ′

X

(

X̃
))

1{X≥X̃}
∣
∣
∣X + Y = z, X̃ + Ỹ = z

]

= Cov [Φ1 (X) , ϕ′
X (X) |X + Y = z ] ,

where Φ1(x) =
∫ x

0
(∂1Φ)(u, z−u)du. We let denote η the distribution of X given

X + Y = z. The measure η has density hz(x) = N−1(z)fX(x)fY (z − x), y ∈ R.
Notice that hz is strictly log-concave on R and that for all x ∈ R,

(− log hz)
′′ (x) = ϕ′′

X (x) + ϕ′′
Y (z − x) .

Now we are able to use the asymmetric Brascamp and Lieb inequality of Menz
and Otto (2013) (Lemma 2.11, page 2190, with their δψ ≡ 0 so their ψ = ψc
with ψ′′ > 0) or Carlen, Cordero-Erausquin and Lieb (2013) ((1.2), page 2); see
Proposition 10.3 below. This yields

Cov [Φ1 (X) , ϕ′
X (X) |X + Y = z ]

=

∫

R

(Φ1 (x)− E [Φ1 (X,Y ) |X + Y = z ])

· (ϕ′
X (x) − E [ϕ′

X (X) |X + Y = z ])hz (x) dx

≤ sup
x∈R

{
ϕ′′
X (x)

(− loghz)
′′
(x)

}∫

R

Φ′
1 (x) hz (x) dx

= sup
x∈R

{
ϕ′′
X (x)

ϕ′′
X (x) + ϕ′′

Y (z − x)

}

E [(∂1Φ) (X,Y ) |X + Y = z ]

≤ E [(∂1Φ) (X,Y ) |X + Y = z ] .

Using the latter bound in (6.12) then gives the result.
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7. Preservation of log-concavity and strong log-concavity under
convolution in R

d via Brascamp-Lieb inequalities and towards a
proof via scores

In Sections 6 and 4, we used Efron’s monotonicity theorem 6.1 to give alterna-
tive proofs of the preservation of log-concavity and strong log-concavity under
convolution in the cases of continuous or discrete random variables on R or Z

respectively. In the former case, we also used asymmetric Brascamp-Lieb in-
equalities to give a new proof of Efron’s monotonicity theorem. In this section
we look at preservation of log-concavity and strong log-concavity under convo-
lution in R

d via:

(a) the variance inequality due to Brascamp and Lieb (1976);
(b) scores and potential (partial) generalizations of Efron’s monotonicity theo-
rem to R

d.

While point (a) gives a complete answer (Section 7.1), the aim of point (b) is
to give an interesting link between preservation of (strong) log-concavity in R

d

and a (guessed) monotonicity property in R
d (Section 7.2). This latter property

would be a partial generalization of Efron’s monotonicity theorem to the multi-
dimensional case and further investigations remain to be accomplished in order
to prove such a result.

We refer to Section 10 (Appendix A) for further comments about the Bras-
camp-Lieb inequalities and related issues, as well as a recall of various functional
inequalities.

7.1. Strong log-concavity is preserved by convolution (again): Proof
via second derivatives and a Brascamp-Lieb inequality

We begin with a different proof of the version of Theorem 3.7(b) corresponding
to our first definition of strong log-concavity, Definition 2.9, which proceeds via
the Brascamp-Lieb variance inequality as given in part (a) of Proposition 10.1:

Proposition 7.1. If X ∼ p ∈ SLC1(σ
2, d) and Y ∼ q ∈ SLC1(τ

2, d) are
independent, then Z = X + Y ∼ p ⋆ q ∈ SLC1(σ

2 + τ2, d).

Proof. Now pZ = pX+Y = p ⋆ q is given by

pZ(z) =

∫

p(x)q(z − x)dx =

∫

p(z − y)q(y)dy. (7.13)

Now p = exp(−ϕp) and q = exp(−ϕq) where we may assume (by (b) of Propo-
sition 5.5) that ϕp, ϕq ∈ C2 and that p and q have finite Fisher information.
Then, by Proposition 2.24,

∇2(ϕp)(x) ≥
1

σ2
I, and ∇2(ϕq)(x) ≥

1

τ2
I.

As we can interchange differentiation and integration in (7.13) (see for instance
the detailed arguments for a similar situation in the proof of Proposition 6.7),
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we find that

∇(− log pZ)(z) = −∇pZ
pZ

(z) = E{∇ϕq(Y )|X+Y = z} = E{∇ϕp(X)|X+Y = z}.

Then

∇2(− log pZ)(z)

= ∇
{

E[q(z −X)∇(− log q)(z −X)] · 1

pZ(z)

}

= E{−∇q(Y )(∇ log q(Y ))T |X + Y = z}
+ E{∇2(− log q)(Y )|X + Y = z}+ (E{∇ log q(Y )|X + Y = z})⊗2

= −V ar(∇ϕq(Y )|X + Y = z) + E{∇2 ϕq(Y )|X + Y = z}
= −V ar(∇ϕp(X)|X + Y = z) + E{∇2 ϕp(X)|X + Y = z}.

Now we apply Brascamp and Lieb (1976) Theorem 4.1 (see Proposition 10.1(a))
with

h(x) = ∇zϕq(z − x), (7.14)

F (x) = p(x)q(z − x), (7.15)

to obtain

V ar(∇zϕq(Y )|Z + Y = z) ≤
∫

Rd

∇2 ϕg(z − x)
{
∇2 ϕp(x) +∇2 ϕq(z − x)

}−1

· ∇2 ϕq(z − x)
F (x)

∫

Rd F (x′)dx′
dx.

This in turn yields

∇2(− log pZ)(z) ≥ E
{

∇2 ϕq(Y )−∇2 ϕq(Y )
[
∇2 ϕp(X) +∇2 ϕq(Y )

]−1
(7.16)

· ∇2 ϕq(Y )|X + Y = z
}

.

By symmetry between X and Y we also have

∇2(− log pZ)(z) ≥ E
{

∇2 ϕp(X)−∇2 ϕp(X)
[
∇2 ϕp(X) +∇2 ϕq(Y )

]−1
(7.17)

· ∇2 ϕp(X)|X + Y = z
}

.

In proving the inequalities in the last two displays we have in fact reproved
Theorem 4.2 of Brascamp and Lieb (1976) in our special case given by (7.15).
Indeed, Inequality (4.7) of Theorem 4.2 in Brascamp and Lieb (1976) applied
to our special case is the first of the two inequalities displayed above.

Now we combine (7.16) and (7.17). We set

α ≡ σ2

σ2 + τ2
, β ≡ 1− α =

τ2

σ2 + τ2
,
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A ≡
[
∇2 ϕp(X) +∇2 ϕq(Y )

]−1
,

s = s(X) ≡ ∇2 ϕp(X), t = t(X) ≡ ∇2 ϕq(Y ).

We get from (7.16) and (7.17):

∇2(− log pZ)(z)

≥ E
{
αs+ βt− αsAs− βtAt

∣
∣X + Y = z

}

= E
{
(αs+ βt)A(s+ t)− αsAs− βtAt

∣
∣X + Y = z

}

since A(s+ t) = I ≡ identity

= E
{
αsAt+ βtAs

∣
∣X + Y = z

}
.

Now

αsAt =
σ2

σ2 + τ2
∇2 ϕp

[
∇2 ϕp(X) +∇2 ϕq(Y )

]−1∇2 ϕq(Y )

=
σ2

σ2 + τ2
[
(∇2 ϕp)

−1(X) + (∇2 ϕq)
−1(Y )

]−1
.

By symmetry

βtAs =
τ2

σ2 + τ2
[
(∇2 ϕp)

−1(X) + (∇2 ϕq)
−1(Y )

]−1

and we therefore conclude that

∇2(− log pZ)(z)

≥ σ2 + τ2

σ2 + τ2
E
{[

(∇2 ϕp)
−1(X) + (∇2 ϕq)

−1(Y )
]−1∣
∣X + Y = z

}

≥ 1

σ2 + τ2
I.

Note that the resulting inequality

∇2(− log pZ)(z) ≥ E
{[

(∇2 ϕp)
−1(X) + (∇2 ϕq)

−1(Y )
]−1∣
∣X + Y = z

}

also gives the right lower bound for convolution of strongly log-concave densities
in the definition of SLC2(µ,Σ, d), namely

∇2(− log pZ)(z) ≥ (ΣX +ΣY )
−1.

7.2. Strong log-concavity is preserved by convolution (again):
Towards a proof via scores and a multivariate Efron inequality

We saw in the previous sections that Efron’s monotonicity theorem allows to
prove stability under convolution for (strongly) log-concavemeasures on R. How-
ever, the stability holds also in R

d, d > 1. This gives rise to the two following
natural questions: does a generalization of Efron’s theorem in higher dimen-
sions exist? Does it allow recovery stability under convolution for log-concave
measures in R

d?
Let us begin with a projection formula for scores in dimension d.
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Lemma 7.2 (Projection). Suppose that X and Y are d-dimensional indepen-
dent random vectors with log-concave densities pX and qY respectively on R

d.
Then ∇ϕX+Y and ρX+Y : Rd → R

d are given by

∇ϕX+Y (z) = E {λ∇ϕX(X) + (1− λ)∇ϕY (Y )|X + Y = z}

for each λ ∈ [0, 1], and, if pX ∈ SLC1(σ
2, d) and pY ∈ SLC1(τ

2, d), then

ρX+Y (z) = E

{
σ2

σ2 + τ2
ρX(X) +

τ2

σ2 + τ2
ρY (Y )

∣
∣
∣
∣
X + Y = z

}

.

Proof. This can be proved just as in the one-dimensional case, much as in Brown
(1982), but proceeding coordinate by coordinate.

Since we know from Propositions 2.21 and 2.24 that the scores∇ϕX and∇ϕY
and the relative scores ρX and ρY are multivariate monotone, the projection
Lemma 7.2 suggests that proofs of preservation of multivariate log-concavity
and strong log-concavity might be possible via a multivariate generalization of
Efron’s monotonicity Theorem 6.1 to d ≥ 2 along the following lines: Suppose
that Φ : (Rd)n → R

d is coordinatewise multivariate monotone: for each fixed
j ∈ {1, . . . , n} the function Φj : R

d → R
d defined by

Φj(x) = Φ(x1, . . . , xj−1, x, xj+1, . . . , xn)

is multivariate monotone: that is

〈Φj(x1)− Φj(x2), x1 − x2〉 ≥ 0 for all x1, x2 ∈ R
d.

If X1, . . . , Xm are independent with Xj ∼ fj log-concave on R
d, then it might

seem natural to conjecture that the function g defined by

g(z) ≡ E

{

Φ(X1, . . . , Xn)

∣
∣
∣
∣
X1 + · · ·+Xm = z

}

is a monotone function of z ∈ R
d:

〈g(z1)− g(z2), z1 − z2〉 ≥ 0 for all z1, z2 ∈ R
d.

Unfortunately, this seemingly natural generalization of Efron’s theorem does not
hold without further assumptions. In fact, it fails form = 2 andX1,X2 Gaussian
with covariances Σ1 and Σ2 sufficiently different. For an explicit example see
Saumard and Wellner (2015).

Again, the result holds for m random vectors if it holds for 2, . . . ,m − 1
random vectors. It suffices to prove the theorem for m = 2 random vectors.
Since everything reduces to the case where Φ is a function of two variables
(either for Efron’s theorem or for a multivariate generalization), we will restrict
ourselves to this situation.
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Thus if we define

g(s) ≡ E

{

Φ(X1, X2)

∣
∣
∣
∣
X1 +X2 = s

}

,

then we want to show that

〈g(s1)− g(s2), s1 − s2〉 ≥ 0 for all s1, s2 ∈ R
d.

Finally, our approach to Efron’s monotonicity theorem in dimension d ≥ 2 is
based on the following remark.

Remark 7.3. For suitable regularity of Φ : (Rd)2 → R
d and ρX : Rd → R, we

have

(∇g) (z) = E

{

(∇1Φ) (X,Y )

∣
∣
∣
∣
X + Y = z

}

− Cov

{

Φ(X,Y ), ρX (X)

∣
∣
∣
∣
X + Y = z

}
(
∈ R

d×d) .

Recall that ∇1Φ ≡ ∇Φ1 : (Rd)2 → R
d×d. Furthermore, the matrix (∇g)(z) is

positive semi-definite if for all a ∈ R
d, aT∇g(z)aT ≥ 0, which leads to leads to

asking if the following covariance inequality holds:

Cov

{

aTΦ(X,Y ), ρTX(X)a

∣
∣
∣
∣
X + Y = z

}

≤ E

{

aT∇1Φ(X,Y )a

∣
∣
∣
∣
X + Y = z

}

?

(7.18)
Covariance inequality (7.18) would imply a multivariate generalization of Efron’s
theorem (under sufficient regularity).

8. Peakedness and log-concavity

Here is a summary of the results of Proschan (1965), Olkin and Tong (1988),
Hargé (2004), and Kelly (1989).

First Hargé (2004). Let f be log-concave, and let g be convex. Then if X ∼
Nd(µ,Σ) ≡ γ,

E{g(X + µ− ν)f(X)} ≤ Ef(X) · Eg(X) (8.19)

where µ = E(X), ν = E(Xf(X))/E(f(X)). Assuming that f ≥ 0, and writing
f̃dγ ≡ fdγ/

∫
fdγ, g̃(x − µ) ≡ g(x), and X̃ ∼ f̃dγ so that X̃ is strongly log-

concave, this can be rewritten as

Eg̃(X̃ − E(X̃)) ≤ Eg̃(X − µ). (8.20)

In particular, for g̃(x) = |x|r with r ≥ 1,

E|X̃ − µ̃|r ≤ E|X − µ|r,

and for g̃(x) = |aTx|r with a ∈ R
d, r ≥ 1,

E|aT (X̃ − µ̃)|r ≤ E|aT (X − µ)|r,
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which is Theorem 5.1 of Brascamp and Lieb (1976). Writing (8.19) as (8.20)
makes it seem more related to the “peakedness” results of Olkin and Tong
(1988) to which we now turn.

An n-dimensional random vector Y is said to be more peaked than a vector
X if they have densities and if

P (Y ∈ A) ≥ P (X ∈ A)

holds for all A ∈ An, the class of compact, convex, symmetric (about the origin)

Borel sets in R
n. When this holds we will write Y

p

≥ X . A vector a majorizes
a vector b (and we write a ≻ b) if

∑k
i=1 b[i] ≤

∑k
i=1 a[i] for k = 1, . . . , n − 1

and
∑n

i=1 b[i] =
∑n
i=1 a[i] where a[1] ≥ a[2] ≥ · · · ≥ a[n] and similarly for b.

(In particular b = (1, . . . , 1)/n ≺ (1, 0, . . . , 0) = a.)

Proposition 8.1 (Sherman, 1955; see Olkin and Tong (1988)). Suppose that
f1, f2, g1, g2 are log-concave densities on R

n which are symmetric about 0. Sup-
pose that Xj ∼ fj and Yj ∼ gj for j = 1, 2 are independent. Suppose that

Y1
p

≥ X1 and Y2
p

≥ X2. Then Y1 + Y2
p

≥ X1 +X2.

Proposition 8.2. If X1, . . .Xn are independent random variables with log-
concave densities symmetric about 0, and Y1, . . . , Yn are independent with log-

concave densities symmetric about 0, and Yj
p

≥ Xj for j = 1, . . . , n, then

n∑

j=1

cjYj
p

≥
n∑

j=1

cjXj

for all real numbers c1, . . . , cn.

Proposition 8.3. If {Xm} and {Ym} are two sequences of n-dimensional ran-

dom vectors with Ym
p

≥ Xm for each m and Xm →d X, Ym →d Y , then Y
p

≥ X.

Proposition 8.4. Y
p

≥ X if and only if CY
p

≥ CX for all k × n matrices C
with k ≤ n.

Propositions 8.2, 8.3, and 8.3 are all from Olkin and Tong (1988).

Proposition 8.5 (Proschan (1965)). Suppose that Z1, . . . , Zn are i.i.d. random
variables with log-concave density symmetric about zero. Then if a, b ∈ R

n
+ with

a ≻ b (a majorizes b), then

n∑

j=1

bjZj
p

≥
n∑

j=1

ajZj in R

Proposition 8.6 (Olkin and Tong (1988)). Suppose that Z1, . . . , Zn are i.i.d.
d-dimensional random vectors with log-concave density symmetric about zero.
Then if aj , bj ∈ R

1 with a ≻ b (a majorizes b), then

n∑

j=1

bjZj
p

≥
n∑

j=1

ajZj in R
d.
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As pointed out by a referee, Proposition 8.6 has been extended by Chan,
Park and Proschan (1989) to vectors Z = (Z1, . . . , Zn) having a sign-invariant
Schur-concave joint density f .

Now let Kn ≡ {x ∈ R
n : x1 ≤ x2 ≤ · · · ≤ xn}. For any y ∈ R

n, let ŷ =
(ŷ1, . . . , ŷn) denote the projection of y onto Kn. Thus |y− ŷ|2 = minx∈K|y−x|2.
Proposition 8.7 (Kelly (1989)). Suppose that Y = (Y1, . . . , Yn) where Yj ∼
N(µj , σ

2) are independent and µ1 ≤ µ2 ≤ · · · ≤ µn. Thus µ ∈ Kn and µ̂ ≡ Ŷ ∈
Kn. Then µ̂k − µk

p

≥ Yk − µk for each k ∈ {1, . . . , n}; i.e.

P (|µ̂k − µk| ≤ t) ≥ P (|Yk − µk| ≤ t) for all t > 0, k ∈ {1, . . . , n}.

9. Some open problems and further connections with log-concavity

9.1. Two questions

Question 1: Does Kelly’s Proposition 8.7 continue to hold if the normal dis-
tributions of the Yi’s is replaced by some other centrally-symmetric log-concave
distribution, for example Chernoff’s distribution (see Balabdaoui and Wellner
(2014))?

Question 2: Balabdaoui and Wellner (2014) show that Chernoff’s distribution
is log-concave. Is it strongly log-concave? A proof would probably give a way
of proving strong log-concavity for a large class of functions of the form f(x) =
g(x)g(−x) where g ∈ PF∞ is the density of the sum

∑∞
j=1(Yj − µj) where

Yj ’s are independent exponential random variables with means µj satisfying
∑∞
j=1 µj = ∞ and

∑∞
j=1 µ

2
j <∞.

9.2. Cross-connections with the families of hyperbolically monotone
densities

A theory of hyperbolically monotone and completely monotone densities has
been developed by Bondesson (1992), Bondesson (1997).

Definition 9.1. A density f on R
+ is hyperbolically completely monotone if

H(w) ≡ f(uv)f(u/v) is a completely monotone function of w = (v + 1/v)/2.
A density f on R

+ is hyperbolically monotone of order k, or f ∈ HMk if the
functionH satisfies (−1)jH(j)(w) ≥ 0 for j = 0, . . . , k−1 and (−1)k−1H(k−1)(w)
is right-continuous and decreasing.

For example, the exponential density f(x) = e−x1(0,∞)(x) is hyperbolically

completely monotone, while the half-normal density f(x) =
√

2/π exp(−x2/
2)1(0,∞)(x) is HM1 but not HM2.

Bondesson (1997) page 305 shows that if X ∼ f ∈ HM1, then logX ∼
exf(ex) is log-concave. Thus HM1 is closed under the formation of products: if
X1, . . . , Xn ∈ HM1, then Y ≡ X1 · · ·Xn ∈ HM1.
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9.3. Log-convexity and completely monotone functions

Log-convexity is also of considerable potential interest in a variety of applica-
tions.

Definition 9.2. A function f : Rd → R
+ = [0,∞) is log-convex if log f is a

convex function on R
d.

Whereas log-concavity is preserved by marginalization and convolution, log-
convexity is preserved by mixing: this is summarized in the following theorem
of Artin (1931); see Marshall, Olkin and Arnold (2011), theorem B8, page 649,
and An (1998) page 360.

Theorem 9.3. (Artin, 1931). Suppose that A ⊂ R
d is open and convex, and

that φ : A× R
d → [0,∞) satisfies:

(i) logφ(x, t) is convex in x for each fixed t.
(ii) φ(x, t) is Borel-measurable in t for each fixed x ∈ A.
If µ is a measure on R

d such that φ(x, ·) ∈ L1(µ) for each x ∈ A, then

f(x) =

∫

Rd

φ(x, t)dµ(t)

is log-convex on A.

Example 9.4. Consider Γ(x) =
∫∞
0 tx−1e−tdt for x > 0. Then Γ(x) is log-

convex. This follows from Theorem 9.3 since φ(x, t) = tx−1 is log-convex.

Example 9.5. The class of completely monotone densities f on (0,∞) consists
of all densities which are scale mixtures of exponential densities; i.e.

f(x) =

∫ ∞

0

t exp(−tx)dµ(t)

where µ is a probability measure. Since φ(x, t) = t exp(−tx) is log-convex, The-
orem 9.3 implies that the class of completely monotone densities is a sub-class
of the class of log-convex densities.

Example 9.6. Consider the class of densities on (0,∞)2 of the form

f(x, y) =

∫ ∞

0

∫ ∞

0

uv exp(−ux) exp(−vy)dµ(u, v)

where µ is a probability measure on (0,∞)2. Since φ(x, y;u, v) =
uv exp(−ux) exp(−vy) is a log-convex function of (x, y) for each (u, v) ∈ (0,∞),
f is log-convex by Theorem 9.3

9.4. Suprema of Gaussian processes

Tsirel’son (1975), Beran and Millar (1986), and Gaenssler, Molnár and Rost
(2007) use log-concavity of Gaussian measures to show that the supremum of
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an arbitrary non degenerate Gaussian process has a continuous and strictly in-
creasing distribution function. This is useful for bootstrap theory in statistics.
The methods used by Gaenssler, Molnár and Rost (2007) originate in Borell
(1974) and Ehrhard (1983); see Bogachev (1998) chapters 1 and 4 for an expo-
sition.

Furthermore, in relation to Example 2.15 above, one can wonder what is the
form of the density of the maximum of a Gaussian process in general? Bobkov
(2008) actually gives a complete characterization of the distribution of suprema
of Gaussian processes. Indeed, the author proves that F is the distribution of the
supremum of a general Gaussian process if and only if Φ−1(F ) is concave, where
Φ−1 is the inverse of the standard normal distribution function on the real line.
Interestingly, the “only if” part is a direct consequence the Brunn-Minkowski
type inequality for the standard Gaussian measure γd on R

d due to Ehrhard
(1983): for any A and B ∈ R

d of positive measure and for all λ ∈ (0, 1),

Φ−1 (γd (λA + (1− λ)B)) ≥ λΦ−1 (γd (A)) + (1− λ)Φ−1 (γd (B)) .

9.5. Gaussian correlation conjecture

The Gaussian correlation conjecture, first stated by Das Gupta et al. (1972),
is as follows. Let A and B be two symmetric convex sets. If µ is a centered,
Gaussian measure on R

n, then

µ (A ∩B) ≥ µ (A)µ (B) . (9.21)

In other words, the correlation between the sets A and B under the Gaussian
measure µ is conjectured to be nonnegative. As the indicator of a convex set
is log-concave, the Gaussian correlation conjecture is intimately related to log-
concavity.

In Hargé (1999), the author gives an elegant partial answer to Problem (9.21),
using semigroup techniques. The Gaussian correlation conjecture has indeed
been proved to hold when d = 2 by Pitt (1977) and by Hargé (1999) when one
of the sets is a symmetric ellipsoid and the other is convex symmetric. Cordero-
Erausquin (2002) gave another proof of Hargé’s result, as a consequence of
Caffarelli’s Contraction Theorem (for more on the latter theorem, see Section 9.8
below). Extending Caffarelli’s Contraction Theorem, Kim and Milman (2012)
also extended the result of Hargé and Cordero-Erausquin, but without proving
the full Gaussian correlation conjecture.

Hargé (1999) gives some hints towards a complete solution of Problem (9.21).
Interestingly, a sufficient property would be the preservation of log-concavity
along a particular family of semigroups. More precisely, let A(x) be a positive
definite matrix for each x ∈ R

d and define

Lf(x) = (1/2)(div(A(x)−1∇f)− (∇f(x)TA−1(x)x).

The operator L is the infinitesimal generator of an associated semigroup. The
question is: does L preserve log-concavity? See Hargé (1999) and Kolesnikov



88 A. Saumard and J. A. Wellner

(2001). For further connections involving the semi-group approach to correlation
inequalities, see Bakry (1994), Ledoux (1995), Hargé (2008), and Cattiaux and
Guillin (2013).

Further connections in this direction involve the theory of parabolic and heat-
type partial differential equations; see e.g. Keady (1990), Kolesnikov (2001),
Andreu, Caselles and Mazón (2008), Korevaar (1983a), Korevaar (1983b).

9.6. Further connections with Poincaré, Sobolev, and log-Sobolev
inequalities

For a very nice paper with interesting historical and expository passages, see
Bobkov and Ledoux (2000). Among other things, these authors establish an
entropic or log-Sobolev version of the Brascamp-Lieb type inequality under a
concavity assumption on hTϕ′′(x)h for every h. The methods in the latter paper
build on Maurey (1991). See Bakry, Gentil and Ledoux (2014) for a general
introduction to these analytic inequalities from a Markov diffusion operator
viewpoint.

9.7. Further connections with entropic central limit theorems

This subject has its beginnings in the work of Linnik (1959), Brown (1982),
and Barron (1986), but has interesting cross-connections with log-concavity in
the more recent papers of Johnson and Barron (2004), Carlen and Soffer (1991),
Ball, Barthe and Naor (2003), Artstein et al. (2004a), and Artstein et al. (2004b).
More recently still, further results have been obtained by: Carlen, Lieb and
Loss (2004), Carlen and Cordero-Erausquin (2009), and Cordero-Erausquin and
Ledoux (2010).

9.8. Connections with optimal transport and Caffarelli’s
contraction theorem

Gozlan and Léonard (2010) give a nice survey about advances in transport
inequalities, with Section 7 devoted to strongly log-concave measures (called
measures with “uniform convex potentials” there). The theory of optimal trans-
port is developed in Villani (2003) and Villani (2009). See also Caffarelli (1991),
Caffarelli (1992), Caffarelli (2000), and Kim and Milman (2012) for results on
(strongly) log-concave measures. The latter authors extend the results of Caf-
farelli (2000) under a third derivative hypothesis on the “potential” ϕ.

In the following, we state the celebrated Caffarelli’s Contraction Theorem
(Caffarelli (2000)). Let us recall some related notions. A Borel map T is said
to push-forward µ onto ν, for two Borel probability measures µ and ν, de-
noted T∗(µ) = ν, if for all Borel sets A, ν(A) = µ(T−1(A)). Then the Monge-
Kantorovich problem (with respect to the quadratic cost) is to find a map Topt
such that

Topt ∈ arg min
T s.t.T∗(µ)=ν

{∫

Rd

|T (x) − x|2 dµ (x)
}

.
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The map Topt (when it exists) is called the Brenier map and it is µ-a.e. unique.
Moreover, Brenier (1991) showed that Brenier maps are characterized to be
gradients of convex functions (see also McCann (1995)). See Ball (2004) for a
very nice elementary introduction to monotone transportation. We are now able
to state Caffarelli’s Contraction Theorem.

Theorem 9.7 (Caffarelli (2000)). Let b ∈ R
d, c ∈ R and V a convex function on

R
d. Let A be a positive definite matrix in R

d×d and Q be the following quadratic
function,

Q (x) = 〈Ax, x〉 + 〈b, x〉+ c, x ∈ R
d.

Let µ and ν denote two probability measures on R
d with respective densities

exp(−Q) and exp(−(Q+V )) with respect to Lebesgue measure. Then the Brenier
map Topt pushing µ forward onto ν is a contraction:

|T (x) − T (y)| ≤ |x− y| for all x, y ∈ R
d.

Notice that Caffarelli’s Contraction Theorem is in particular valid when µ is
a Gaussian measure and that case, ν is a strongly log-concave measure.

9.9. Concentration and convex geometry

Guédon (2012) gives a nice survey, explaining the connections between the Hy-
perplane conjecture, the KLS conjecture, the Thin Shell conjecture, the Vari-
ance conjecture and the Weak and Strong moments conjecture. Related papers
include Guédon and Milman (2011) and Fradelizi, Guédon and Pajor (2013).

It is well-known that concentration properties are linked to the behavior of
moments. Bobkov and Madiman (2011) prove that if η > 0 is log-concave then
the function

λ̄p =
1

Γ (p+ 1)
E [ηp] , p ≥ 0,

is also log-concave, where Γ is the classical Gamma function. This is equivalent
to having a so-called “reverse Lyapunov’s inequality”,

λ̄b−ca λ̄a−bc ≤ λ̄a−cb , a ≥ b ≥ c ≥ 0.

Also, Bobkov (2003) proves that log-concavity of λ̃p = E[(η/p)p] holds (this is
a consequence of the Prékopa-Leindler inequality).These results allow for in-
stance Bobkov and Madiman (2011) to prove sharp concentration results for
the information of a log-concave vector.

9.10. Sampling from log concave distributions; Convergence of
Markov chain Monte Carlo algorithms

Sampling from log-concave distributions has been studied by Devroye (1984),
Devroye (2012) for log-concave densities on R, and by Frieze, Kannan and Pol-
son (1994a,b), Frieze and Kannan (1999), and Lovász and Vempala (2007) for
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log-concave densities on R
d; see also Lovász and Vempala (2007), Lovasz and

Vempala (2006), Kannan, Lovász and Simonovits (1995), and Kannan, Lovász
and Simonovits (1997).

Several different types of algorithms have been proposed: the rejection sam-
pling algorithm of Devroye (1984) requires knowledge of the mode; see Devroye
(2012) for some improvements. The algorithms proposed by Gilks and Wild
(1992) are based on adaptive rejection sampling. The algorithms of Neal (2003)
and Roberts and Rosenthal (2002) involve “slice sampling”; and the algorithms
of Lovász and Vempala (2007), Lovasz and Vempala (2006), Lovász and Vempala
(2007) are based on random walk methods.

Log-concavity and bounds for log-concave densities play an important role
in the convergence properties of MCMC algorithms. For entry points to this
literature, see Gilks and Wild (1992), Polson (1996), Brooks (1998), Roberts
and Rosenthal (2002), Fort et al. (2003), Jylänki, Vanhatalo and Vehtari (2011),
and Rudolf (2012).

9.11. Laplace approximations

Let X1, . . . , Xn be i.i.d. real-valued random variables with density q and Laplace
transform

φ (s) = E [exp (sX1)] .

Let x∗ be the upper limit of the support of q and let τ > 0 be the upper limit
of finiteness of φ. Let us assume that q is almost log-concave (see Jensen (1995)
p. 155) on (x0, x

∗) for some x0 < x∗. This means that there exist two constants
c1 > c2 > 0 and two functions c and h on R such that

q (x) = c (x) exp (−h (x)) , x < x∗,

where c2 < c(x) < c1 whenever x > x0 and h is convex. In particular, log-
concave functions are almost log-concave for x0 = −∞. Now, fix y ∈ R. The
saddlepoint s associated to y is defined by

(
d

dt
logφ

)

(s) = y

and the variance σ2(s) is defined to be

σ2 (s) =

(
d2

dt2
logφ

)

(s) .

Let us write fn the density of the empirical mean X =
∑n

i=1Xi/n. By Theorem
1 of Jensen (1991), if q ∈ Lζ(λ) for 1 < ζ < 2, then the following saddlepoint
approximations hold uniformly for s0 < s < τ for any s0 > 0:

fn (y) =

√
n

2πσ2 (s)
φ (s)

n
exp (−nsy)

{

1 +O

(
1

n

)}
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and

P
(
X > y

)
=
φ (s)

n
exp (−nsy)

sσ (s)
√
n

{

B0

(
sσ(s)

√
n
)
+O

(
1

n

)}

where B0(z) = z exp(z2/2)(1 − Φ(z)) with Φ the standard normal distribution
function. According to Jensen (1991), this result extends to the multidimensional
setting where almost log-concavity is required on the entire space (and not just
on some directional tails). As detailed in Jensen (1995), saddlepoint approxima-
tions have many applications in statistics, such as in testing or Markov chain
related estimation problems.

As Bayesian methods are usually expensive in practice, approximations of
quantities linked to the prior/posterior densities are usually needed. In connec-
tion with Laplace’s method, log-quadratic approximation of densities are espe-
cially suited when considering log-concave functions, see Jensen (1995), Barber
and Williams (1997), Minka (2001), and references therein.

9.12. Machine learning algorithms and Gaussian process methods

Boughorbel, Tarel and Boujemaa (2005) used the radius margin bound of Vapnik
(2000) on the performance of a Support Vector Machine (SVM) in order to tune
hyper-parameters of the kernel. More precisely they proved that for a weighted
L1-distance kernel the radius is log-convex while the margin is log-concave. Then
they used this fact to efficiently tune the multi-parameter of the kernel through
a direct application of the Convex ConCave Procedure (or CCCP) due to Yuille
and Rangarajan (2003). In contrast to the gradient descent technique (Chapelle
et al. (2002)), Boughorbel, Tarel and Boujemaa (2005) show that a variant of
the CCCP which they call Log Convex ConCave Procedure (or LCCP) ensures
that the radius margin bound decreases monotonically and converges to a local
minimum without a search for the size step.

Bayesian methods based on Gaussian process priors have become popular in
statistics and machine learning: see, for example Seeger (2004), Zhang, Dai and
Jordan (2011), van der Vaart and van Zanten (2008), and van der Vaart and
van Zanten (2011). These methods require efficient computational techniques in
order to be scalable, or even tractable in practice. Thus, log-concavity of the
quantities of interest becomes important in this area, since it allows efficient
optimization schemes.

In this context, Paninski (2004) shows that the predictive densities corre-
sponding to either classification, regression, density estimation or point process
intensity estimation models, are log-concave given any observed data. Further-
more, in the density and point process intensity estimation, the likelihood is
log-concave in the hyperparameters controlling the mean function of the Gaus-
sian prior. In the classification and regression settings, the mean, covariance and
observation noise parameters are log-concave. As noted in Paninski (2004), the
results still hold for much more general prior distributions than Gaussian: it suf-
fices that the prior and the noise (in models where a noise appears) are jointly
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log-concave. The proofs are based on preservation properties for log-concave
functions such as pointwise limit or preservation by marginalization.

9.13. Compressed sensing and random matrices

Compressed sensing, aiming at reconstructing sparse signals from incomplete
measurement, is extensively studied since the seminal works of Donoho (2006),
Candès, Romberg and Tao (2006) and Candès and Tao (2006). As detailed in
Chafäı et al. (2012), compressed sensing is intimately linked to the theory of
random matrices. The matrices ensembles that are most frequently used and
studied are those linked to Gaussian matrices, Bernoulli matrices and Fourier
(sub-)matrices.

By analogy with the Wishart Ensemble, the Log-concave Ensemble is defined
in Adamczak et al. (2010) to be the set of squared n×n matrices equipped with
the distribution of AA∗, where A is a n × N matrix with i.i.d. columns that
have an isotropic log-concave distribution. Adamczak et al. (2010) show that the
Log-concave Ensemble satisfies a sharp Restricted Isometry Property (RIP), see
also Chafäı et al. (2012) Chapter 2.

Koltchinskii (2011), chapter 7, discusses an important condition arising in the
context of sparse recovery with no noise: a given finite class H = {f1, . . . , fN} of
functions fj from a sample space X into R is called a dictionary. If we suppose

that f∗ =
∑N

j=1 λ
∗
jhj is observed at points X1, . . . , Xn ∈ X , then the problem of

noiseless recovery is to estimate (or recover) f∗ from observation of Yi = f∗(Xi),
i = 1, . . . , n. Let J ⊂ {1, . . . , N}. As explained by Koltchinskii, it is of interest
to study the problem when the dictionary H and the distribution Π of X ∈ X
satisfy

∥
∥
∥
∥

N∑

j=1

λjhj

∥
∥
∥
∥
L1(Π)

≤
∥
∥
∥
∥

N∑

j=1

λjhj

∥
∥
∥
∥
L2(Π)

≤ B(J)

∥
∥
∥
∥

N∑

j=1

λjhj

∥
∥
∥
∥
L1(Π)

(9.22)

for all λ ∈ CJ ≡ {u ∈ R
N :

∑

j /∈J |uj | ≤ ∑

j∈J |uj|}. A dictionary H =
{h1, . . . , hN} is said to be log-concave with respect to Π if the random vector
(h1(X), . . . , hN(X)) has a log-concave distribution. Then it follows from Borell
(1974) (see also Ledoux (2001), proposition 2.14) that (9.22) holds with B(J) =
B an absolute constant, and moreover that the Ψ1 Orlicz norm of any fλ in the
linear span of H satisfies ‖fλ‖ψ1

≤ B‖fλ‖L1(Π) for all λ ∈ R
N for an absolute

constant B.

9.14. Log-concave and s-concave as nonparametric function classes
in statistics

Nonparametric estimation of log-concave densities was initiated by Walther
(2002) in the context of testing for unimodality. For log-concave densities on
R it has been explored in more detail by Dümbgen and Rufibach (2009), Bal-
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abdaoui, Rufibach and Wellner (2009), and recent results for estimation of log-
concave densities on R

d have been obtained by Cule and Samworth (2010),
Cule, Samworth and Stewart (2010), Dümbgen, Samworth and Schuhmacher
(2011). Cule, Samworth and Stewart (2010) formulate the problem of comput-
ing the maximum likelihood estimator of a multidimensional log-concave density
as a non-differentiable convex optimization problem and propose an algorithm
that combines techniques of computational geometry with Shor’s r-algorithm
to produce a sequence that converges to the estimator. An R version of the
algorithm is available in the package LogConcDEAD: Log-Concave Density Es-
timation in Arbitrary Dimensions, with further description of the algorithm
given in Cule, Gramacy and Samworth (2009). Nonparametric estimation of s-
concave densities has been studied by Seregin and Wellner (2010). They show
that the MLE exists and is Hellinger consistent. Doss and Wellner (2013) have
obtained Hellinger rates of convergence for the maximum likelihood estimators
of log-concave and s-concave densities on R, while Kim and Samworth (2014)
study Hellinger rates of convergence for the MLEs of log-concave densities on
R
d. Henningsson and Astrom (2006) consider replacement of Gaussian errors by

log-concave error distributions in the context of the Kalman filter.
Walther (2009) gives a review of some of the recent progress.

10. Appendix A: Brascamp-Lieb inequalities and more

Let X have distribution P with density p = exp(−ϕ) on R
d where ϕ is strictly

convex and ϕ ∈ C2(Rd); thus ∇2(ϕ)(x) = ϕ′′(x) > 0, x ∈ R
d as symmetric

matrices. Let G,H be real-valued functions on R
d with G,H ∈ C1(Rd)∩L2(P ).

We let H1(P ) denote the set of functions f in L2(P ) such that ∇f (in the
distribution sense) is in L2(P ).

Let Y have distribution Q with density q = ψ−β on an open, convex set
Ω ⊂ R

d where β > d and ψ is a positive, strictly convex and twice continuously
differentiable function on Ω. In particular, Q is s = −1/(β − d)-concave (see
Definition 2.5 and Borell (1974), Borell (1975)). Let T be a real-valued function
on R

d with T ∈ C1(Ω)∩L2(Q). The following Proposition summarizes a number
of analytic inequalities related to a Poincaré-type inequality from Brascamp and
Lieb (1976). Such inequalities are deeply connected to concentration of measure
and isoperimetry, as exposed in Bakry, Gentil and Ledoux (2014). Concerning
log-concave measures, these inequalities are also intimately linked to the geom-
etry of convex bodies. Indeed, as noted by Carlen, Cordero-Erausquin and Lieb
(2013) page 9,

“The Brascamp-Lieb inequality (1.3), as well as inequality (1.8), have connec-
tions with the geometry of convex bodies. It was observed in [2] (Bobkov and
Ledoux (2000)) that (1.3) (see Proposition 10.1, (a)) can be deduced from the
Prékopa-Leindler inequality (which is a functional form of the Brunn-Minkowski
inequality). But the converse is also true: the Prékopa theorem follows, by a lo-
cal computation, from the Brascamp-Lieb inequality (see [5] (Cordero-Erausquin
(2005)) where the procedure is explained in the more general complex setting).
To sum up, the Brascamp-Lieb inequality (1.3) can be seen as the local form of
the Brunn-Minkowski inequality for convex bodies.”
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Proposition 10.1.
(a) Brascamp and Lieb (1976): If p is strictly log-concave, then

Var(G(X)) ≤ E
[
∇G(X)T (ϕ′′(X))−1∇G(X)

]
.

(b) If p = exp(−ϕ) where ϕ′′ ≥ cI with c > 0, then

Var(G(X)) ≤ 1

c
E|∇G(X)|2.

(c) Hargé (2008): If ϕ ∈ L2(P ), then for all f ∈ H1(P ),

Var (f (X)) ≤ E
[
∇f(X)T (ϕ′′(X))−1∇f(X)

]
− 1 + a/b

d
(Cov (ϕ (X) , f (X)))

2
,

where
a = inf

x∈Rd
min {λ eigenvalue of ϕ′′ (x)}

and
b = sup

x∈Rd

max {λ eigenvalue of ϕ′′ (x)} .

Notice that 0 ≤ a ≤ b ≤ +∞ and b > 0.
(d) Bobkov and Ledoux (2009): If U = ψT , then

(β + 1)Var(T (Y)) ≤ E

[
1

V (Y)
∇U(Y)T (ϕ′′(Y))−1∇U(Y)

]

+
n

β − n
E [T (Y)]2 .

Taking ψ = exp(ϕ/β) and setting Rϕ,β ≡ ϕ′′ + β−1∇ϕ ⊗∇ϕ, this implies that
for any β ≥ d,

Var(G(X)) ≤ CβE
[
∇G(X)T (Rϕ,β(X))−1∇G(X)

]
,

where Cβ = (1 +
√
β + 1)2/β. Notice that 1 ≤ Cβ ≤ 6.

(e) Bakry (1994): If p = exp(−ϕ) where ϕ′′ ≥ cI with c > 0, then

EntP
(
G2(X)

)
≤ 1

c
E|∇G(X)|2.

where
EntP (Y

2) = E
[
Y 2 log(Y 2)

]
− E

[
Y 2
]
log(E

[
Y 2
]
).

(f) Ledoux (1996), Ledoux (2001): If the conclusion of (e) holds for all smooth
G, then EP exp(α|X|2) <∞ for every α < 1/(2c).
(g) Bobkov (1999): If EP exp(α|X|2) < ∞ for a log-concave measure P and
some α > 0, then the conclusion of (e) holds for some c = cd.
(h) Bobkov and Ledoux (2000): If ϕ is strongly convex with respect to a norm
‖ · ‖ (so p is strongly log-concave with respect to ‖ · ‖), then

EntP (G
2(X)) ≤ 2

c
EP ‖∇G(X)‖2∗

for the dual norm ‖ · ‖∗.
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Inequality (a) originated in Brascamp and Lieb (1976) and the original proof
of the authors is based on a dimensional induction. For more details about the
induction argument used by Brascamp and Lieb (1976), see Carlen, Cordero-
Erausquin and Lieb (2013). Building on Maurey (1991), Bobkov and Ledoux
(2000) give a non-inductive proof of (a) based on the Prékopa-Leindler theorem
Prékopa (1971), Prékopa (1973), Leindler (1972) which is the functional form of
the celebrated Brunn-Minkowski inequality. The converse is also true in the sense
that the Brascamp-Lieb inequality (a) implies the Prékopa-Leindler inequality,
see Cordero-Erausquin (2005). Inequality (b) is an easy consequence of (a) and
is referred to as a Poincaré inequality for strongly log-concave measures.

Inequality (c) is a reinforcement of the Brascamp-Lieb inequality (a) due to
Hargé (2008). The proof is based on (Marvovian) semi-group techniques, see
Bakry, Gentil and Ledoux (2014) for a comprehensive introduction to these
tools. In particular, Hargé (2008), Lemma 7, gives a variance representation for
strictly log-concave measures that directly implies the Brascamp-Lieb inequal-
ity (a).

The first inequality in (d) is referred in Bobkov and Ledoux (2009) as a
“weighted Poincaré-type inequality” for convex (or s-concave with negative pa-
rameter s) measures. It implies the second inequality of (d) which is a quan-
titative refinement of the Brascamp-Lieb inequality (a). Indeed, Inequality (a)
may be viewed as the limiting case in the second inequality of (d) for β → +∞
(as in this case Cβ → 1 and Rϕ,β → ϕ′′). As noted in Bobkov and Ledoux
(2009), for finite β the second inequality of (d) may improve the Brascamp-Lieb
inequality in terms of the decay of the weight. For example, when Y is a random
variable with exponential distribution with parameter λ > 0 (q(y) = λe−λy on
Ω = (0,∞)), the second inequality in (d) gives the usual Poincaré-type inequal-
ity,

Var(G(Y )) ≤ 6

λ2
E
[

(G′(Y ))
2
]

,

which cannot be proved as an direct application of the Brascamp-Lieb inequality
(a). Klaassen (1985) shows that the inequality in the last display holds (in the
exponential case) with 6 replaced by 4, and establishes similar results for other
distributions. The exponential and two-sided exponential (or Laplace) distribu-
tions are also treated by Bobkov and Ledoux (1997).

Points (e) to (h) deal, in the case of (strongly) log-concave measures, with
the so-called logarithmic-Sobolev inequality, which is known to strengthen the
Poincaré inequality (also called spectral gap inequality) (see for instance Chap-
ter 5 of Bakry, Gentil and Ledoux (2014)). Particularly, Bobkov and Ledoux
(2000) proved their result in point (d), via the use of the Prékopa-Leindler in-
equality. In their survey on optimal transport, Gozlan and Léonard (2010) show
how to obtain the result of Bobkov and Ledoux from some transport inequalities.

We give now a simple application of the Brascamp-Lieb inequality (a), that
exhibits its relation with the Fisher information for location.

Example 10.2. Let G(x) = aTx for a ∈ R
d. Then the inequality in (a) becomes

aT Cov(X)a ≤ aTE{[ϕ′′(X)]−1}a (10.23)
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or equivalently
Cov(X) ≤ E{[ϕ′′(X)]−1}

with equality if X ∼ Nd(µ,Σ) with Σ positive definite. When d = 1 (10.23)
becomes

V ar(X) ≤ E[(ϕ′′)−1(X)] = E[((− log p)′′)−1(X)] (10.24)

while on the other hand

V ar(X) ≥ [E(ϕ′′)(X)]−1 ≡ I−1
loc (X) (10.25)

where Iloc(X) = E(ϕ′′) denotes the Fisher information for location (in X or p);
in fact for d ≥ 1

Cov(X) ≥ [E(ϕ′′)(X)]−1 ≡ I−1
loc (X)

where Iloc(X) ≡ E(ϕ′′) is the Fisher information matrix (for location). If X ∼
Nd(µ,Σ) then equality holds (again). On the other hand, when d = 1 and p
is the logistic density given in Example 2.12, then ϕ′′ = 2p so the right side
in (10.24) becomes E{(2p(X))−1} =

∫

R
(1/2)dx = ∞ while V ar(X) = π2/3

and Iloc(X) = 1/3 so the inequality (10.24) holds trivially, while the inequality
(10.25) holds with strict inequality:

3 = I−1
loc (X) <

π2

3
= V ar(X) < E[(ϕ′′)−1(X)] = ∞.

(Thus while X is slightly inefficient as an estimator of location for p, it is not
drastically inefficient.)

Now we briefly summarize the asymmetric Brascamp - Lieb inequalities of
Menz and Otto (2013) and Carlen, Cordero-Erausquin and Lieb (2013).

Proposition 10.3.
(a) Menz and Otto (2013): Suppose that d = 1 and G,H ∈ C1(R)∩L2(P ). If p
is strictly log-concave and 1/r + 1/s = 1 with r ≥ 2, then

|Cov(G(X), H(X))| ≤ sup
x

{ |H ′(x)|
ϕ′′(X)

}

E{|G′(X)|}.

(b) Carlen, Cordero-Erausquin and Lieb (2013): If p is strictly log-concave on
R
d and λmin(x) denotes the smallest eigenvalue of ϕ′′, then

|Cov(G(X), H(X))| ≤ ‖(ϕ′′)−1/r∇G‖s · ‖λ(2−r)/rmin (ϕ′′)−1/r∇H‖r.

Remark 10.4. (i) When r = 2, the inequality in (b) yields

(Cov(G(X), H(X)))
2 ≤ E{∇GT (ϕ′′)−1∇G} ·E{∇GT (ϕ′′)−1∇G}

which can also be obtained from the Cauchy-Schwarz inequality and the Bras-
camp-Lieb inequality (a) of Proposition 10.1.
(ii) The inequality (b) also implies that

|Cov(G(X), H(X))| ≤ ‖(λ−1/r
min ∇G‖s · ‖λ−1/s

min ∇H‖r;
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taking r = ∞ and s = 1 yields

|Cov(G(X), H(X))| ≤ ‖∇G‖1 · ‖λ−1
min∇H‖∞

which reduces to the inequality in (a) when d = 1.

11. Appendix B: Some further proofs

Proof. Proposition 2.3: (b): pθ(x) = f(x− θ) has MLR if and only if

f(x− θ′)

f(x− θ)
≤ f(x′ − θ′)

f(x′ − θ)
for all x < x′, θ < θ′

This holds if and only if

log f(x− θ′) + log f(x′ − θ) ≤ log f(x′ − θ′) + log f(x− θ). (11.26)

Let t = (x′ − x)/(x′ − x+ θ′ − θ) and note that

x− θ = t(x− θ′) + (1− t)(x′ − θ),

x′ − θ′ = (1− t)(x − θ′) + t(x′ − θ)

Hence log-concavity of f implies that

log f(x− θ) ≥ t log f(x− θ′) + (1− t) log f(x′ − θ),

log f(x′ − θ′) ≥ (1− t) log f(x− θ′) + t log f(x′ − θ).

Adding these yields (11.26); i.e. f log-concave implies pθ(x) has MLR in x.
Now suppose that pθ(x) has MLR so that (11.26) holds. In particular that

holds if x, x′, θ, θ′ satisfy x−θ′ = a < b = x′−θ and t = (x′−x)/(x′−x+θ′−θ) =
1/2, so that x− θ = (a+ b)/2 = x′ − θ′. Then (11.26) becomes

log f(a) + log f(b) ≤ 2 log f((a+ b)/2).

This together with measurability of f implies that f is log-concave.
(a): Suppose f is PF2. Then for x < x′, y < y′,

det

(
f(x− y) f(x− y′)
f(x′ − y) f(x′ − y′)

)

= f(x− y)f(x′ − y′)− f(x− y′)f(x′ − y) ≥ 0

if and only if

f(x− y′)f(x′ − y) ≤ f(x− y)f(x′ − y′),

or, if and only if

f(x− y′)

f(x− y)
≤ f(x′ − y′)

f(x′ − y)
.

That is, py(x) has MLR in x. By (b) this is equivalent to f log-concave.
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Proof. Proposition 2.24: To prove Proposition 2.24 it suffices to note the log-
concavity of g(x) = p(x)/

∏d
j=1 φ(xj/σ) and to apply Proposition 2.21 (which

holds as well for log-concave functions). The claims then follow by basic calcu-
lations.

Here are the details. Under the assumption that ϕ ∈ C2 (and even more
generally) the equivalence between (a) and (b) follows from Rockafellar and
Wets (1998), Exercise 12.59, page 565. The equivalence between (a) and (c)
follows from the corresponding proof concerning the equivalence of (a) and (c)
in Proposition 2.21; see e.g. Boyd and Vandenberghe (2004), page 71.

(a) implies (d): this follows from the corresponding implication in Proposi-
tion 2.21. Also note that for x1, x2 ∈ R

d we have

〈∇ϕJa(x2)− x2/c− (∇ϕJa(x1)− x1/c) , x2 − x1〉
= 〈∇ϕ(a + x2)−∇ϕ(a− x2)− x2/c

− (∇ϕ(a+ x1)−∇ϕ(a− x1)− x1/c) , x2 − x1〉
= 〈∇ϕ(a + x2)−∇ϕ(a+ x1)− (x2 − x1)/(2c), x2 − x1〉

− 〈∇ϕ(a− x2)−∇ϕ(a− x1) + (x2 − x1)/(2c), x2 − x1〉
= 〈∇ϕ(a + x2)−∇ϕ(a+ x1)− (a+ x2 − (a+ x1))/(2c), x2 − x1〉

+ 〈∇ϕ(a− x1)−∇ϕ(a− x2)

− (a− x1 − (a− x2))/(2c), a− x1 − (a− x2)〉
≥ 0

if c = σ2/2.
(d) implies (e): this also follows from the corresponding implication in Propo-

sition 2.21. Also note that when ϕ ∈ C2 so that ∇2ϕ exists,

∇2ϕJa(x)− 2I/σ2 = ∇2ϕ(a+ x) +∇2ϕ(a− x) − 2I/σ2

= ∇2ϕ(a+ x)− I/σ2 +∇2ϕ(a− x)− I/σ2

≥ 0 + 0 = 0.

To complete the proof when ϕ ∈ C2 we show that (e) implies (c). Choosing
a = x0 and x = 0 yields

0 ≤ ∇2ϕJa(0)− 2I/σ2

= ∇2ϕ(x0) +∇2ϕ(x0)− 2I/σ2

= 2
(
∇2ϕ(x0)− I/σ2

)
,

and hence (c) holds.
To complete the proof more generally, we proceed as in Simon (2011), page

199: to see that (e) implies (f), let a = (x1 + x2)/2, x = (x1 − x2)/2. Since
Ja(·; g) is even and radially monotone, Ja(0; g)

1/2 ≥ Ja(x; g)
1/2; that is,

{g(a+ 0)g(a− 0)}1/2 ≥ {g(a+ x)g(a− x)}1/2,

or
g((x1 + x2)/2) ≥ g(x1)

1/2g(x2)
1/2.
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Finally (f) implies (a): as in Simon (2011), page 199 (with “convex” changed to
“concave” three times in the last three lines there): midpoint log-concavity of g
together with lower semicontinuity implies that g is log-concave, and hence p is
strongly log-concave, so (a) holds.

Proof. Proposition 2.25: First notice that by Proposition 5.5, we may assume
that f is C∞ (so ϕ is also C∞).

(i) As I is C∞, we differentiate I twice. We have I ′(p) = f ′(F−1(p))/I(p) =
−ϕ′(F−1(p)) and

I ′′ (p) = −ϕ′′ (F−1 (p)
)
/I (p) ≤ −c−1 ‖f‖−1

∞ . (11.27)

This gives the first part of (i). The second part comes from the fact that ‖f‖−1
∞ ≥

√

Var(X) by Proposition 5.2 below.
(ii) It suffices to exhibit an example. We take X ≥ 0, with density

f (x) = xe−x1(0,∞) (x) .

Then f = e−ϕ is log-concave (in fact, f log-concave of order 2, see Defini-
tion 2.16) and not strongly log-concave as, on the support of f , ϕ′′(x) = x−2 → 0
as x→ ∞. By the equality in (11.27) we have

I ′′ (p) = −ϕ
′′

f

(
F−1 (p)

)
.

Hence, to conclude it suffices to show that infx>0{ϕ′′/f} > 0. By simple calcu-
lations, we have

ϕ′′ (x) /f (x) = x−3ex1(0,∞) (x) ≥ e3/27 > 0,

so (ii) is proved.
(iii) We take f(x) = exp(−ϕ) = α−1 exp(− exp(x))1{x>0} where α =

∫∞
0

exp(− exp(x))dx. Then the function Rh is C∞ on (0, 1) and we have by
basic calculations, for any p ∈ (0, 1),

R′
h (p) = f

(
F−1 (p) + h

)
/f
(
F−1 (p)

)

and

R′′
h (p) =

f
(
F−1 (p) + h

)

f (F−1 (p))
2

(
ϕ′ (F−1 (p)

)
− ϕ′ (F−1 (p) + h

))
.

Now, for any x > 0, taking p = F (x) in the previous identity gives

R′′
h (F (x)) =

f (x+ h)

f (x)2
(ϕ′ (x)− ϕ′ (x+ h)) (11.28)

= α−1 exp (exp (x) (2− exp (h))) · exp (x) (1− exp (h)) .

We deduce that if h > log 2 then R′′
h(F (x)) → 0 whenever x → +∞. Taking

h0 = 1 gives point (iii).
(iv) For X with density f(x) = xe−x1(0,+∞)(x), we have inf R′′

h ≤ −he−h <
0. Our proof of the previous fact is based on identity (11.28) and left to the
reader.
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Proof. Proposition 2.26: Here are the details. Under the assumption that ϕ ∈ C2

(and even more generally) the equivalence of (a) and (b) follows from Rockafel-
lar and Wets (1998), Exercise 12.59, page 565. The equivalence of (a) and (c)
follows from the corresponding proof concerning the equivalence of (a) and (c)
in Proposition 2.21; see e.g. Boyd and Vandenberghe (2004), page 71.

That (a) implies (d): this follows from the corresponding implication in
Proposition 2.21. Also note that for x1, x2 ∈ R

d we have

〈∇ϕJa(x2)− x2/c− (∇ϕJa(x1)− x1/c) , x2 − x1〉
= 〈∇ϕ(a + x2)−∇ϕ(a− x2)− x2/c

− (∇ϕ(a+ x1)−∇ϕ(a− x1)− x1/c) , x2 − x1〉
= 〈∇ϕ(a + x2)−∇ϕ(a+ x1)− (x2 − x1)/(2c), x2 − x1〉

− 〈∇ϕ(a− x2)−∇ϕ(a− x1) + (x2 − x1)/(2c), x2 − x1〉
= 〈∇ϕ(a + x2)−∇ϕ(a+ x1)− (a+ x2 − (a+ x1))/(2c), x2 − x1〉

+ 〈∇ϕ(a− x1)−∇ϕ(a− x2)

− (a− x1 − (a− x2))/(2c), a− x1 − (a− x2)〉
≥ 0

if c = σ2/2.
(d) implies (e): this also follows from the corresponding implication in Propo-

sition 2.21. Also note that when ϕ ∈ C2 so that ∇2ϕ exists,

∇2ϕJa(x)− 2I/σ2 = ∇2ϕ(a+ x) +∇2ϕ(a− x) − 2I/σ2

= ∇2ϕ(a+ x)− I/σ2 +∇2ϕ(a− x)− I/σ2

≥ 0 + 0 = 0.

To complete the proof when ϕ ∈ C2 we show that (e) implies (c). Choosing
a = x0 and x = 0 yields

0 ≤ ∇2ϕJa(0)− 2I/σ2

= ∇2ϕ(x0) +∇2ϕ(x0)− 2I/σ2

= 2
(
∇2ϕ(x0)− I/σ2

)
,

and hence (c) holds.
To complete the proof more generally, we proceed as in Simon (2011), page

199: to see that (e) implies (f), let a = (x1 + x2)/2, x = (x1 − x2)/2. Since
Ja(·; g) is even and radially monotone, Ja(0; g)

1/2 ≥ Ja(x; g)
1/2; that is,

{g(a+ 0)g(a− 0)}1/2 ≥ {g(a+ x)g(a− x)}1/2,

or
g((x1 + x2)/2) ≥ g(x1)

1/2g(x2)
1/2.

Finally (f) implies (a): as in Simon (2011), page 199 (with “convex” changed to
“concave” three times in the last three lines there): midpoint log-concavity of g
together with lower semicontinuity implies that g is log-concave, and hence p is
strongly log-concave, so (a) holds.
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Proof. Proposition 5.5: (i) This is given by the stability of log-concavity through
convolution.

(ii) This is point (b) of Theorem 3.7.
(iii) We have

ϕZ (z) = − log

∫

y∈Rd

p (y) q (z − y) dy

and
∫

y∈Rd

‖∇q (z − y)‖ p (y) dy =

∫

y∈Rd

‖z − y‖ q (z − y) p (y) dy <∞

since y 7→ ‖z − y‖q(z − y) is bounded. This implies that pZ > 0 on R
d and

∇ϕZ (z) =

∫

y∈Rd

z − y

σ2

p (y) q (z − y)
∫

y∈Rd p (u) q (z − u)du
dy

= σ−2
E [σG |X + σG = z ]

= E [ρσG (σG) |X + σG = z ] .

In the same manner, successive differentiation inside the integral shows that ϕZ
is C∞, which gives (iii).

(iv) Notice that
∣
∣
∣
∣

∥
∥
∥
∥

∫

z,y∈Rd

σ−4 (z − y) (z − y)
T
p (y) q (z − y) dydz

∥
∥
∥
∥

∣
∣
∣
∣

≤ σ−4

∫

y∈Rd

∫

z∈Rd

‖z − y‖2 q (z − y) p (y)dy <∞

as y 7→ ‖z− y‖2q(z − y) is bounded. Hence the Fisher information J(Z) of Z is
finite and we have

J (Z) = σ−4

∫

z,y∈Rd

E [σG |X + σG = z ]E
[

(σG)T |X + σG = z
]

· p (y) q (z − y) dydz

≤ σ−4

∫

z,y∈Rd

E

[

σG (σG)
T |X + σG = z

]

p (y) q (z − y) dydz

= σ−4

∫

z,y∈Rd

(
∫

u∈Rd

(z − u) (z − u)T
p (u) q (z − u)

∫

y∈Rd p (v) q (z − v) dv
du

)

· p (y) q (z − y) dydz

= σ−4

∫

z,y∈Rd

(∫

u∈Rd

(z − u) (z − u)
T
p (u) q (z − u) du

)

· p (y) q (z − y)
∫

v∈Rd p (v) q (z − v) dv
dydz

= σ−4

∫

z∈Rd

∫

u∈Rd

(z − u) (z − u)T p (u) q (z − u) dudz



102 A. Saumard and J. A. Wellner

=

∫

u∈Rd







σ−4

∫

z∈Rd

(z − u) (z − u)
T
q (z − u)dz

︸ ︷︷ ︸

J(σG)







p (u) du

= J (σG) ,

which is (iv).

Proof. Proposition 5.6: The fact that hc ∈ SLC1(c
−1, d) is obvious due to Def-

inition 2.9. By Theorem 5.1 above, there exist a > 0 and b ∈ R such that

f (x) ≤ e−a‖x‖+b, x ∈ R
d.

We deduce that ifX is a random vector with density f onR
d, then E[e(a/2)‖X‖] <

∞ and so, for any β > 0,

P (‖X‖ > 2β) ≤ Ae−aβ,

where A = E[e(a/2)‖X‖] > 0. Take ε ∈ (0, 1). We have

∣
∣
∣
∣

∫

Rd

f (v) e−c‖v‖
2/2dv − 1

∣
∣
∣
∣

=

∫

Rd

f (v)
(

1− e−c‖v‖
2/2
)

dv

=

∫

Rd

f (v)
(

1− e−c‖v‖
2/2
)

1{‖v‖≤2c−ε/2}dv

+

∫

Rd

f (v)
(

1− e−c‖v‖
2/2
)

1{‖v‖>2c−ε/2}dv

≤
(

1− e−2c1−ε
) ∫

Rd

f (v) 1{‖v‖≤√
2c−ε/2}dv + P

(

‖X‖ > 2c−ε/2
)

≤
(

1− e−2c1−ε
)

+Ae−ac
−ε/2

.

We set Bα = (1 − e−2α1−ε

) +Ae−aα
−ε/2

and we then have

∣
∣
∣
∣

∫

Rd

f (v) e−c‖v‖
2/2dv − 1

∣
∣
∣
∣
≤ Bc = Oc→0

(
c1−ε

)
→c→0 0.

Now, for x ∈ R
d, we have, for all c > 0 such that Bc < 1,

|hc (x)− f (x)|

=

∣
∣
∣
∣
∣

f (x) e−c‖x‖
2/2

∫

Rd f (v) e−c‖v‖
2/2dv

− f (x)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

f (x) e−c‖x‖
2/2

∫

Rd f (v) e−c‖v‖
2/2dv

− f (x) e−c‖x‖
2/2

∣
∣
∣
∣
∣
+
∣
∣
∣f (x) e−c‖x‖

2/2 − f (x)
∣
∣
∣
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≤ f (x)

∣
∣
∣
∣
∣

(∫

Rd

f (v) e−c‖v‖
2/2dv

)−1

− 1

∣
∣
∣
∣
∣
+ f (x)

(

1− e−c‖x‖
2/2
)

≤ f (x)

(
Bc

1−Bc
+ 1− e−c‖x‖

2/2

)

.

Hence, for all c > 0 such that Bc < 1,

sup
x∈Rd

|hc (x)− f (x)|

≤ sup
{x;‖x‖≤2c−ε/2}

|hc (x)− f (x)|+ sup
{x;‖x‖>2c−ε/2}

|hc (x)− f (x)|

≤ eb
(

Bc
1−Bc

+ 1− e−2c1−ε

)

+ e−2ac−ε/2+b

(
Bc

1−Bc
+ 1

)

= O
(
c1−ε

)
as c→ 0.

Furthermore, for p ∈ [1,∞),

∫

Rd

|hc(x) − f(x)|p dx

=

∫

Rd

|hc(x) − f(x)|p 1{‖x‖≤2c−ε/2}dx+

∫

Rd

|hc(x) − f(x)|p 1{‖x‖>2c−ε/2}dx

≤ sup
{x;‖x‖≤2c−ε/2}

|hc(x)− f(x)|p +
∫

Rd

f(x)p
(

Bc
1− Bc

+ 1

)

1{‖x‖>2c−ε/2}dx

≤ epb
(

Bc
1−Bc

+ 1− e−2c1−ε

)p

+

(
Bc

1−Bc
+ 1

)

e(p−1)b
P

(

‖X‖ > 2c−ε/2
)

≤ epb
(

Bc
1−Bc

+ 1− e−2c1−ε

)p

+A

(
Bc

1−Bc
+ 1

)

e(p−1)be−ac
−ε/2

= O
(

cp(1−ε)
)

as c→ 0.

The proof is now complete.
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Dümbgen, L. and Rufibach, K. (2009). Maximum likelihood estimation of a
log-concave density and its distribution function: Basic properties and uniform
consistency. Bernoulli 15 40–68. MR2546798 (2011b:62096)

http://www.ams.org/mathscinet-getitem?mr=2645484
http://www.ams.org/mathscinet-getitem?mr=2758237
http://www.ams.org/mathscinet-getitem?mr=588074
http://www.ams.org/mathscinet-getitem?mr=0241584
http://www.ams.org/mathscinet-getitem?mr=773927
http://www.ams.org/mathscinet-getitem?mr=2910053
http://www.ams.org/mathscinet-getitem?mr=954608
http://www.ams.org/mathscinet-getitem?mr=0096173
http://www.ams.org/mathscinet-getitem?mr=2241189
http://arxiv.org/abs/1306.1438
http://www.ams.org/mathscinet-getitem?mr=0482164
http://www.ams.org/mathscinet-getitem?mr=585231
http://www.ams.org/mathscinet-getitem?mr=2546798


Log-concavity and strong log-concavity 109
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