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Abstract: The popular cubic smoothing spline estimate of a regression
function arises as the minimizer of the penalized sum of squares

∑

j
(Yj −

µ(tj ))2 + λ
∫ b

a
[µ′′(t)]2 dt, where the data are tj , Yj , j = 1, . . . , n. The min-

imization is taken over an infinite-dimensional function space, the space
of all functions with square integrable second derivatives. But the calcula-
tions can be carried out in a finite-dimensional space. The reduction from
minimizing over an infinite dimensional space to minimizing over a finite di-
mensional space occurs for more general objective functions: the data may
be related to the function µ in another way, the sum of squares may be re-

placed by a more suitable expression, or the penalty,
∫ b

a
[µ′′(t)]2 dt, might

take a different form. This paper reviews the Reproducing Kernel Hilbert
Space structure that provides a finite-dimensional solution for a general
minimization problem. Particular attention is paid to the construction and
study of the Reproducing Kernel Hilbert Space corresponding to a penalty
based on a linear differential operator. In this case, one can often calculate
the minimizer explicitly, using Green’s functions.
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1. Introduction

Data are often modelled in terms of a function: a density function provides a
model for the distribution of univariate data, a regression function provides a
model for dependence in bivariate data, and a logistic regression function can be
used to classify an individual based on covariate information. Classic statistical
methods define functions in terms of a small number of parameters such as
a mean and variance, or a slope and an intercept. In contrast, many current
statistical methods are less restrictive, modelling a function as smooth, lying in
an infinite dimensional function space.

Modelling and computation in an infinite dimensional function space are
facilitated by techniques of functional analysis, specifically, by using a Hilbert
space structure. A Hilbert space is a vector space with an inner product. This
inner product allows us to define projections onto subspaces, a useful tool in
optimization problems. The inner product also allows us to define a norm, and
through the norm, to define convergence of sequences of functions and continuity
of functionals. The well-known L2 space of functions is a Hilbert space with
the inner product of f and g simply the integral

∫

f(t)g(t) dt. Unfortunately,
the evaluation functionals, which take f to f(t), are not well-defined in L2, as
function values are only defined “almost everywhere t”. That is, we cannot with
certainty state the value f(t). This situation is a bit troubling for statistical
analysis, for instance, for estimating a regression function. Fortunately, in a
particular type of Hilbert space, namely, a Reproducing Kernel Hilbert Space
(RKHS), the evaluation functionals are well-defined and, even better, they are
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continuous. By continuity of an evaluation functional, we mean that when two
functions f and g are close in terms of the norm of the RKHS, then f(t) and
g(t) are close, in the usual sense of closeness on the real line. These concepts of
closeness and continuity are important in any principled approach to estimating
a function from noisy data.

This article reviews the tools of Hilbert spaces and RKHS’s for analyzing
data when the parameter of interest is in an infinite dimensional function space.
Specifically, consider data, Y1, . . . Yn ∈ ℜ and t1, . . . , tn ∈ ℜp, where the distri-
bution of the Yi’s depends on µ, a function of t ∈ ℜp, which is usually assumed
to be smooth. The goal is to find µ in a specified space H to minimize

G(t1, . . . , tn, Y1, . . . , Yn, F1(µ), . . . , Fn(µ)) + λP (µ) (1.1)

where G and the Fj ’s are known, P is a known penalty on µ, and λ serves to
balance the importance between G and P . Typically, Fj(µ) = µ(tj), although
we are not limited to this choice.

While some results here will concern general P and tj ∈ ℜp, p ≥ 1, much of
the paper considers the restricted case where tj ∈ [a, b] ⊂ ℜ and P is generated
from a differential operator L:

P (µ) =

∫ b

a

[(Lµ)(t)]2 dt where (Lµ)(t) = µ(m)(t) +

m−1
∑

j=0

wj(t)µ
(j)(t) (1.2)

with wj real-valued and continuous.
The most well-known case of (1.1) occurs in regression analysis, when we seek

the regression function µ̂ ∈ H2[a, b] to minimize

∑

j

[Yj − µ(tj)]
2 + λ

∫ b

a

[µ′′(t)]2 dt. (1.3)

The minimizing µ is a cubic smoothing spline, a popular regression function
estimate. The non-negative smoothing parameter λ balances the minimizing µ’s
fit to the data (via minimizing

∑

j [Yj − µ(tj)]
2) with its closeness to a straight

line (achieved when
∫ b

a
[µ′′(t)]2 dt = 0). The value of λ is typically chosen “by

eye” – by examining the resulting estimates of µ, or by some automatic data-
driven method such as cross-validation. See, for instance, Wahba [30], Eubank
[8] or Green and Silverman [10].

To extend (1.3) to (1.1), we can consider a first term other than a sum of
squares, functionals other than Fj(µ) = µ(tj) and a differential operator other
than the second derivative operator. Examples of these variations are given in
Section 2. Section 3 provides background on Hilbert Spaces and RKHS’s, and
contains the reduction of (1.1) to a finite dimensional optimization problem.
Section 4 relates the minimizer of (1.1) to a Bayes estimate. Sections 5 and 6
contain results and algorithms for minimizing (1.1) with P based on a differential
operator as in (1.2), with Section 5 containing the “warm-up” of the cubic
smoothing spline result for minimizing (1.3) and Section 6 containing the general
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case. The Appendix contains pertinent results from the theory of solutions of
differential equations.

The material contained here is, for the most part, not original. The material
is drawn from many sources: from statistical and machine learning literature,
from the theory of differential equations, from numerical analysis, and from
functional analysis. The purpose of this paper is to collect this diverse material
in one article and to present it in an easily accessible form, to show the richness
of statistical problems that involve minimizing (1.1) and to explain the theory
and provide easy to follow algorithms for minimizing (1.1). A briefer review of
RKHS’s can be found in Wahba [31].

This article presents an approach to using the structure of a Reproducing
Kernel Hilbert Space to minimize (1.1) that is different from the usual approach
of, say, machine learning. A usual approach to this minimization problem is to
first specify a kernel function K, defined on ℜp × ℜp, and then define a set of
basis functions, namely {K(t, ·), t ∈ ℜp}, and finally to use K and the basis to
construct an inner product and an RKHS. See, for instance, Hastie et al. [11]
and Hofman et al. [13]. Here, the approach is different: we specify the penalty
P and use P to construct the corresponding RKHS. This is a more model-based
approach, since the set of functions with Pµ ≡ 0 typically defines a finite dimen-
sional model space for µ. We add flexiblity to our estimation of µ by allowing
departure from this finite dimensional model space: the term λP (µ) in (1.1) re-
places our belief that “P (µ) = 0” with a belief that “P (µ) may be small”. The
case when P (µ) is based on derivatives of µ as in (1.2) has been recommended
by Heckman and Ramsay [12] as a flexible model-based approach to smoothing.
See Section 2.7. When P (µ) is as in (1.2), if one can find the solutions of Lµ = 0,
then one can explicitly calculate the kernel function K that is associated with
the RKHS and thus can explicitly calculate the minimizing µ. See Section 6.

2. Examples

2.1. Penalized likelihoods with Fj(f) = f(tj)

Most statistical applications that lead to minimizing (1.1) have the first term in
(1.1) equal to a negative log likelihood. In these cases, the µ that minimizes (1.1)
is called a penalized likelihood estimate of µ. Indeed, (1.3) yields a penalized
likelihood estimator: the sum of squares arises from a likelihood by assuming
that Y1, . . . , Yn are independent normally distributed with the mean of Yj equal
to µ(tj) and the variance equal to σ2. Then, apart from a constant, −2× the
log likelihood is simply

n log(σ2) +
1

σ2

∑

(Yj − µ(tj))
2.

A penalized likelihood estimate of µ with penalty P (µ) minimizes

n log(σ2) +
1

σ2

∑

(Yj − µ(tj))
2 + λ∗P (µ)

=
1

σ2

[

σ2n log(σ2) +
∑

(Yj − µ(tj))
2 + λ∗σ2P (µ)

]

.
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Thus, for a given σ2, the penalized likelihood estimate of µ minimizes (1.1)
with λ = λ∗σ2. If the Yj ’s are not independent but the vector (Y1, . . . , Yn)

′

has covariance matrix σ2Σ, then we would replace the sum of squares with
∑

j,k[Yj − µ(tj)] Σ
−1[j, k] [Yk − µ(tk)].

Another likelihood, important in classification, is based on data Yj = 1 or
−1 with probabilities p(tj) and 1− p(tj), respectively. Thus

the log likelihood =
∑

j

1 + Yj

2
log p(tj) +

1− Yj

2
log[1− p(tj)].

To avoid placing inequality constraints on the function of interest, we reparame-
terize by setting µ(t) = log[p(t)/(1−p(t))] or equivalently p(t) = exp(µ(t))/[1+
exp(µ(t))]. This reparameterization yields

the log likelihood =
∑

j

1 + Yj

2
log

exp(µ(tj))

1 + exp(µ(tj))
+

1− Yj

2
log

1

1 + exp(µ(tj))
.

(2.1)

2.2. Regularized regression

The minimization of (1.3) is an example of regularized regression where the term
P (µ) is called the stabilizer or regularizer. Regularized regression is used when
the usual criterion, e.g. least squares, does not yield an appropriate solution due
to, for instance, poorly conditioned matrices that may be difficult or impossible
to invert. See Hastie et al [11]. The most well-known example of regularized

regression is ridge regression in which µ(t) is modelled as
∑K

1 βjφj(t) for known
φj ’s. If K is large relative to n, the number of data points, we are in danger of
over-fitting the data. To prevent this, we add a stabilizer and we minimize as a
function of β

n
∑

1

[

Yi −
K
∑

1

βjφj(ti)

]2

+ λ
∑

β2
j .

A well-known regularized regression method, the lasso, replaces
∑

β2
j with

∑

|βj |. See Tibshirani [28]. This minimization problem, however, does not fit
the general formulation for a RKHS.

2.3. Gaussian processes

In machine learning and in the spatial analysis technique called Kriging, the
function µ is modelled as the realization of a Gaussian process with the “esti-
mate” of µ(t) being the best linear unbiased predictor of µ(t). This estimation
problem can be reformulated as an optimization problem as in (1.1) with µ lying
in an RKHS that is defined in terms of the covariance of the underlying Gaus-
sian process. Section 4 discusses this in detail, along with references. In machine
learning, the covariance structure of the Gaussian process usually reflects the
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amount of smoothness. In Kriging, the covariance is typically taken as one of
the standard spatial covariance functions. For a discussion of the connections
between Kriging, spatial process covariances, penalized likelihood and RKHS’s,
see Furrer and Nychka [9] and Nychka [21]. The first paper also contains ele-
gant asymptotic results that relate the estimate of µ(t) to a weighted average
estimate, called the equivalent kernel estimate. The weights depend on the un-
derlying reproducing kernel and spatial covariance structure via the associated
Green’s function.

2.4. Fj’s based on integrals

While Fj(µ) = µ(tj) is common, Fj(µ) is sometimes chosen to involve an integral

of µ, specifically, Fj(µ) =
∫ b

a
Hj(s)µ(s)ds, with the Hj ’s known. See Wahba [30].

Li [19] and Bacchetti et al. [5] used (1.1) to estimate µ(t), the HIV infection
rate at time t, based on data, Yj , the number of new AIDS cases diagnosed in
time period (tj−1, tj ]. The expected value of Yj depends not only on µ(tj), but
also on µ(t) for values of t ≤ tj . This dependence involves the distribution of the
time of progress from HIV infection to AIDS diagnosis, which is estimated from
cohort studies. Letting F(t|s) denote the probability that AIDS has developed
by time t given HIV infection occurred at time s,

E

(

j
∑

1

Yi

)

=

∫ tj

s=0

µ(s)F(tj |s) ds ≡ Fj(µ).

Thus we could define the first term in (1.1) as a negative log likelihood assuming
the Yj ’s are independent Poisson counts with E(Yj) = Fj(µ) − Fj−1(µ). Or we
could take the computationally simpler approach by setting the first term in
(1.1) equal to

n
∑

1

{

Yj −
[

Fj(µ)− Fj−1(µ)
]

}2

.

Both Li [19] and Bacchetti et al. [5] use this simpler approach, with the former
using penalty P (µ) =

∫

(µ′′)2 while the latter used a discretized version of
∫

(µ′′)2.
In a density estimation setting, Nychka et al. [20] estimated the distribution

of the volumes of tumours in livers by using data from cross-sectional slices of
the livers. The authors modelled tumours as spheres and so cross-sections were
circles. They estimated µ, the probability density of the spheres’ radii, using an
integral to relate the radius of a sphere to the radius of a random slice of the
sphere. Their estimation criterion was the minimization of an expression of the
form (1.1) with Fj using that integral and with P (µ) =

∫

(µ′′)2.

2.5. Functional linear regression

The functional Fj(µ) =
∫ b

a
Hj(s) dµ(s) of the previous section is a key el-

ement in what is called functional linear regression with a scalar response.
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See, for instance, Yuan and Cai [32], Ramsay and Silverman [23] and Horváth
and Kokoszka [14] and references there-in. In functional linear regression with
a scalar response, the data are Y1, . . . Yn ∈ ℜ and the processes Xj(t), t ∈
[a, b], j = 1, . . . , n, with the processes perhaps partially observed and/or ob-
served with error. We suppose that Yj depends on Xj in a way that mimics
usual linear regression:

Yj = α0 +

∫

Xj(s) µ(s) ds+ ǫj

where ǫj is error, independent of Xj , and both α0 (the “intercept”) and µ (the
“slope function”) are unknown and to be estimated. For example, in Ramsay
and Silverman [23], in a study of Canadian weather stations, Yj is the annual
precipitation at weather station j andXj(t) is the temperature at the jth station
on day t. The standard estimates of α0 and µ minimize

∑

j

[

Yj − α0 −
∫

Xj(s) µ(s) ds

]2

+ λP (µ) (2.2)

for some penalty P . If we do not observe the processXj exactly and only observe
it for a finite number of values of t and possibly with error, then we could
proceed with the minimization of (2.2) but with Xj replaced by an estimate
of Xj . Ramsay and Silverman [23] follow this approach, using a least-squares
estimate of Xj with a flexible basis of Bspline functions. Crambes et al. [7] take
a slightly different approach. They consider the case with Xj observed without
error at t1, . . . , tn where tk − tk−1 = 1/n. They use Rieman sums, finding µ̂ to
minimize

∑

j

[

Yj − Ȳ − 1

n

∑

k

[

Xj(tk)− X̄(tk)− µ(tk)
]

]2

+ λP (µ)

with respect to µ.

2.6. Support vector machines

Support vector machines are a classification tool, with classification rules built
from data Yi ∈ {−1, 1}, ti ∈ ℜp (see, for instance, Hastie et al. [11]). The goal
is to find a function µ for classifying: classify Yi as 1 if and only if µ(ti) > 0. We
see that Yi is misclassified by this rule if and only if Yiµ(ti) is negative. Thus,
it is common to find µ to minimize −

∑

isign[Yiµ(ti)] subject to some penalty
for rough µ: that is, to find µ̂ to minimize

−
∑

i

sign[Yiµ(ti)] + λP (µ).

This can be made more general by minimizing
∑

j

H [Yiµ(tj)] + λP (µ)
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for a known non-increasing function H . The function H(x) = − sign(x) is
not continuous at 0, which can make minimization challenging. To avoid this
problem, Wahba [29] proposed using “softer” H functions, such as H(x) =
ln[1 + exp(−x)]. This function is not only continuous, but is differentiable and
convex. Wahba [29] showed that this H corresponds to a negative log likelihood.
Specifically, she showed that the log likelihood in (2.1) is equal to −∑ log{1 +
exp [−Yjµ(tj)]}.

2.7. Using different differential operators in the penalty

Ansley, Kohn, and Wong [3] and Heckman and Ramsay [12] demonstrated the
usefulness of appropriate choices of L in the penalty P (µ) =

∫

(Lµ)2. For in-
stance, Heckman and Ramsay compared two estimates of a regression function
for the incidence of melanoma in males. The data, described in Andrews and
Herzberg [1], are from the Connecticut Tumour Registry, for the years 1936 to
1972. The data show a roughly periodic trend superimposed on an increasing
trend. A cubic smoothing spline, the minimizer of (1.3), tracks the data fairly
well, but slightly dampens the periodic component. This dampening does not
occur with Heckman and Ramsay’s preferred estimate, the estimate that min-
imizes a modified version of (1.3) but with the penalty

∫

[µ′′(t)]2 dt replaced
by the penalty

∫

[µ(4)(t) + ω2µ′′(t)]2 dt with ω = 0.58. The differential oper-
ator L=D4 + ω2D2 was chosen since it places no penalty on functions of the
form µ(t) = α1 + α2t + α3 cosωt + α4 sinωt: such functions are exactly the
functions satisfying Lµ ≡ 0 and form a popular parametric model for fitting
melanoma data. The value of ω was chosen by a nonlinear least squares fit to
this parametric model.

The use of appropriate differential operators in the penalty has been fur-
ther developed in the field of Dynamic Analysis. See, for instance, Ramsay et
al. [22]. These authors use differential operators equal to those used by subject
area researchers, who typically work in the finite dimensional space defined by
solutions of Lµ ≡ 0.

3. Results for the general minimization problem

This section contains some background on Reproducing Kernel Hilbert Spaces
and shows how to use Reproducing Kernel Hilbert Space structure to reduce the
minimization of (1.1) to minimization over a finite-dimensional function space
(see Theorem 3.1). Whether or not the minimizer exists can be determined
by studying the finite-dimensional version. While a complete review of Hilbert
spaces is beyond the scope of this article, a few definitions may help the reader.
Further background on Hilbert spaces can be found in any standard functional
analysis textbook, such as Kolmogorov and Fomin [17] or Kreyszig [18]. For a
condensed exposition of the necessary Hilbert space theory, see, for instance,
Wahba [30, 31] or the appendix of Thompson and Tapia [27]. We will only
consider Hilbert spaces over ℜ.
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Consider H, a collection of functions from T ⊆ ℜp to ℜ. Suppose that H is
a vector space over ℜ with inner product < ·, · >. The inner product induces a
norm on H, namely ||f || = [< f, f >]1/2. The existence of a norm allows us to
define limits of sequences in H and continuity of functions with arguments in
H. The vector space H is a Hilbert space if it is complete with respect to this
norm, that is, if any Cauchy sequence in H converges to an element of H.

A linear functional F is a function from a Hilbert space H to the reals satis-
fying F (αf + βg) = αF (f) + βF (g) for all α, β ∈ ℜ and all f, g ∈ H. The Riesz
Representation Theorem states that a linear functional F is continuous on H
if and only if there exists η ∈ H such that < η, f >= F (f) for all f ∈ H. The
function η is called the representer of F .

The Hilbert space H is a Reproducing Kernel Hilbert Space if and only if,
for all t ∈ T , the linear functional Ft(f) ≡ f(t) is continuous, that is, if and
only if, for all t ∈ T , there exists Rt ∈ H such that < Rt, f >= f(t) for all
f ∈ H. Noting that the collection of Rt’s, t ∈ T , defines a bivariate function R,
namely R(s, t) ≡ Rt(s), we see that H is a Reproducing Kernel Hilbert Space
if and only if there exists a bivariate function R defined on T × T such that
< R(·, t), f >= f(t) for all f ∈ H and all t ∈ T . The function R is called the
reproducing kernel of H.

One can show that the reproducing kernel is symmetric in its arguments, as
follows. To aid the proof, use the notation that Rt(s) = R(s, t) and Rs(t) =
R(t, s). By the reproducing properties of Rt and Rs, < Rt, Rs >= Rs(t) and
< Rs, Rt >= Rt(s). But the inner product is symmetric, that is < Rt, Rs >=<
Rs, Rt >. So Rs(t) = Rt(s).

To give the form of the finite-dimensional minimizer of (1.1), we assume that
the following conditions hold.

(C.1) There are H0 and H1, linear subspaces of H, with H1 the orthogonal
complement of H0.

(C.2) H0 is of dimension m < ∞, with basis u1, . . . , um. If m = 0, take H0 equal
to the empty set and H1 = H.

(C.3) There exists R0 ∈ H0 and R1 ∈ H1 such that Ri is a reproducing kernel
for Hi, in the sense that < Ri(·, t), µ >= µ(t) for all µ ∈ Hi, i = 0, 1.

Since H0 is finite dimensional, it is closed. The orthogonal complement of a
subspace is always closed. Thus Condition (C.1) implies that any µ ∈ H can be
written as µ = µ0 + µ1 for some µ0 ∈ H0 and µ1 ∈ H1 and that < µ0, µ1 >= 0.
This is often written as H = H0 ⊕ H1. Note that Conditions (C.1), (C.2) and
(C.3) imply that R ≡ R0 +R1 is a reproducing kernel for H.

We require one more condition, relating the penalty P to the partition of H.

(C.4) Write µ = µ0 + µ1, with µi ∈ Hi. Then P (µ) =< µ1, µ1 >.

Theorem 3.1. Suppose that conditions (C.1) through (C.4) hold and that
F1, . . . , Fn are continuous linear functionals on H. Let ηj1(t) = Fj(R1(·, t)),
that is, Fj applied to the function R1 considered as a function of s, with t fixed.
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Then to minimize (1.1), it is necessary and sufficient to find

µ(t) ≡ µ0(t) + µ11(t) ≡
m
∑

1

α̂juj(t) +

n
∑

1

β̂jηj1(t)

where the α̂j’s and β̂j’s minimize

G(t1, . . . , tn, Y1, . . . , Yn, F1(µ0 + µ11), . . . , Fn(µ0 + µ11)) + λβ′Kβ.

Here β = (β1, . . . , βn)
′ and the matrix K is symmetric and non-negative definite,

with K[j, k] = Fj(ηk1). If Fj(f) = f(tj) and Fk(f) = f(tk), then η1j(t) =
R1(tj , t), η1k(t) = R1(tk, t) and K[j, k] = R1(tj , tk).

Proof. By the Riesz Representation Theorem, there exists a representer ηj ∈ H
such that < ηj , µ >= Fj(µ) for all µ ∈ H. Applying the Riesz Representation
Theorem to the subspacesH0 and H1, which can be considered as Hilbert spaces
in their own rights, there exists ηj0 ∈ H0 and η∗j1 ∈ H1, representers of Fj in
the sense that < ηj0, µ >= Fj(µ) for all µ ∈ H0 and < η∗j1, µ >= Fj(µ) for
all µ ∈ H1. One easily shows that this η∗j1 is equal to ηj1, as defined in the
statement of the Theorem: by the definition of the representer of Fj , η

∗
j1 must

satisfy Fj(R1(·, t)) =< η∗j1, R1(·, t) >. But, by the reproducing quality of R1,
< η∗j1, R1(·, t) >= η∗j1(t). So η∗j1 = ηj1. One also easily shows that

ηj = ηj0 + ηj1.

We use the ηj1’s to partition H1 as follows. Let H11 be the finite dimensional
subspace of H1 spanned by ηj1, j = 1, . . . , n, and let H12 be the orthogonal
complement of H11 in H1. Then H = H0 ⊕H11 ⊕H12 and so any µ ∈ H can be
written as

µ = µ0 + µ11 + µ12 with µ0 ∈ H0 and µ1k ∈ H1k, k = 1, 2.

We now show that any minimizer of (1.1) must have µ12 ≡ 0. Let µ be any
element of H. Since ηj is the representer of Fj and µ12 is orthogonal to ηj ,

Fj(µ) =< ηj , µ >=< ηj , µ0 + µ11 + µ12 >=< ηj , µ0 + µ11 >= Fj(µ0 + µ11).

Therefore, µ12 is irrelevant in computing the first term in (1.1). To study the
second term in (1.1), by (C.4) and the orthogonality of µ11 and µ12,

P (µ) =< µ1, µ1 >=< µ11, µ11 > + < µ12, µ12 > .

Therefore, we want to find µ̂0 ∈ H0, µ̂11 ∈ H11 and µ̂12 ∈ H12 to minimize

G(t1, . . . , tn, Y1, . . . , Yn, F1(µ0 + µ11), . . . , Fn(µ0 + µ11))

+ λ [< µ11, µ11 > + < µ12, µ12 >] .
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Clearly, we should take µ̂12 to be the zero function and so any minimizer of
(1.1) is of the form

µ(t) = µ0(t) + µ11(t)

=

m
∑

1

αjuj(t) +

n
∑

1

βjηj1(t).

Now consider rewriting P (µ) as β′Kβ: P (µ) =< µ11, µ11 >=
∑

j,k βjβk <

ηj1, ηk1 >≡ β′K∗β for K∗ symmetric and non-negative definite. To show that
K∗[j, k] = Fj(ηk1), use the fact that ηj1 is the representer of Fj in H1, that
is, that < ηj1, f >= Fj(f) for all f ∈ H1. Applying this to f = ηk1 yields the
desired result, that < ηj1, ηk1 >= Fj(ηk1).

Consider the case that Fj(f) = f(tj) and Fk(f) = f(tk). Then η1j(t) =
Fj(R1(·, t)) = R1(tj , t), η1k(t) = R1(tk, t), and K[j, k] = Fj(ηk1) = R1(tk, tj) =
R1(tj , tk) by symmetry of R1.

The proof of the following Corollary is immediate, by taking m = 0 in (C.2).

Corollary 3.1. Suppose that H is an RKHS with inner product < ·, · > and
reproducing kernel R. In (1.1), suppose that P (µ) =< µ, µ > and assume that
the Fj’s are continuous linear functionals. Then the minimizer of (1.1) is of the
form

µ(t) =

n
∑

1

βjFj(R1(·, t)).

4. A Bayesian connection

Sometimes, the minimizer of (1.1) is related to a Bayes estimate of µ. In the
Bayes formulation, Yj = µ(tj)+ǫj where the ǫj ’s are independent normal random
variables with zero means and variances equal to σ2. The function µ is the
realization of a stochastic process and is independent of the ǫj’s.

The connection between µ̂, the minimizer of
∑

[Yj − µ(tj)]
2 + λ

∫

(Lµ)2, and
a Bayes estimate of µ was first given by Kimeldorf and Wahba [15] for the case
that Lµ = µ(m). The result was generalized to L’s as in (1.2) by Kohn and
Ansley [16]. The function µ is defined on ℜ and is generated by the stochastic
differential equation Lµ(t) dt = σ

√
λ dW (t) where W is a mean zero Wiener

process on [a, b] with var(W (t)) = t. Assume that µ satisfies the initial condi-
tions: µ(a), µ′(a), . . . , µ(m−1)(a) are independent normal random variables with
zero means and variances equal to k. Let µ̂k(t) be the posterior mean of µ(t)
given Y1, . . . , Yn. Then Kimeldorf and Wahba [15] and Kohn and Ansley [16]
show that µ̂(t) = limk→∞ µ̂k(t).

Another Bayes connection arises in Gaussian process regression, a tool of
machine learning (see, for instance, Rasmussen and Williams [24]). Consider µ
defined on A ⊆ ℜp, with µ the realization of a mean zero stochastic process
with covariance function S. Let µ̂B be the pointwise Bayes estimate of µ:

µ̂B(t) = E(µ(t)|Y1, . . . , Yn) = S(t, t)
[

σ2I + S(t, t)
]−1

Y
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where S(t, t)′ is an n-vector with jth entry S(t, tj), S(t, t) is the n× n matrix
with jkth entry S(tj , tk) and Y = (Y1, . . . , Yn)

′. Then, as shown below, for an
appropriately defined Reproducing Kernel Hilbert Space HS with reproducing
kernel S, the Bayes estimate of µ is equal to

arg min
µ∈HS

n
∑

j=1

[Yj − µ(tj)]
2 + σ2 < µ, µ > . (4.1)

The existence of the space HS with reproducing kernel S is given by the Moore-
Aronszajn Theorem (Aronszajn [4]). The space is defined by constructing finite-
dimensional spaces: fix J > 0 and t1, . . . , tJ ∈ A and consider the finite dimen-
sional linear space of functions, H{t1,...,tJ}, consisting of all linear combinations
of S(t1, ·), S(t2, ·), . . . , S(tJ , ·). Let H∗ be the union of these H{t1,...,tJ}’s over all
J and all values of t1, . . . , tJ . Let <,> be the inner product on H∗ generated
by < S(tj , ·), S(tk, ·) >= S(tj , tk), that is, <

∑

j ajS(tj , ·),
∑

k bkS(xk, ·) >=
∑

j,k ajbkS(tj, xk). Let HS be the completion of H∗ under the norm associated
with this inner product. Then HS is a Reproducing Kernel Hilbert Space with
reproducing kernel S. So, by Theorem 3.1, the solution to (4.1) is of the form
µ(t) =

∑n
l=1 βlS(tl, t) = S(t, t)β, with the βj ’s chosen to minimize

n
∑

j=1

[

Yj−
n
∑

l=1

βlS(tl, tj)

]2

+σ2
n
∑

l,k=1

βlβkS(tl, tk) = ||Y−S(t, t)β||2+σ2β′S(t, t)β

where β = (β1, . . . , βn)
′. The minimizing β is β̂ =

[

σ2I + S(t, t)
]−1

Y, and so
the solution to (4.1) is equal to µ̂B.

5. Results for the cubic smoothing spline

Here, we minimize (1.3) using Theorem 3.1. The expressions for the reproducing
kernels R0 and R1 are provided. The next section contains an algorithm for
computing R0 and R1 for general L.

The first step to minimize (1.3) over µ ∈ H2[a, b] is to define the inner product
on H2[a, b]:

< f, g >= f(a)g(a) + f ′(a)g′(a) +

∫ b

a

f ′′(t) g′′(t) dt.

Verifying that this is an inner product is straightforward, including showing that
< f, f >= 0 if and only if f ≡ 0. The proof that H2[a, b] is complete under this
inner product uses the completeness of L2[a, b].

For (C.1) and (C.2) of Section 3, we partition H2[a, b] into H0 and H1:

H0 = {f : f ′′(t) ≡ 0} = the span of {1, t}

and
H1 = {f ∈ H2[a, b] : f(a) = f ′(a) = 0}.
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H1 is the orthogonal complement of H0 and so H2[a, b] = H0 ⊕ H1. (This is
shown in Theorem 6.1 for Hm[a, b].)

For (C.3) let
R0(s, t) = 1 + (s− a)(t− a)

and

R1(s, t) = st (min{s, t} − a)+
s+ t

2

[

(min{s, t})2 − a2
]

+
1

3

[

(min{s, t})3 − a3
]

.

Then direct calculations verify that R0 and R1 are the reproducing kernels of,
respectively, H0 and H1, that is, that Ri ∈ Hi and that < Ri(·, t), f >= f(t)
for all f ∈ Hi, i = 0, 1.

To verify that condition (C.4) is satisfied, write µ = µ0 + µ1, with µi ∈ Hi,
i = 0, 1. Then P (µ) =

∫

(µ′′)2 =
∫

(µ′′
1 )

2 =< µ1, µ1 >.
We can show that Fj(µ) = µ(tj) is a continuous linear functional, either by

using the definition of the inner product to verify continuity of Fj or by noting
that R = R0 +R1 is the reproducing kernel of H2[a, b]. Thus, by Theorem 3.1,
to minimize (1.3) we can restrict attention to

µ(t) = α0 + α1t+

n
∑

1

βjR1(tj , t)

and find α̂0, α̂1 and β̂≡ (β̂1, . . . , β̂n)
′ to minimize

∑

j

[Yj − α0 − α1tj −
∑

k

βkR1(tj , tk)]
2 + β′Kβ

where K[j, k] = R1(tj , tk). In matrix/vector form, we seek β̂ and α̂ = (α̂0, α̂1)
′

to minimize
||Y − Tα−Kβ||2 + λβ′Kβ (5.1)

with Y = (Y1, . . . , Yn)
′, Ti1 = 1 and Ti2 = ti, i = 1, . . . , n. One can minimize

(5.1) directly, using matrix calculus.
Unfortunately, solving the matrix equations resulting from the differentiation

of (5.1) involves inverting matrices which are ill-conditioned and large. Thus,
the calculations are subject to round-off errors that seriously affect the accuracy
of the solution. In addition, the matrices to be inverted are not sparse, so that
O(n3) operations are required. This can be a formidable task for, say, n =
1000. The problem is due to the fact that the bases functions 1, t, and R1(tj , ·)
are almost dependent with supports equal to the entire interval [a, b]. There
are two ways around this problem. One way is to replace this inconvenient
basis with a more stable one, one in which the elements have close to non-
overlapping support. The most popular stable basis for this problem is that made
up of cubic B-splines (see, e.g., Eubank [8]). The ith B-spline basis function has
support [ti; ti+2] and thus the matrices involved in the minimization of (1.3) are
banded, well-conditioned, and fast to invert. Another approach is that of Reinsch
([25, 26]). The Reinsch algorithm yields a minimizer in O(n) calculations. The
approach for the Reinsch algorithm is based on a paper of Anselone and Laurent
[2]. Section 6.4 gives this technique for minimization of expressions like (5.1).
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6. Results for penalties with differential operators

Now consider the problem of minimizing (1.1) with penalty P based on a dif-
ferential operator L, as in (1.2), that is, of minimizing

G(t1, . . . , tn, Y1, . . . , Yn, F1(µ), . . . , Fn(µ)) + λ

∫

(Lµ)2. (6.1)

We minimize over µ ∈ Hm[a, b] where

Hm[a, b] = {f : [a; b] → ℜ : µ(j); j = 0; . . . ,m− 1 are absolutely continuous

and

∫ b

a

[µ(m)(t)]2 dt < ∞}.

Note that, for all µ ∈ Hm[a, b],
∫ b

a [(Lµ)(t)]
2 dt is well defined: Lµ(t) exists

almost everywhere t and Lµ is square integrable, since the ωj ’s are continuous
and [a, b] is finite.

We can apply Theorem 3.1 using the Reproducing Kernel Hilbert Space struc-
ture for Hm[a, b] defined in Section 6.1 below. We can then explicitly calculate
the form of µ̂ provided we can calculate reproducing kernels. Theorem 6.1 states
a method for explicitly calculating reproducing kernels. Section 6.2 summarizes
the algorithm for calculating reproducing kernels and the form of the minimizing
µ, and contains three examples of calculations. Theorem 6.1 and the calculations
of Section 6.2 require results from the theory of differential equations. The Ap-
pendix contains these results, including a constructive proof of the existence of
G(·, ·), the Green’s function associated with the differential operator L. Section
6.4 contains a fast algorithm for minimizing (6.1) when G is a sum of squares
and Fj(f) = f(tj).

6.1. The form of the minimizer of (6.1)

Giving the form of the minimizing µ uses the result of Theorem A.1 in the
Appendix, that there exist linearly independent u1, . . . , um ∈ Hm[a, b] with m
derivatives and that these functions form a basis for the set of all µ with Lµ(t) =
0 almost everywhere t. FurthermoreW (t), the Wronskian matrix associated with
u1, . . . , um, is invertible for all t ∈ [a, b]. The Wronskian matrix is defined as

[W (t)]ij = u
(j−1)
i (t), i, j = 1, . . . ,m.

The following is an inner product under which Hm[a, b] is a Reproducing
Kernel Hilbert Space:

< f, g >=

m−1
∑

j=0

f (j)(a)g(j)(a) +

∫ b

a

(Lf)(t) (Lg)(t) dt. (6.2)

To show that this is, indeed, an inner product is straightforward, except to
show that < f, f >= 0 implies that f ≡ 0. But this follows immediately from
Theorem A.4 in the Appendix.
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Theorem 6.1. Let L be as in (1.2), let {u1, . . . , um} be a basis for the set of
µ with Lµ ≡ 0 and let W (t) be the associated Wronskian matrix. Then, under
the inner product (6.2), Hm[a, b] is a Reproducing Kernel Hilbert Space with
reproducing kernel R(s, t) = R0(s, t) +R1(s, t) where

R0(s, t) =

m
∑

i,j=1

Cijui(s)uj(t)

with
Cij =

[

(W (a)W ′(a))−1
]

ij
,

R1(s, t) =

∫ b

u=a

G(s, u) G(t, u) du

and G(·, ·) is the Green’s function associated with L, as given in equations (A.1),
(A.2) and (A.3) in the Appendix. Furthermore, Hm[a, b] can be partitioned into
the direct sum of the two subspaces

H0 = the set of all f ∈ Hm[a, b] with Lf(t) = 0 almost everywhere t

= the span of u1, . . . , um

and

H1 = the set of all f ∈ Hm[a, b] with f (j)(a) = 0, j = 0, . . .m− 1.

H1 is the orthogonal complement of H0. H0 has reproducing kernel R0 and H1

has reproducing kernel R1.

Proof. To prove the Theorem, it suffices to show the following.

(a) Any f in Hm[a, b] can be written as f = f0 + f1, with fi ∈ Hi and
< f0, f1 >= 0.

(b) R0 is the reproducing kernel for H0 and R1 is the reproducing kernel for
H1.

Consider (a). Obviously, for fi ∈ Hi, i = 0, 1, < f0, f1 > is equal to zero,
by the definition of the inner product in (6.2). To complete the proof of (a), fix
f ∈ Hm[a, b] and find c1, . . . , cm such that, if f0 =

∑

ciui, then f1 = f−f0 ∈ H1.

That is, we find c1, . . . , cm such that, for j = 0, . . . ,m − 1, f
(j)
1 (a) = 0, that

is f (j)(a) −∑i ciu
(j)
i (a) = 0. Writing this in matrix notation and using the

Wronskian matrix yields

(f(a), f ′(a), . . . , f (m−1)(a)) = (c1, . . . , cm)W (a)

and we can solve this for (c1, . . . , cm), since the Wronskian W (a) is invertible.
Consider (b). To prove that R1 is the reproducing kernel for H1, first simplify

notation, fixing t ∈ [a, b] and letting r(s) = R1(s, t). We must show that r ∈ H1

and that that < r, f >= f(t) for all f ∈ H1. Again, to simplify notation, let
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h(u) = G(t, u). By definition of R1, r(s) =
∫ b

a
G(s, u) h(u) du. By Theorems A.5

and A.6, r ∈ H1 and Lr(s) = h(s) = G(t, s) almost everywhere s. Therefore, for
f ∈ H1,

< r, f >= 0 +

∫ b

a

(Lr)(s) (Lf)(s) ds =

∫ b

a

G(t, s) (Lf)(s) ds = f(t)

by the definition of the Green’s function. See equation (A.1).
Now consider R0. Obviously, R0(·, t) ∈ H0, since it is a linear combination of

the ui’s. To show that < R0(·, t), f >= f(t), it suffices to consider f = ul, l =
1, . . . ,m. Noting that Lul ≡ 0, write

< R0(·, t), ul > =

m
∑

i,j=1

Cij uj(t) < ui, ul >

=

m
∑

i,j=1

Cij uj(t)

[

m−1
∑

k=0

u
(k)
i (a)u

(k)
l (a) + 0

]

=
m
∑

i,j=1

Cij uj(t)
m−1
∑

k=0

[W (a)]i,k+1[W (a)]l,k+1

=
m
∑

i,j=1

Cij uj(t)[W (a)W ′(a)]li

=

m
∑

j=1

uj(t)[W (a)W ′(a)C]lj

= ul(t).

We can now use Theorems 3.1 and 6.1 to write the form of the minimizer of
(6.1). The proof of the following Theorem is straightforward.

Theorem 6.2. Suppose that L is as in (1.2). Let u1, . . . , um be a basis for the
set of µ’s with Lµ ≡ 0 and let G be the corresponding Green’s function, defined
in equations (A.1), (A.2) and (A.3) in the Appendix. Let

R1(s, t) =

∫ b

a

G(s, u) G(t, u) du

and ηj1(t) = Fj(R1(·, t)). Then the minimizer of (6.1) must be of the form

µ(t) =

m
∑

j=1

αjuj(t) +

n
∑

j=1

βjηj1(t)

where the αj’s and β ≡ (β1, . . . , βn)
′ minimize

G(t1, . . . , tn, Y1, . . . , Yn, F1(µ), . . . , Fn(µ)) + λβ′Kβ

with K as defined in Theorem 3.1.
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6.2. Algorithm and examples for calculating R0, R1 and the
minimizing µ

Suppose that we’re given a linear differential operator L as in (1.2). The following
steps summarize results so far, describing how to calculate R0 and R1, the
required reproducing kernels associated with L, and the µ̂ that minimizes (6.1).

1. Find u1, . . . , um, a basis for the set of functions µ with Lµ ≡ 0.

2. Calculate W (·), the Wronskian of the ui’s: Wij(t) = u
(j−1)
i (t).

3. Set R0(s, t) =
∑

i,j [[W (a)W ′(a)]−1]ijui(s)uj(t).
4. Calculate (u∗

1(t), . . . , u
∗
m(t)), the last row of the inverse of W (t).

5. Find G, the associated Green’s function: G(t, u) =
∑

ui(t)u
∗
i (u) for u ≤ t,

0 else.
6. Set R1(s, t) =

∫ b

a
G(s, u) G(t, u) du.

7. Find η1j : η1j(t) = Fj(R1(·, t)).
8. Calculate the symmetric matrix K: K[j, k] = Fk(η1j). If Fj(µ) = µ(tj)

and Fk(µ) = µ(tk) then K[j, k] = R1(tj , tk).
9. Set µ(t) =

∑

αjuj(t) +
∑

j βjη1j(t) and minimize G(t1, . . . , tn, Y1, . . . , Yn,

F1(µ), . . . , Fn(µ)) + λβ′Kβ with respect to β and the αj ’s.

The first step is the most challenging, and for some L’s, it may in fact be
impossible to find the uj ’s in closed form. However, if L is a linear differential op-
erator with constant coefficients, then the first step is easy, using Theorem A.2.
Alternatively, if one has an approximate model in mind defined in terms of
known functions u1, . . . , um, then one can find the corresponding L (see Exam-
ple 3 below).

The reader can use these steps to derive the expressions in Section 5 for the
cubic smoothing spline.

Although the calculation of the minimizing µ does not involve R0, step 3
is included for completeness, to allow the reader to calculate the reproducing
kernel, R0 +R1, for Hm[a, b] under the inner product (6.2).

Example 1. Suppose that Lµ = µ′ and that the interval [a, b] is equal to [0, 1].
In Step 1, the basis for Lµ ≡ 0 is u1(t) = 1. In Step 2, the Wronskian is the one
by one matrix with element equal to 1. So in Step 3, R0(s, t) ≡ 1. In Step 4,
u∗
1(s) = 1 and so, in Step 5, G(t, u) = 1 if u ≤ t, 0 else. Therefore

R1(s, t) =

∫ min{s,t}

0

1 du = min{s, t}.

Thus, we seek µ of the form

µ(t) = α+

n
∑

j=1

βjFj(R1(·, t)).

If Fj(µ) = µ(tj), j = 1, . . . , n, then we seek

µ(t) = α+

n
∑

j=1

βj min{tj, t},
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that is, the minimizing µ is piecewise linear with pieces defined in terms of
t1, . . . , tn. In Step 8, K[j, k] = min{tj , tk}.

If, instead, Fj(µ) =
∫ 1

0 fjµ for known fj , as in Section 2.4, then

Fj(R1(·, t)) = η1j(t) =

∫ 1

0

fj(s) R1(s, t) ds =

∫ 1

0

fj(s) min{s, t} ds

=

∫ t

0

s fj(s) ds+ t

∫ 1

t

fj(s) ds

and, in Step 8,

K[j, k] =

∫ 1

t=0

fk(t) η1j(t) dt =

∫ 1

s,t=0

fk(t) fj(s) min{s, t} ds dt.

Example 2. Suppose that Lf = f ′′ + γf ′, γ a real number.

For Step 1, we can find u1 and u2 via Theorem A.2 in the Appendix. We first
solve x2 + γx = 0 for the two roots, r1 = 0 and r2 = −γ. So

u1(t) = 1 and u2(t) = exp(−γt).

For Step 2, we compute the Wronskian

W (t) =

[

1 0
exp(−γt) −γ exp(−γt)

]

.

For Step 3 we have

[W (a)W ′(a)]−1 =

[

1 + 1
γ2 − 1

γ2 exp(γa)

− 1
γ2 exp(γa)

1
γ2 exp(2γa)

]

.

So

R0(s, t) = C11u1(s)u1(t) + C12u1(s)u2(t) + C21u2(s)u1(t) + C22u2(s)u2(t)

= 1 +
1

γ2
− 1

γ2
exp(−γt∗)− 1

γ2
exp(−γs∗) +

1

γ2
exp(−γ(s∗ + t∗)).

with s∗ = s− a and t∗ = t− a.

For Step 4, inverting W (t) we find that

u∗
1(t) =

1

γ
and u∗

2(t) = − 1

γ
exp(γt)

and so, in Step 5, the Green’s function is given by

G(t, u) =

{

1
γ (1− exp(−γ(t− u))) for u ≤ t

0 else.
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To find R1(s, t) in Step 6, first suppose that s ≤ t. Then

R1(s, t) =

∫ s

a

γ−2(1 − e−γ(s−u)) (1− e−γ(t−u)) du

= − 1

γ3
+

s∗

γ2
+

1

γ3
exp(−γs∗) +

1

γ3
exp(−γt∗)

− 1

2γ3
exp[−γ(t∗ − s∗)]− 1

2γ3
exp[−γ(s∗ + t∗)]. (6.3)

Since R1(s, t) = R1(t, s), if t < s, then R1(s, t) is gotten by interchanging s∗

and t∗ in the above.
Therefore, to minimize (6.1) over µ ∈ H4[a, b], we seek µ of the form

µ(t) = α1 + α2 exp(−γt) +
n
∑

1

βjFj(R1(·, t).

The calculations in Steps 7 and 8 for ηj1(t) = Fj(R1(·, t)) and K are tedious
except in the case that Fj(f) = f(tj).

Example 3. Instead of specifying the operator L, one might more easily specify
basis functions u1, . . . , um for a preferred approximate parametric model. For
instance, one might think that µ is approximately a constant plus a damped
sinusoid: µ(t) ≈ α1 + α2 sin(t) exp(−t). Given u1, . . . , um, one can easily find
the operator L so that Lui ≡ 0, i = 1, . . . ,m, and thus one can define an
estimate of µ as the minimizer of (6.1). Assume that each ui has m continuous
derivatives and that the associated Wronskian matrix W (t) is invertible for all
t ∈ [a, b]. To find L, we solve for the ωj ’s in (1.2):

0 = (Lui)(t) = u
(m)
i (t) +

m−1
∑

j=0

ωj(t)u
(j)
i (t),

that is

u
(m)
i (t) = −

m−1
∑

j=0

ωj(t)u
(j)
i (t).

This can be written in matrix/vector form as

W (t)







ω0(t)
...

ωm−1(t)






= −









u
(m)
1 (t)
...

u
(m)
m (t)









yielding






ω0(t)
...

ωm−1(t)






= −W (t)−1









u
(m)
1 (t)
...

u
(m)
m (t)









.
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Obviously, the ωj ’s are continuous, by our assumptions concerning the ui’s and
the invertibility of W (t).

For the example with u1 ≡ 1 and u2 = sin(t) exp(−t), we find that

W (t) =

[

1 0
sin(t) exp(−t) exp(−t)[cos(t)− sin(t)]

]

,

which is invertible on [a, b] provided cos(t) 6= sin(t) for t ∈ [a, b]. In this case,
ω0(t) ≡ 0, ω1(t) = 2 cos(t)/[cos(t) − sin(t)] and so the associated differential
operator is L(µ)(t) = µ′′(t) + 2µ′(t) cos(t)/[cos(t)− sin(t)]. Note that we do not
need L to proceed with the minimization of (6.1) – we only need u1, . . . , um to
calculate the required reproducing kernels. However, if we would like to cast the
problem in the Bayesian model of Section 4, we require L.

6.3. Minimization of the penalized weighted sum of squares via
matrix calculus

Consider minimizing a specific form of (6.1) over µ ∈ Hm[a, b], namely minimiz-
ing

∑

j

dj [Yj − Fj(µ)]
2 + λ

∫

(Lu)2 (6.4)

for known and positive dj ’s. We can rewrite this as a minimization problem easily
solved by matrix/vector calculations, provided we can find a basis {u1, . . . , um}
for the set of µ with Lµ = 0.

Theorem 6.2 implies that, to minimize (6.4), we must find α̂ = (α̂1, . . . , α̂m)′

and β̂ = (β̂1, . . . , β̂n)
′ to minimize

(Y − Tα−Kβ)′D(Y − Tα−Kβ) + λβ′Kβ

where Y = (Y1, . . . , Yn)
′, T is n × m with T [i, j] = uj(ti), K is n × n with

K[j, k] = Fj(ηk1), and D is an n by n diagonal matrix with D[i, i] = di. As-
sume, as is typically the case, that T is of full rank and K is invertible. Taking
derivatives with respect to α and β and setting equal to zero yields

T ′D(Y −Kβ̂) = T ′DT α̂. (6.5)

and
−2K ′D(Y − T α̂−Kβ̂) + 2λKβ̂ = 0

which is equivalent to

Y − T α̂− (K + λD−1)β̂ = 0.

Let
M = K + λD−1.

Then
β̂ = M−1(Y − T α̂). (6.6)
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Substituting this into (6.5) yields

T ′D[I −KM−1]Y = T ′D[I −KM−1]T α̂,

that is

T ′D[M −K]M−1Y = T ′D[M −K]M−1T α̂

or λT ′M−1Y = λT ′M−1T α̂.
Therefore, provided T is of full rank,

α̂ = (T ′M
−1

T )−1T ′M
−1

Y (6.7)

and

β̂ = M−1[I− T (T ′M
−1

T )−1T ′M
−1

]Y. (6.8)

Unfortunately, using equations (6.7) and (6.8) results in computational prob-
lems since typically M is an ill-conditioned matrix and thus difficult to invert.
Furthermore, M is n× n and n is typically large, making inversion expensive.
Fortunately, when Fj(f) = f(tj) we can transform the problem to alleviate the
difficulties and to speed computation. The details are given in the next section.

6.4. Algorithm for minimizing the penalized weighted sum of
squares when Fj(f) = f(tj)

Assume that Fj(f) = f(tj), that a < t1 < · · · < tn < b, that T is of full rank

n − m and that K is invertible. The goal is to re-write α̂ in (6.7) and β̂ in
(6.8) so that we only need to invert small or banded matrices. Meeting this goal
involves defining a “good” matrix Q and showing that

β̂ = Q(Q′MQ)−1Q′Y (6.9)

and

α̂ = (T ′T )−1T ′(Y −Mβ̂). (6.10)

We will define Q so that Q′MQ is banded and thus easy to invert. To begin,
let Q be an n by n−m matrix of full column rank such that Q′T is an n−m by
m matrix of zeroes. Q isn’t unique, but later, further restrictions will be placed
on Q so that Q′MQ is banded.

We first show that T ′β̂ = 0. This will imply that there exists an n−m vector
γ such that β̂ = Qγ. From (6.6)

Y = M β̂ + T α̂ (6.11)

Substituting this into (6.7) yields

α̂ = (T ′M
−1

T )−1T ′β̂ + α̂.
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Therefore
(T ′M

−1
T )−1T ′β̂ = 0

and so T ′β̂ = 0 and β̂ = Qγ for some γ. To find γ, use (6.6):

Q′M β̂ = Q′(Y − T α̂) = Q′Y

since Q′T = 0. So Q′MQγ = Q′Y, yielding

γ = (Q′MQ)−1Q′Y.

Therefore equation (6.9) holds. Equation (6.10) follows immediately from equa-
tion (6.11).

We can also find an easy-to-compute form for Ŷ ≡ T α̂+Kβ̂ using (6.11):

Y = (K + λD−1)β̂ + T α̂ = Ŷ + λD−1β̂

and so
Ŷ = Y − λD−1β̂.

Note that we have not yet used the fact that Fj(f) = f(tj). In the special
case that Fj(f) = f(tj), we can choose Q so that Q′MQ is banded. Specifically,
in addition to requiring that Q′T = 0, we also seek Q with

Qij = 0 unless i = j, j + 1, . . . , j +m. (6.12)

So we want Q with [Q′T ]ij =
∑m

l=0 Qi+l,iuj(ti+l) = 0 for all j = 1, . . . ,m, i =
1, . . . , n−m. That is, for each i, we seek an (m+1)-vector qi ≡ (Qii, . . . , Qi+m,i)

′

satisfying q′
iTi = 0, where Ti is the (m+ 1) by m matrix with ljth entry equal

to uj(ti+l). This is easily done by a QR decomposition of Ti: the matrix Ti can
be written as Ti = Qi Ri for some Qi, an (m+1)× (m+1) orthonormal matrix,
and some Ri, (m + 1) × m with last row equal to 0. Take qi to be the last
column of Qi.

We now show thatQ′MQ is banded, specifically, that [Q′MQ]kl = 0 whenever

|k− l| > m. Write Q′MQ = Q′KQ+λQ′D
−1

Q. Since D is diagonal, one easily
shows that [QD−1Q]kl = 0 for |k − l| > m. To show that the same is true for
Q′KQ, write

K[i, j] = R1(ti, tj)

=

∫

G(ti, ω) G(tj , ω) dω

=
∑

r,s

ur(ti)us(tj)

∫ min{ti,tj}

a

u∗
r(ω) u

∗
s(ω) dω

≡
∑

r,s

ur(ti)us(tj) Fr,s(min{ti, tj}).

=
∑

r,s

TirTjs Fr,s(min{ti, tj}).
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Since Q′KQ is symmetric, it suffices to show that [Q′KQ]kl = 0 for k − l > m.
So fix k and l with k − l > m and write

[Q′KQ]kl =

n
∑

i,j=1

QikKijQjl =

m
∑

i,j=0

Qk+i,kKk+i,l+jQl+j,l

=
m
∑

i,j=0

m
∑

r,s=1

Qk+i,k Fr,s( min{tk+i, tl+j}) Tk+i,rTl+j,sQl+j,l

=
m
∑

j=0

m
∑

r,s=1

Fr,s(tl+j) Tl+j,sQl+j,l

m
∑

i=0

Qk+i,kTk+i,r .

The last equality follows since k > l + m and 0 ≤ i, j ≤ m imply that k +
i > l + j and so tl+j < tk+i. We immediately have that [Q′KQ]kl = 0, since
∑m

i=0 Qk+i,kTk+i,r = [Q′T ]kr = 0.

Thus minimizing (6.4) when Fj(f) = f(tj) is easily and quickly done through
the following steps.

1. Follow steps 1 through 8 of Section 6.2 to find u1, . . . , um, a basis for
Lµ = 0, the reproducing kernel R1 and the matrix K: K[i, j] = R1(ti, tj).

2. Calculate the matrix T : T [i, j] = uj(ti).
3. Find Q n by (n − m) of full column rank satisfying equation (6.12) and

Q′T = 0. One can find Q directly or by the method outlined below equa-
tion (6.12).

4. Find β̂ and α̂ using equations (6.9) and (6.10). Speed the matrix inversion
by using the fact that Q′MQ is banded.

Example 2 continued from Section 6.2. Suppose that we want to minimize

n
∑

j=1

dj(Yj − u(tj))
2 + λ

∫ 1

0

(µ′′(t) + γµ′(t))2 dt

over µ ∈ H2[0, 1]. For simplicity, assume that ti = i/(n+ 1). Using the calcula-
tions from Section 6.2, we set Ti1 = 1, Ti2 = exp(−γti), and K[i, j] = R1(ti, tj),
with R1 as in (6.3).

For Step 3, we find Q directly: we seek Q n by (n − 2) with Qij = 0 unless
i = j, j + 1, j + 2 and

0 = [Q′T ]ij = QiiTij +Qi,i+1Ti+1,j +Qi,i+2Ti+2,j .

Thus, for j = 1,

0 = Qii +Qi,i+1 +Qi,i+2

and, for j = 2,

0 = Qii exp(−γti) +Qi,i+1 exp(−γti+1) +Qi,i+2 exp(−γti+2).
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We take

Qii = 1− exp

(

− γ

n+ 1

)

Qi,i+1 = − exp

(

γ

n+ 1

)

+ exp

(

− γ

n+ 1

)

and

Qi,i+2 = exp

(

γ

n+ 1

)

− 1 :

Continuing with the fourth step to find α̂ and β̂ is straightforward.

Appendix A

The Appendix contains background on the solution of linear differential equa-
tions Lµ = 0 with L as in (1.2). Section A.2 contains results about G, the
Green’s function associated with L.

A.1. Differential equations

Details of results in this section can be found in Coddington [6]. The main
Theorem, stated without proof, follows.

Theorem A.1. Let L be as in (1.2). Then there exists u1, . . . , um a basis for the
the set of all µ with Lµ ≡ 0, with each ui real-valued and having m derivatives.
Furthermore, any such basis will have an invertible Wronskian matrix W (t) for
all t ∈ [a, b]. The Wronskian matrix is defined as

[W (t)]ij = u
(j−1)
i i, j = 1, . . . ,m.

The following Theorem, stated without proof, is useful for calculating the
basis functions in the case that the ωj ’s are constants.

Theorem A.2. Suppose that L is as in (1.2), with the ωj’s real numbers. De-

note the s distinct roots of the polynomial xm +
∑m−1

j=0 ωjx
j as r1, . . . , rs. Let

mi denote the multiplicity of root ri (so m =
∑s

1 mi). Then the following m
functions of t form a basis for the set of all µ with Lµ ≡ 0:

exp(rit), t exp(rit), . . . , t
mi−1 exp(rit) i = 1, . . . , s.

The following result, stated without proof, is useful for checking that a set of
functions does form a basis for the set of all µ with Lµ ≡ 0.

Theorem A.3. Suppose that u1, . . . , um have m derivatives on [a, b] and that
Lui ≡ 0. If W (t0) is invertible at some t0 ∈ [a, b], then the ui’s are linearly
independent, and thus a basis for the set of all µ with Lµ ≡ 0.

The following result was useful in defining the inner product in equation (6.2),
where t0 was taken to be a.
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Theorem A.4. Suppose that L is as in (1.2) and let t0 ∈ [a, b]. Then the only
function in Hm[a, b] that satisfies Lf = the zero function and f (j)(t0) = 0, j =
0, . . . ,m− 1, is the zero function.

Proof. By Theorem A.1, there exists u1, . . . , um a basis for the set of all µ with
Lµ ≡ 0, with W (t) invertible for all t ∈ [a, b]. Suppose Lf ≡ 0. Then f =

∑

i ciui

for some ci’s. We see that the conditions f (j)(t0) = 0, j = 0, . . . ,m− 1 can be
written in matrix/vector form as (c1, . . . , cm)W (t0) = (0, . . . , 0). Since W (t0) is
invertible, ci = 0, i = 1, . . . ,m.

A.2. The Green’s function associated with the differential
operator L

Suppose that L is as in (1.2). The definition below gives the definition of G(·, ·),
the Green’s function associated with L with specified boundary conditions. The-
orem A.5 gives an explicit form of G.

Definition. G is a Green’s function for L if and only if

f(t) =

∫ b

u=a

G(t, u) (Lf)(u) du (A.1)

for all functions f in Hm[a, b] satisfying the boundary conditions

f (j)(a) = 0, j = 0, . . . ,m− 1. (A.2)

Of course, it’s not immediately clear that such a function G exists. However,
G exists and is easily calculated using the Wronskian matrix associated with L
(see Theorem A.5). Recall from Theorem A.1 of Section A.1 that there exists
a basis for the set of all µ with Lµ ≡ 0, u1, . . . , um, with invertible Wronskian.
Furthermore, each ui has m derivatives.

Lemma A.1. Let u∗
1(t), . . . , u

∗
m(t) denote the entries in the last row of the

inverse of W (t). Then u∗
j is continuous, j = 1, . . . ,m.

Proof. The u∗
i ’s are continuous, since u∗

i = (detW (t))−1 times an expression

involving sums and products of u
(j)
l , l = 1, . . . ,m, j = 0, . . . ,m− 1, and the ul’s

have m− 1 continous derivatives.

Theorem A.5. Let u∗
1(t), . . . , u

∗
m(t) denote the entries in the last row of the

inverse of W (t). Then

G(t, u) =

{

∑m
i=1 ui(t)u

∗
i (u) for u ≤ t

0 otherwise
(A.3)

is a Green’s function for L and, for each fixed t ∈ [a, b], G(t, ·) is in L2[a, b].

The following theorem will be useful in the proof of Theorem A.5.



138 N. Heckman

Theorem A.6. Let G be as in (A.3) and suppose that h ∈ L2. If

r(t) =

∫ b

a

G(t, u) h(u) du

Then
r ∈ Hm[a, b], (A.4)

(Lr)(t) = h(t) almost everywhere t ∈ [a, b] (A.5)

and
r(j)(a) = 0 j = 0, . . . ,m− 1. (A.6)

Proof. Write

r(t) =
m
∑

i=1

ui(t)

∫ t

a

u∗
i (u) h(u) du

We’ll first show that

r(j)(t) =

m
∑

i=1

u
(j)
i (t)

∫ t

a

u∗
i (u) h(u) du j = 0, . . . ,m− 1 (A.7)

and

r(m)(t) = h(t) +
m
∑

i=1

u
(m)
i (t)

∫ t

a

u∗
i (u) h(u) du almost everywhere t ∈ [a, b].

(A.8)
These equations follow easily by induction on j. We only present the case j = 1.
Then

r′(t) =

m
∑

i=1

u′
i(t)

∫ t

a

u∗
i (u) h(u) du+

m
∑

i=1

ui(t)
d

dt

[
∫ t

a

u∗
i (u) h(u) du

]

.

Since u∗
i and h are in L2,

m
∑

i=1

ui(t)
d

dt

[
∫ t

a

u∗
i (u) h(u) du

]

=

m
∑

i=1

ui(t)u
∗
i (t)h(t)

almost everywhere t. But, by definition of W and the u∗
i ’s, this is equal to

h(t)
∑

i

[W (t)]i1[W (t)−1]mi = h(t) [W (t)−1W (t)]m1 = h(t) I{m = 1}.

Therefore, for m = 1, (A.8) holds and for m > 1 (A.7) holds when j = 1.
For m > 1 and j > 1, we can calculate derivatives of r up to order m − 1,
and can calculate the mth derivative almost everywhere to prove (A.7) and
(A.8). Clearly, the mth derivative in (A.8) is square-integrable. Therefore we’ve
proven (A.4).
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To prove (A.5), use (A.7) and (A.8) and write

(Lr)(t) = r(m)(t) +

m−1
∑

j=0

ωj(t)r
(j)(t)

= h(t) +
m
∑

i=1

u
(m)
i (t)

∫ t

a

u∗
i (u) h(u) du

+
m−1
∑

j=0

m
∑

i=1

ωj(t)u
(j)
i (t)

∫ t

a

u∗
i (u) h(u) du

= h(t) +
m
∑

i=1



u
(m)
i (t) +

m−1
∑

j=0

m
∑

i=1

ωj(t)u
(j)
i (t)





∫ t

a

u∗
i (u) h(u) du

= h(t) +
m
∑

i=1

(Lui)(t)

∫ t

a

u∗
i (u) h(u) du = h(t)

since Lui ≡ 0.
Equation (A.6) follows directly from (A.7) by taking t = a.

Proof of Theorem A.5. First consider the function in equation (A.3) as a func-
tion of u with t fixed. Since the ui’s are continuous and W (u) is invertible for all
u, G(t, ·) is continuous on the finite closed interval [a, b]. Thus it is in L2[a, b].

To show that equation (A.1) holds, let f ∈ Hm satisfy the boundary con-

ditions (A.2). Define r(t) =
∫ b

a
G(t, u) (Lf)(u) du. Then, by Theorem A.6, Lr

= Lf almost everywhere and r(j)(a) = 0, j = 0, . . . ,m − 1. Thus L(r − f) = 0
almost everywhere and (r − f)(j)(a) = 0, j = 0, . . . ,m − 1. By Theorem A.4,
r − f is the zero function, that is r = f .
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