
Statistical Science
2017, Vol. 32, No. 2, 265–278
DOI: 10.1214/16-STS605
© Institute of Mathematical Statistics, 2017

Fitting Regression Models to Survey Data
Thomas Lumley and Alastair Scott

Abstract. Data from complex surveys are being used increasingly to build
the same sort of explanatory and predictive models used in the rest of statis-
tics. Although the assumptions underlying standard statistical methods are
not even approximately valid for most survey data, analogues of most of the
features of standard regression packages are now available for use with sur-
vey data. We review recent developments in the field and illustrate their use
on data from NHANES.
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1. INTRODUCTION

The topic of regression modelling of data from com-
plex samples contains several quite different research
worlds. The largest of these worlds is secondary anal-
ysis of public-use data from large in-person or tele-
phone surveys, conducted by people who are experts
in the subject matter rather than in sampling. This
is also where implementations are most widely avail-
able and whether methodology is tidiest and most
complete, though sometimes at the cost of unreal-
istic assumptions about nonresponse. In this paper,
sampling-weighted regression analysis of large public-
use datasets will be the core theme, but we will also de-
scribe limitations of this approach and situations where
it is possible to do better.

As a concrete example, we will often refer to public-
use data from the National Health And Nutrition Ex-
amination Surveys (NHANES) conducted by the US
National Center for Health Statistics (National Cen-
ter for Health Statistics, 1994). These are a series of
large, multistage samples of the US civilian, noninsti-
tutionalised population, which involve clinical exam-
inations as well as detailed interviews. For practical
reasons, the surveys have highly stratified multistage
sampling with only a small number of city- or county-
level sampling units at the first stage. The public use
data do not contain all the variables used to design
the sample, and in fact present a simplified version of
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the design as a two-stage sample with stratification and
clustering only at the first stage. In this simplified ver-
sion of the design, there are 30 clusters in each two-
year sampling wave, chosen in pairs from 15 strata.
The number of participants per cluster ranges from
500 to 900. People under 18 and over 60 are oversam-
pled, as are Mexican Americans, African-Americans
and low-income White Americans. Participants com-
plete a health and diet interview and clinical examina-
tion including blood draw. NHANES has been a valu-
able resource in medical and public health research,
and tens of thousands of papers have been published
using the data. The data and R code we used are avail-
able at https://github.com/tslumley/regression-paper.

We shall suppose throughout that we are given a set
of observations {(yi,xi ); i ∈ S} on a response variable,
y, and a vector of possible explanatory variables, x,
together with associated weights, {wi; i ∈ S}, from a
sample, S , of n units drawn from a finite population or
cohort of N units. Broadly speaking, wi is an indica-
tion of the number of population units represented by
the ith sample unit. In some cases, wi will be equal to
1/πi , where πi is the probability of selecting the ith
unit under some probability sampling design; more of-
ten, wi will be adjusted using post-stratification or rak-
ing to match known population totals to compensate
for nonresponse and frame errors. We write Ri for the
indicator that unit i in the population was sampled.

We also assume we are given enough information
about the design to estimate variances—typically ei-
ther stratum and primary sampling unit (PSU, “clus-
ter”) identifiers or sets of resampling (“replicate”)
weights.

For most of the paper, we will consider marginal
generalised linear models. We assume that the popu-
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lation is a realisation of some probability model with
density f (Y |X;β) (the “superpopulation” model) in
which

(1.1) g
(
E[Y |X = x]) = g(μ) = η = x′β

with dim(β) = p, and in which the marginal variance
can reasonably be approximated by

(1.2) var[Y |X = x] = σ 2V (μ).

We will refer to the exponential family model with
these means and variances as the “working model”.
In some places, we will additionally assume that the
working model gives the true marginal distributions of
Y |X; in other places, we will consider the possibil-
ity that even the mean model might be misspecified.
We will write Eπ [·] for expectations over the finite-
population sampling, EP [·] for expectations over the
model, and E[·] for expectations over both.

In some settings, we will need to consider asymp-
totics. When the primary interest is in the marginal
regressions there does not seem to be any important
loss of generality in treating the population as an i.i.d.
sample of (X,Y ). The correlation structure of the data
can be treated as the result of auxiliary variables such
as latitude and longitude that are part of the sampled
vector but not of interest in the model, or it can be re-
garded as purely an artefact of sampling, with the pop-
ulation being sorted into strata and clusters after it is
created (Lumley and Scott, 2013). We always assume
that n → ∞ and n/N → c ∈ [0,1), and will need to
make additional assumptions about clusters and strata
in specific contexts. We will write β0 for the true pa-
rameter value in the superpopulation model, β̃N for the
maximum quasi-likelihood estimator of β0 that would
be obtained from full population data (the “census pa-
rameter”), β∗ for the limit in probability of β̃N and β̂n

for the maximum pseudo-likelihood estimator to be de-
scribed in Section 3.

We note for future research that it would be valu-
able to have sampling asymptotics better founded in
the spatial structure of populations, not only for a better
match to reality but also because it could simplify the
development of Donsker-type theorems, uniform tail
bounds, and other machinery of modern mathematical
statistics.

The layout of the paper is as follows: in Section 2,
we describe how to extend familiar exploratory anal-
yses to survey data; in Section 3 we consider pseudo-
likelihood estimators based on the working likelihood
and whether the weights are necessary or desirable; in
Section 4 we describe tests and model selection criteria

based directly on the working likelihood; in Section 5
we consider other ways to use the weights more effi-
ciently; and in Section 6 we give a brief overview of
situations where true maximum likelihood estimation
is possible.

2. EXPLORATORY ANALYSIS

Exploratory data analysis is every bit as important
for regression on survey data as in any other context.
Simple data summaries are easy to extend to use sam-
pling weights; here we restrict our attention to scatter-
plots and smoothers, where the appropriate extensions
are less obvious.

Korn and Graubard (1998) described approaches to
both problems. For scatterplots, they give two recom-
mendations. One, which is useful for relatively small
data sets, is to scale the plotting symbol to have area
proportional to the weight for an observation. This
gives so-called “bubble plots”. Their other recom-
mended approach, most useful for large data sets, is
“thinning” the data by sampling m � n observations
with the probability for observation i proportional to
wi (and so inversely proportional to πi ). The result-
ing subsample is an equal-probability, though not in-
dependent, sample from the population and an ordinary
scatterplot can be drawn. As the resulting scatterplot is
random, it is usually recommended to take more than
one replicate of the subsample and confirm that visu-
ally important patterns persist.

Two further methods are described by Lumley
(2010), using familiar techniques for scatterplots of
large data sets (Unwin, Theus and Hofmann, 2007). In
alpha-blending, points are partially transparent, with
opacity proportional to wi . When points are overplot-
ted, the opacity accumulates and the result is, essen-
tially, a two-dimensional density estimate for the popu-
lation bivariate distribution. In hexagonal binning (Carr
et al., 1987), the plotting area is partitioned into a grid
of hexagons. The total weight for observations in each
cell is computed, and hexagons drawn in each cell with
area proportional to the total weight.

Figure 1 shows the relationship between diastolic
blood pressure and age in the 13,957 individuals from
the 2003–2004 and 2004–2005 waves of NHANES
who participated in the clinical exam and dietary ques-
tionnaire and had nonmissing age and blood pres-
sure data. The upper left panel uses hexagonal bin-
ning, the upper right panel uses alpha-blending, and
the two lower panels are two replicates of thinning
to a subsample of 1000. The basic trend of dias-
tolic pressure increasing until middle age and then
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FIG. 1. Relationship between diastolic blood pressure and age in 13,957 people: upper left panel, hexagonal binning; upper right panel,
alpha-blending; lower panels, two replicates of thinning to a subsample of 1000.

decreasing with stiffening blood vessels is apparent
in all four graphs, as is the small group with blood
pressure measured as zero—not a recording error,
but a known problem with the measurement tech-
nique. The use of a minimum hex size in the left
panel makes individual outliers more visible; the alpha-
blending makes variations in weights more apparent.
The recoding of ages over 85 to 85 is detectable in
the hexagonally binned plot, and clear with alpha-
blending.

Korn and Graubard (1998) also describe how to ex-
tend kernel smoothers and local regression smoothers
to complex survey data: the kernel weights are mul-
tiplied by the sampling weights, so that a local
mean smoother m(x) for y with kernel k and

bandwidth δ is

m(x) =
n∑

i=1

wiw
K
i yi,

wK
i = k((x − xi)/δ)∑n

i=1 k((x − xi)/δ)
.

An alternative approach to smoothing is to use re-
gression splines, which is especially useful for quantile
smoothing, as weighted quantile regression (Koenker
and Basset, 1978) can then be used.

There appears to be little formal study of bandwidth
selection for smoothers with sampling weights. A sim-
ple approach is to ignore the weights and use the band-
width that would be appropriate if the data were from
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FIG. 2. Relationship between diastolic blood pressure and age in 13,957 people: left panel, local-linear mean smoother separately for men
and women; right panel, quantile regression splines for 10th, 25th, 50th, 75th, 90th percentiles, with 4 degrees of freedom.

an i.i.d. sample; this appears to work reasonably well
in practice.

Standard error estimation for these smoothers ap-
pears to be more challenging. For the local polynomial
smoother, a similar approach to that under i.i.d. sam-
pling should be possible: Harms and Duchesne (2010)
give an asymptotic expression for the variance, and
this could be estimated from the data. For the quantile
smoother, a resampling method is likely to be needed.

Figure 2 shows the mean diastolic blood pressure
by age for men and women, using a weighted local-
linear regression, and the median, quartiles, and 10th
and 90th percentiles using quantile regression and cu-
bic spines with 4 equally-spaced internal knots.

The same plotting techniques can be used for resid-
uals, partial residuals and other diagnostic model sum-
maries involving scatterplots and smoothers.

3. PSEUDO-LIKELIHOOD ESTIMATION

3.1 Basic Weighted Estimation

With complete data on the population, we would
solve the score equations:

Ū (β) =
N∑

i=1

Ui(β)

=
N∑

i=1

xi

1

g′(μi)V (μi)

(
yi − μi(β)

) = 0,

which are unbiased estimating equations (Godambe,
1960) for the true parameter β0, and obtain the cen-

sus parameter β̃N . The classical design-based estima-
tor (Fuller, 2009, Binder, 1983) solves

̂̄
U(β) =

N∑
i=1

wiRiUi(β)

(3.1)

=
N∑

i=1

Riwixi

1

g′(μi)V (μi)

(
yi − μi(β)

) = 0,

which are unbiased estimating equations for β̃N if
Eπ [wiRi] = 1. Given a suitable law of large numbers
and central limit theorem (Fuller, 2009), standard argu-
ments based on smoothness can be used to show the es-
timator β̂n is asymptotically normal and consistent for
β0 when the superpopulation model is correctly spec-
ified, and for β∗ more generally (van der Vaart, 1998,
Binder, 1983).

This is the approach underlying the regression mod-
ules in all the major statistical packages for survey
analysis. It was first developed by Fuller (1975) for lin-
ear regression, and extended to more general regression
models by Binder (1983). A more extensive discussion
of the development can be found in Chapters 2 and 3
of Chambers and Skinner (2003).

The variance of β̂n is the sum of two components:
the finite-population sampling variance of β̂n around
β̃N , of order n−1, and the model-based sampling vari-
ance of β̃N around β0, of order N−1. When n � N ,
the latter term is often ignored; in NHANES, for ex-
ample, n is less than 105, and N is greater than 108.
In this setting, the variance of

∑N
i=1 wiRiUi(β) can be
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computed at β = β̂n by the Horvitz–Thompson vari-
ance estimator (Horvitz and Thompson, 1952). A stan-
dard delta-method argument (Binder, 1983), gives the
“sandwich” form A−1BA−1 for the estimated variance
of β̂n, with

A =
N∑

i=1

wiRi

∂Ui(β)

∂β

∣∣∣∣
β=β̂n

and

B = v̂arπ

[
N∑

i=1

wiRiUi(β)

]
.

If the variance of β̃N is not negligible, it can be es-
timated from the estimated population Fisher informa-
tion

v̂arP [β̃N ] =
(

N∑
i=1

wiRi

∂Ui

∂β

)

and added to the finite-population sampling variance;
alternatively, the middle term B of the sandwich may
be replaced by a variance estimator for totals un-
der two-phase sampling, as in Särndal, Swensson and
Wretman (2003), Result 9.3.1, or Beaumont, Béliveau
and Haziza (2015).

One important use for the variance is Wald tests: if
β is partitioned as (β1, β2) then Q = βT

1 v̂ar[β̂1]−1β1

has an asymptotic χ2 distribution with degrees of free-
dom q equal to the dimension of β1 under the null hy-
pothesis β1 = 0. A better approximation is an F dis-
tribution with q numerator and m denominator degrees
of freedom: Q/q ∼ F

q
m, where m here is the so-called

“design degrees of freedom”, the number of primary
sampling units minus the number of strata. In princi-
ple, the degrees of freedom should depend on p, but
using m − p as the denominator degrees of freedom
tends to be conservative—it would be correct if all p

covariates were constant within PSUs and only var-
ied between PSUs. When m is small and p is moder-
ate, m − p can be very small or even negative without
the distribution of Q becoming degenerate. For exam-
ple, the 2003–2004 wave of NHANES has 15 strata
with two primary sampling units in each stratum, giv-
ing m = 30 − 15 = 15, and a regression model with 15
parameters would not be exceptional.

Rust and Rao (1996) develop expressions for the de-
nominator degrees of freedom based on the variance of
the variance estimator, but further research is needed
into simpler rules of thumb; these are likely to depend
on the ratio of between-PSU to within-PSU variance of

the predictors in the model. However, the working like-
lihood ratio tests described in Section 4 seem to have
better operating characteristics than Wald-type tests
(Thomas and Rao, 1987, Lumley and Scott, 2013).
When the number of primary sampling units is small
it would be attractive to have a simulation-based ap-
proach to estimating either the degrees of freedom or
the whole null distribution. This is not straightforward
because the distribution is sensitive to the between-
cluster variation in both X and Y , and these are not
well estimated with few clusters.

We can also develop an analogue to the score test.
Let β̂(0) be the solution to equation (3.1) under the
constraint β1 = 0. Rao, Scott and Skinner (1998)
used ̂̄

U(β̂(0))
T C−1 ̂̄

U(β̂(0)), where C is an estimate of

var(̂̄U(β̂(0))), as the test statistic, with an asymptotic
χ2

p distribution. With the correct choice of variance es-
timate, this test is invariant under transformations of
the parameter, unlike the Wald test. Like the Wald test,
however, the score statistics can become unstable when
q is large. Following the work of Rao and Scott (1981)
for loglinear models, the authors also suggested an al-
ternative with C replaced by its equivalent under ran-
dom sampling, a “plug-in” version of the score test,
which is asymptotically equivalent to the working like-
lihood ratio tests discussed in Section 4.

When using software for generalised linear mod-
els that is not written with sampling weights in mind,
the point estimates will still be the solutions to equa-
tion (3.1). The reported standard errors will be incor-
rect, but if the weights are scaled to sum to the sam-
ple size, the reported standard errors will typically be
of the right order. Before the wide availability of soft-
ware that could use sampling weights correctly, this
was an important fact; over the past decade it has be-
come much less useful.

3.2 Weights: Efficiency and Robustness

The key distinction in considering the need for
weights is between endogenous and exogenous sam-
pling schemes (DuMouchel and Duncan, 1983, Solon,
Haider and Wooldridge, 2013). In an exogenous sam-
pling scheme, R is independent of Y conditional on
a set of variables X that is appropriate to include as
predictors in the model; in an endogenous sampling
scheme it is not. Using the econometric terminology,
rather than the terms “informative” and “noninforma-
tive”, emphasises that the conditioning variables must
not merely be available, but must be suitable for inclu-
sion in the model.
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By the same argument as justifies propensity scores
(Rosenbaum and Rubin, 1983), if the design vari-
ables are exogenous it is sufficient to condition on the
weights wi rather than Xi . The advantage of this is
that the weights are always available; there remains
the question of whether they are exogenous. In addi-
tion, conditioning on the weights rather than the de-
sign variables will complicate the interpretation of re-
gression coefficients. In practice, this idea appears to
have been used more for testing model assumptions
(DuMouchel and Duncan, 1983, Wu and Fuller, 2005)
or for model-based small-area inference (Verret, Rao
and Hidiroglou, 2015).

If sampling is exogenous, the nonsampled fraction
of the population is missing at random (Rubin, 1976).
If, additionally, the mean model is correctly specified,
weighted and unweighted regressions will give estima-
tors consistent for the same parameter, so it is meaning-
ful to compare these estimators just based on their vari-
ance. The unweighted estimator weights observations
proportional to their precision, and so will be more
efficient that the estimator using sampling weights.
A standard rule of thumb when stratification can be ig-
nored is that the relative efficiency of the unweighted
estimator is approximately 1 + cv(w), where cv(·) is
the coefficient of variation (Korn and Graubard, 1999,
p. 173). In addition, when weighted and unweighted
approaches both give (asymptotically) valid confidence
intervals, the coverage will typically be closer to nom-
inal for the unweighted estimator, partly because it has
more degrees of freedom for variance estimation and
partly because the sandwich variance estimator treats
the weights as deterministic, when they actually de-
pend on nonresponse and frame errors through raking
or post-stratification.

However, even when the sampling is ignorable for
estimating β from the marginal distribution of Y |X, it
will often not be ignorable for estimating the variance
of β̂ . Surveys involving in-person interviews tend to
use cluster sampling, at least in areas of lower popu-
lation density. The sampling indicators Ri,Rj will be
correlated when i and j are in the same sampling clus-
ter, and Yi and Yj are likely also to be correlated when
i and j are geographically close.

When weights are not used, fitting a suitable mixed
model to account for clustering will give valid standard
errors for the regression coefficients. When the link
function g(·) is linear, the mixed model parameters are
the same marginal regression coefficients as in equa-
tion (1.1). For general link functions, the change of
model will typically change the target of inference, but

in a way that is familiar to modern statisticians and has
been extensively discussed. Using sampling weights in
a mixed model is much more complicated; we discuss
this briefly in Section 7.

In principle, it is possible to test whether the weights
are needed in the marginal model: if β̂ is the weighted
estimate and β̂U the unweighted estimate, then D =
β̂ − β̂U was proposed as a test statistic by DuMouchel
and Duncan (1983). If the unweighted estimator is
fully efficient, their proposal is an example of the Haus-
man specification test (Hausman, 1978). In practice,
the power of the test will be poor for contiguous al-
ternatives, where the mean and standard deviation of
D are of the same order.

Indeed, suppose
√

n(β̂ − β∗) d→ N(0, σ 2 + ω2) and
that the regression model is misspecified so

that
√

n(β̂U − β∗) d→ N(δ,σ 2). We will have√
n(D − δ)

d→ N(0, τ 2), where τ 2 ≥ ω2. If δ2 = ω2,
the mean squared errors of β̂U and β̂ as estimators of
β∗ will be equal, but the test based on D will have
noncentrality parameter δ2/τ 2 = ω2/τ 2 ≤ 1 and will
not have useful power for rejecting δ = 0.

Worse, using a pre-test for the importance of weights
is likely to affect the operating characteristics of sub-
sequent hypothesis tests. There does not seem to have
been systematic study of this issue in sampling, but
Guggenberger (2010a, 2010b) shows in two other con-
texts that a two-step procedure with a Hausman speci-
fication pre-test can make the Type I error of the tests
for β = 0 arbitrarily high.

While the formal test based on β̂U − β̂ is of limited
use, computing both estimates is often valuable, and
may help the analyst understand how the sampling and
the regression relationship under study interact.

3.2.1 Example. We consider two models from the
same NHANES dataset used in Section 2: a logistic
regression model for isolated systolic hypertension and
a linear model for dietary sodium intake.

Isolated Systolic Hypertension (ISH) is defined by
systolic blood pressure over 140 mmHg with diastolic
blood pressure below 90; it becomes common with in-
creasing age. We used as predictors a linear spline in
age with knots at 50 and 65 years, a set of indica-
tor variables for five-level race/ethnicity, gender and
the gender:age interactions, and dietary sodium intake.
We compared the sampling-weighted logistic regres-
sion model to an ordinary logistic regression model and
to a generalised linear mixed model with random in-
tercept for each primary sampling unit, fitted with the
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TABLE 1
Comparison of standard errors from logistic regression models for
isolated systolic hypertension (ISH), from NHANES: unweighted

logistic regression with sandwich estimator, logistic-normal mixed
model with random intercept for each primary sampling unit,

design-weighted logistic regression

Unweighted glm Mixed model Weighted

(Intercept) 1.26 1.27 1.65

Age (per extra year, in men)
Age (≤ 50) 0.19 0.19 0.36
Age (50–65) 0.26 0.26 0.39
Age (> 65) 0.20 0.20 0.28
Female 0.82 0.83 1.20

Race:ethnicity compared to Mexican Hispanic
Other Hispanic 0.24 0.24 0.37
Non-Hispanic Black 0.09 0.11 0.19
Non-Hispanic White 0.11 0.12 0.19
Other 0.19 0.19 0.31
Sodium 0.02 0.02 0.04

Age (per extra year, difference between women and men)
Age (≤ 50) 0.14 0.14 0.28
Age (50–65) 0.16 0.16 0.25
Age (> 65) 0.12 0.12 0.16

lme4 package for R (Bates et al., 2015). All of the code
is in the github repository for the paper.

In this example, the three models gave very simi-
lar point estimates (not shown) except for the lowest
age category where the slope was greater with weight-
ing, but the weighted standard errors were large than
the unweighted ones (Table 1). ISH is more common
in non-Hispanic Whites than Hispanics, and less com-
mon in non-Hispanic Blacks; it increases with age, and
this increase happens earlier in women than in men.
There was little impact on standard error estimates of
including the random intercept. In some ways, a more
appropriate comparison of standard errors would use
a model with random slopes for all variables, but this
model did not converge.

The similarity between the models suggests that the
design variables and spatial correlation in NHANES
do not have an important association with hypertension
conditional on age, gender and race/ethnicity. It would
be reasonable to prefer the mixed model in this setting.

Higher dietary sodium intake is believed to be a
risk factor for hypertension. The US median intake
estimated from this NHANES sample is 3.1 g/day;
the recommended daily maximum is 3 g/day. We fit-
ted models for dietary sodium using the linear spline
in age, and interactions between gender and the five

TABLE 2
Comparison of linear regression models for sodium intake in

grams per day, from NHANES: linear regression with sampling
weights, linear regression without weights, linear mixed model

with random intercept for each primary sampling unit.
The national median is 3.1 g/day; the recommended

daily maximum is 3 g/day

(g/day) Weighted Unweighted Mixed model

(Intercept) 7.83 8.58 8.57

Age (≤ 50) per 10yrs 0.22 0.34 0.34
Age (50–65) per 10yrs −0.68 −0.98 −0.98
Age (> 65) per 10 yrs −0.21 −0.17 −0.17

Race:ethnicity compared to Mexican Hispanic, in men
Other Hispanic −0.26 −0.12 −0.08
Non-Hispanic Black 0.45 0.51 0.53
Non-Hispanic White 0.04 0.25 0.29
Other 0.13 0.24 0.26
Female −0.75 −0.54 −0.54

Race:ethnicity compared to Mexican Hispanic, in women
Other Hispanic −0.13 −0.04 −0.01
Non-Hispanic Black 0.08 0.11 0.13
Non-Hispanic White −0.01 0.15 0.19
Other 0.12 0.15 0.17

race/ethnicity categories, and again we fitted a sample-
weighted model, an ordinary linear model, and a linear
mixed model with random intercepts for each primary
sampling unit. Parameter estimates are shown in Ta-
ble 2. Sodium consumption was increasing with age
below 50 and decreasing with age above 50. There was
a strong race:gender interaction, with non-Hispanic
Black men, but not women, having higher intakes
than the other race:ethnicity:gender groups by about
0.4 g/day.

The unweighted models for sodium intake had
importantly different parameter estimates than the
weighted models, perhaps reflecting greater regional
variation in diet not captured by race:ethnicity and
age, suggesting that the weighted model would be pre-
ferred.

3.2.2 Stabilised weights. When the mean model is
correctly specified and weights depend only on x,
omitting them does not affect the target of inference β0,
as we have noted earlier. More generally, multiplying
or dividing the weights by any factor depending only
on x also does not change β0. The idea of dividing wi

by a function h(x) chosen to minimise the variation of
the resulting weights, and thus to improve efficiency,
has been developed independently on at least three oc-
casions.



272 T. LUMLEY AND A. SCOTT

Magee (1998) proposed taking a functional form
h(x) = h(x; θ) and choosing θ to minimise the esti-
mated asymptotic variance of β̂ , as did Skinner and
Mason (2012). Robins, Hernán and Brumback (2000)
proposed an estimate of E[πi |X = x] as 1/h(x).
Pfeffermann and Sverchkov (1999) proposed an esti-
mate h(x) = E[wi |X = x].

Robins, Hernán and Brumback (2000) coined the
term “stabilized weights” for wi/h(xi), which is stan-
dard in the causal-inference literature and which we
recommend for use more broadly.

3.2.3 Example. In the logistic regression model for
isolated systolic hypertension from Section 3.2.1, we
computed stabilized weights, estimating h(x) by a re-
gression of weights on predictors in a Gamma general-
ized linear model with log link.

Figure 3 shows the estimated reduction in variance
when stabilized weights are used and compares it to
the estimated reduction in variance from a generalised
linear mixed model with no weights. The stabilised
weights always give a higher variance, but the margin
differs between parameters.

3.2.4 Calibration of weights. It is often the case that
some auxiliary variables A, or at least population to-
tals of these variables, are available on the whole pop-
ulation. For example, a national census may provide
the joint distribution race/ethnicity, age, sex and in-
come band for the whole population or for smaller geo-
graphical subdivisions. Calibration, also called (gener-
alised) raking, is an approach to using this population

data (Deville and Särndal, 1992, Särndal, 2007). As a
computational method, calibration is closely related to
direct standardisation of rates, though direct standard-
isation is used to reduce bias in crude comparisons by
reweighting to a common external standard population
and calibration involves reweighting to the population
from which the sample was taken.

If the sampling units are individuals, calibration is
essentially the same as augmented inverse probabil-
ity weighted estimation and to the technique of us-
ing estimated rather than observed weights (Robins,
Rotnitzky and Zhao, 1994); the weighted empirical
likelihood approach of Chaudhuri, Handcock and Ren-
dall (2008) and the estimating equation/projection ap-
proach of Chen and Chen (2000) are very closely re-
lated. Rao, Yung and Hidiroglou (2002) appears to be
the first consideration of model fitting after calibration
with general sampling schemes.

In the simple case with population counts for a
set of discrete categories, calibration reduces to post-
stratification. That is, a scaling factor is applied to the
weights for all observations in a category so that the
estimated population total for the category matches the
observed total. Calibration extends this idea by match-
ing observed and estimated population totals for any
set of so-called auxiliary variables.

In large surveys, the primary aim of calibration is re-
ducing nonresponse bias in means and totals. It is rou-
tine for public-use data to already be calibrated to cen-
sus (or administrative) totals for age groups, sex, geo-

FIG. 3. Variance reduction from stabilised weights and from not using weights, in logistic model for isolated systolic hypertension. Open
circles show estimated ratio of variances for parameter estimates in a generalised linear mixed model to those in a sampling-weighted model;
closed circles show the ratio for a logistic model with stabilized weights compared to the sample-weighted model.
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graphic region and in some countries, race or ethnic-
ity. When estimating a population total, calibration re-
duces nonresponse bias to the extent that the auxiliary
variable explains the correlation between nonresponse
and the variable of interest. Calibration also increases
precision to the extent that the auxiliary variable is cor-
related with the variable of interest; it can be viewed as
a form of imputation.

Calibration tends to be of less benefit when fitting
regression models. As Lumley, Shaw and Dai (2011)
shows, it is helpful to think of β̂ −β∗ as approximately
an estimated population total: the total of the influence
functions. Influence functions (closely related to the
�β deletion diagnostics) can be defined by

(3.2)
√

n(β̂ − β) =
n∑

i=1

wiIFβ(y, x) + op(1).

The influence function is a linear approximation to the
change in β̂ when an observation at (x, y) is deleted
(van der Vaart, 1998, Chapter 20). In the context of
generalised linear models, the influence functions are
given by A−1Ui as defined in Section 3.1 and so are a
linear function of xi(yi − μi(β)). Most estimators of
traditional statistical interest can be written in the form
of equation (3.2), but some modern sparse estimators,
such as the lasso, are not regular or asymptotically lin-
ear and have no influence-function decomposition.

Calibration is helpful only when the auxiliary vari-
ables are correlated with the variable being summed;
in this case, the influence function. The influence func-
tions are nearly uncorrelated with Y and X, so these
variables or surrogates for them will not be good auxil-
iary variables; we need auxiliary variables that are lin-
early correlated with the influence function for the re-
gression parameter of interest (Breslow et al., 2009a,
Lumley, Shaw and Dai, 2011). The main setting when
this is plausible is subsampling from an existing co-
hort, whether from a research study, an insurance sys-
tem, or national adminstrative records. Breslow et al.
(2009b) describes one strategy for achieving useful
correlation when rich data are available on the popula-
tion (or cohort) from which the data are sampled. Støer
and Samuelsen (2012) and Rivera and Lumley (2015)
describe similar approaches for other designs.

Realising the gains in precision from calibration re-
quires standard error estimators that take these preci-
sion gains into account. These are now readily avail-
able for generalised linear models and the Cox model,
but for new models it may be easiest to work via resam-
pling. In survey statistics, resampling estimators anal-
ogous to the jackknife and bootstrap are typically writ-
ten in terms of sets of resampling weights or replicate

weights. For example, in a cluster jackknife sample, the
weight for observations in one cluster will be set to zero
and the weights for observations in other clusters in-
creased to compensate. If each set of replicate weights
is calibrated to the same population totals as the sample
weights, the resampling standard errors will be correct
(Valliant, 1993).

Calibration improves asymptotic efficiency for the
same target parameter. It makes essentially no mod-
elling assumptions, and the asymptotic efficiency of the
calibrated estimator is never worse than that of the un-
calibrated estimator. In comparison, stabilising weights
can lead to further improvements in efficiency, but can
introduce bias unless the mean model for Y is correctly
specified, and a sufficiently poor choice of h(·) can lead
to a variance increase.

Calibration weakens the missing at random assump-
tion on nonresponse by allowing dependence on (pos-
sibly endogenous) auxiliary variables. Even so, the as-
sumption is likely to be untrue. Kott and Chang (2010)
and Pfeffermann and Sikov (2011) discuss two ways to
go further, which unavoidably require untestable model
assumptions.

4. WORKING LIKELIHOOD TESTS AND
INFORMATION CRITERIA

Although there is no natural and straightforward
likelihood function for survey data, it is possible to
construct an analogue of the likelihood-ratio test based
on the pseudo-likelihood,

̂(β) =
N∑

i=1

wiRi logf (y|x;β)

=
N∑

i=1

wiRii(β), say,

that has many of the same properties. This extends
the work of Rao and Scott (1981) for loglinear mod-
els under complex sampling and Rotnitzsky and Jewell
(1990) for generalised linear models with clustering.

Suppose that we are interested in testing the hypoth-
esis H0 : β1 = 0, where β is partitioned as (β1, β2), as
in the section on Wald Tests in Section 3.1. Then our
working likelihood ratio test statistic is given by

(4.1) � = 2
{
̂(β̂) − ̂(β̂(0))

}
,

where β̂(0) is the solution to equation (3.1) under the
constraint β1 = 0.

Lumley and Scott (2014) showed that, under the reg-
ularity conditions of Theorem 1.3.9 in Fuller (2009),
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� ∼ ∑q
1 δiZ

2
i asymptotically under H0, where

Z1, . . . ,Zq are independent standard normal random
variables and and δ1, . . . , δq are the eigenvalues of
� = (I∗

11 − I∗
12I

∗−1
22 I∗

21)V
∗
1 . Here, V ∗

1 = V 1(β
∗) is

the asymptotic covariance matrix of
√

n{β̂1 − β∗
1 } and

I∗ = ( I11 I12
I21 I22

) = I(β∗). The argument uses a second-
order Taylor series approximation; the linear term van-
ishes at the maximum, and the highest-order remaining
term is a quadratic form in asymptotically-normal vari-
ables.

If the sample had been a random sample from the
superpopulation, then Var(β̂) would be equal to I−1.
Using the standard form for the inverse of a partitioned
matrix, it follows that Var(β̂1) would be equal to(

I11 − I12I−1
22 I21

)−1 = V01,

say. Thus, we can write the matrix � in the form � =
V ∗

01
−1V ∗

1 . By analogy with the simple scalar case, we
call � the “design-effect matrix” and the eigenvalues,
δ1, . . . , δq , “generalised design effects”, as in Rao and
Scott (1984, 1981).

The value of � is very sensitive to the scaling of the
weights. Rao and Scott (1981) suggested dividing �

by the average eigenvalue, δ̄, to get around this and we
recommend this form for display in the output of a re-
gression program. If the eigenvalues are all equal, as
in some special designs, the asymptotic null distribu-
tion of �/δ̄ is exactly χ2

q . Otherwise, it has the correct
mean, q , but the associated p-value will need to be cor-
rected.

A Satterthwaite approximation to the distribution
of � is standard and surprisingly accurate: �/δ̄ ∼
χ2

ν with ν = (
∑

i δ
2
i )/(

∑
i δi)

2. When higher accu-
racy is required, for example, for large-scale multi-
ple testing in genomics, options with accurate free-
software implementations include an infinite series
(Farebrother, 1984), a method based on characteristic
functions (Davies, 1980), and a saddlepoint approxi-
mation (Kuonen, 1999).

Under the null hypothesis that β∗
1 = 0, 2� would

have expectation 2q under i.i.d. sampling. Under com-
plex sampling, it has expectation 2qδ̄, motivating

dAIC = 2� − 2p ˆ̄δ,
where ˆ̄δ = tr(IV )/p is the average design effect for
the full model, as a design-based version of AIC.
Lumley and Scott (2015) show that minimising dAIC
minimizes the expected Kullbeck–Leibler divergence
from the true model and has connections to minimising

TABLE 3
dAIC and dBIC in five models for isolated

systolic hypertension fitted to the
NHANES data

dAIC dBIC

Age 7786 7756
+ race/ethnicity 7772 7750
+ gender 7764 7729
+ gender:age 7664 7727
+ sodium 7670 7734

cross-validated prediction error in the same way that
minimising AIC does.

An analogue to BIC is less straightforward, as BIC
is derived from a Laplace approximation to posterior
probabilities and relies on the full log-likelihood. Sim-

ply changing the 2p ˆ̄δ penalty to p ˆ̄δ logn does not pre-
serve the derivation of BIC.

Fabrizi and Lahiri (2007) constructed a penalised
Wald statistic and showed it was asymptotically equiv-
alent to BIC based on the full log-likelihood if the
design-based estimator is asymptotically efficient.
Lumley and Scott (2015) derived essentially the same
criterion without the assumption of efficiency, from a
coarsened-Bayesian argument. They reduced the data
to the parameter estimates β̂ and used the asymptotic
Gaussian likelihood for these estimates under each
model to construct posterior probabilities and the BIC.

4.1 Example

In both of the models for isolated systolic hyper-
tension described in Section 3.2.1 and the models for
sodium intake in Table 2, there is good qualitative
agreement between Wald tests and working likelihood

ratio tests, with the design effect ˆ̄δ being between 2
and 3 for the ISH models and between 5 and 6 for the
sodium-intake models. Table 3 shows dAIC and dBIC
for the ISH models.

The two criteria agree on the best model, but as
would be expected dBIC is more supportive of the sim-
pler model without gender:age interactions than dAIC
is, and gives it second place.

5. OTHER WAYS TO USE THE WEIGHTS

Under the idealised model of probability sampling
without nonresponse, the sampling probabilities πi

contain all the information about the marginal rela-
tionship between Ri and Yi , and even in a more re-
alistic setting, the weights wi after adjustment for
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nonresponse and frame errors contain all the readily-
available information. Modelling the weights is likely
to be useful in model-based inference.

Kim and Skinner (2013) built on work outside the
regression context by Beaumont (2008), Pfeffermann
and Sverchkov (1999), and Pfeffermann, Krieger and
Rinott (1998), to construct “smoothed weights”. In ad-
dition to the observation that an arbitrary multiplicative
function of x can be introduced, they note that vari-
ation in the weights that is independent of Y given
x is uninformative. They propose estimating d̃j i =
E[wi |yi, xi,R1 = 1] to capture the informative com-
ponent of the weights. If the regression model and the
model for d̃i are both correctly specified, wi can be re-
placed by d̃ih(xj ) for an arbitrary function h(·), which
can then be chosen to minimise the variance of β̂ as in
Section 3.2. Because the limiting value of β̂ depends
on correct specification of the model for d̃i , estimation
of any parameters in that model contributes to the vari-
ance of β̂; Kim and Skinner (2013) describe how to
estimate the variance.

Elliott (2007) and Elliott (2009) describe a Bayesian
approach to generalized linear models that relies on the
sampling weights to provide information about infor-
mative sampling, but uses model-based shrinkage and
Winsorisation to reduce the variability in the weights
in order to increase precision.

6. MAXIMUM LIKELIHOOD ESTIMATION

The full likelihood for a regression model under
complex sampling involves the joint distribution of R

and Y and is typically intractable, but maximum likeli-
hood estimation is available in a few important scenar-
ios. In addition to being of practical use, these scenar-
ios allow direct comparisons of likelihood estimators
with weighted estimators, on an equal footing.

Case-control sampling is the oldest and most impor-
tant design where maximum likelihood estimation is
available. In a standard case-control design, sampling
is stratified on a rare binary outcome Y ascertainable
for everyone in a population. The sample includes ev-
eryone with Y = 1 (cases) and a small fraction π0 of
those with Y = 0 (controls) so that the number of con-
trols is a small multiple (usually 1–5) of the number of
cases. Under a model with an arbitrary marginal distri-
bution of predictor variables x and with Y satisfying a
logistic regression model

logitP [Y = 1|X = x] = xβ,

the semiparametric maximum likelihood estimator
β̂mle is obtained by unweighted logistic regression

(Prentice and Pyke, 1979), and this estimator is
semiparametric-efficient (Breslow, Robins and Well-
ner, 2000). Case-control sampling is the extreme case
of endogenous sampling: the only design variable that
affects sampling weights is Y , and it would not make
sense to include Y as a predictor in regression models.

In a case-control study the coefficient of variation of
the weights will always be high (close to 1 when the
cases are rare and the numbers of cases and controls in
the sample are equal), but the coefficient of variation
within sampling strata is zero. General heuristics are
not known for the relative efficiency of the weighted
estimator, which can be as high as 100% or can be ar-
bitrarily low. Full efficiency occurs when the model is
saturated or when all parameters apart from the inter-
cept are zero; the easiest way to achieve low efficiency
is where there is a very strong effect of a continuous
predictor.

For example, Breslow and Day (1980) give two data
sets from a study of alcohol and tobacco as risk factors
for esophageal cancer in Ille-et-Vilaine, France: one
with continuous exposures and one with grouped ex-
posures. Reanalysing the data with weights estimated
from the size of the contemporary population makes
little or no difference to the grouped-exposure models
but leads to increases of 50% in estimated variance for
the alcohol and tobacco coefficients in the continuous-
data model. Figure 4 shows the variance ratio for the
model with main effects of age, alcohol and tobacco.

The maximum likelihood estimator is not design-
consistent: if the model is misspecified, β̂mle does not
converge to β∗. Maximum likelihood estimation for the
logistic model under case-control sampling is univer-
sal in epidemiology and biostatistics, but is somewhat
controversial elsewhere, for this reason. Scott and Wild
(2002) summarise this debate and discuss the interpre-
tation of β̂mle under model misspecification.

When Y is the only variable available for the whole
population, the weighted estimator is already the effi-
cient design-consistent estimator and calibration thus
provides no gain in efficiency. Stabilized weights do
provide some efficiency increase, but not (typically)
to the level of the MLE, and weight smoothing pro-
vides no further improvement. Since these weight ad-
justments do not give a fully efficient estimator in the
case-control design, they presumably do not give fully
efficient estimators in other designs where the compu-
tations are less tractable.

7. DISCUSSION

“Statistical methods need software”, as Brian Ripley
has emphasized, and for many years survey analysis
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FIG. 4. Estimated variance increase from weighting, for data from a case–control study of esophageal cancer: open circles, grouped
exposure; filled circles, continuous exposure.

used specialised software running on high-end hard-
ware. There has been a lot of progress over the past
decade, however, and all general purpose packages can
now do estimation and Wald tests at least for linear and
logistic models.

Alan Zaslavsky maintains a list of survey data
analysis software at http://www.hcp.med.harvard.edu/
statistics/survey-soft/. Among these, the widest range
of models appears to be available in Stata (StataCorp,
2015) and the widest range of designs in the survey
package for R (Lumley, 2015). Heeringa, West and
Berglund (2010) provide worked examples and discus-
sion across multiple packages. The Rao–Scott tests for
generalised linear models and the related information
criteria are currently only available in the R survey
package. We are not aware of any packages that cur-
rently integrate stabilised or smoothed weights into the
data analysis workflow.

All the design-based inference we discuss is for
marginal models. Design-based inference even for lin-
ear mixed models is substantially more complicated.
In the special case where the clusters in the model are
the same as the clusters in the sampling design, there is
literature on consistent estimation (Pfeffermann et al.,
1998, Rabe-Hesketh and Skrondal, 2006, Rao, Ver-
ret and Hidiroglou, 2014) and some implementations
(Muthén and Muthén, 2012, StataCorp, 2015). The
more general case—for example, a mixed model with
covariance describing kinship in a design sampled by

household and administrative unit—has received lit-
tle consideration and simplified approaches have been
used (Lin et al., 2014, Morrison et al., 2016).

It is undoubtedly true that the simple weighted anal-
yses we have focused on will fail to be fully efficient.
They will also fail to regularize estimates for small sub-
groups optimally. An important area of research and
development would be to make more efficient analyses
of data with potentially-endogenous sampling weights
routinely usable by the nonexpert. Gelman (2007) and
Little (2012) discuss some of the principles and issues.
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