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Forecaster’s Dilemma: Extreme Events and
Forecast Evaluation
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Abstract. In public discussions of the quality of forecasts, attention typi-
cally focuses on the predictive performance in cases of extreme events. How-
ever, the restriction of conventional forecast evaluation methods to subsets
of extreme observations has unexpected and undesired effects, and is bound
to discredit skillful forecasts when the signal-to-noise ratio in the data gen-
erating process is low. Conditioning on outcomes is incompatible with the
theoretical assumptions of established forecast evaluation methods, thereby
confronting forecasters with what we refer to as the forecaster’s dilemma. For
probabilistic forecasts, proper weighted scoring rules have been proposed as
decision-theoretically justifiable alternatives for forecast evaluation with an
emphasis on extreme events. Using theoretical arguments, simulation exper-
iments and a real data study on probabilistic forecasts of U.S. inflation and
gross domestic product (GDP) growth, we illustrate and discuss the fore-
caster’s dilemma along with potential remedies.
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Quod male consultum cecidit feliciter, Ancus,
Arguitur sapiens, quo modo stultus erat;
Quod prudenter erat provisum, si male vortat,
Ipse Cato (populo iudice) stultus erat.1

John Owen, 1607

1. INTRODUCTION

Extreme events are inherent in natural or man-made
systems and may pose significant societal challenges.
The development of the theoretical foundations for the
study of extreme events started in the middle of the
last century and has received considerable interest in
various applied domains, including but not limited to
meteorology, climatology, hydrology, finance and eco-
nomics. Topical reviews can be found in the work of

1Owen (1607), 216. Sapientia duce, comite fortuna. In Ancum.
English translation by Edith Sylla; see Bernoulli (2006):
Because what was badly advised fell out happily,
Ancus is declared wise, who just now was foolish;
Because of what was prudently prepared for, if it turns out badly,
Cato himself, in popular opinion, will be foolish.
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Gumbel (1958), Embrechts, Klüppelberg and Mikosch
(1997), Easterling et al. (2000), Coles (2001), Katz,
Parlange and Naveau (2002), Beirlant et al. (2004)
and Albeverio, Jentsch and Kantz (2006), among oth-
ers. Not surprisingly, accurate predictions of extreme
events are of great importance and demand. In many
situations, distinct models and forecasts are avail-
able, thereby calling for a comparative assessment of
their predictive performance with particular emphasis
placed on extreme events.

In the public, forecast evaluation often only takes
place once an extreme event has been observed, in par-
ticular, if forecasters have failed to predict an event
with high economic or societal impact. Table 1 gives
examples from newspapers, magazines, and broadcast-
ing corporations that demonstrate the focus on extreme

TABLE 1
Media coverage illustrating the focus on extreme events in public
discussions of the quality of forecasts. A version of the table with
links to the sources is provided in an online supplement (Lerch

et al., 2016)

Year Headline Source

2008 Dr. Doom The New York Times
2009 How did economists get it so

wrong?
The New York Times

2009 He told us so The Guardian
2010 An exclusive interview with Med

Yones—The expert who predicted
the financial crisis

CEO Q Magazine

2011 A seer on banks raises a furor on
bonds

The New York Times

2013 Meredith Whitney redraws “map of
prosperity”

USA Today

2007 Lessons learned from Great Storm BBC
2011 Bad data failed to predict Nashville

flood
NBC

2012 Bureau of Meteorology chief says
super storm “just blew up on the
city”

The Courier-Mail

2013 Weather Service faulted for Sandy
storm surge warnings

NBC

2013 Weather Service updates criteria for
hurricane warnings, after Sandy
criticism

Washington Post

2015 National Weather Service head
takes blame for forecast failures

NBC

2011 Italian scientists on trial over
L’Aquila earthquake

CNN

2011 Scientists worry over “bizarre” trial
on earthquake prediction

Scientific American

2012 L’Aquila ruling: Should scientists
stop giving advice?

BBC

events in finance, economics, meteorology and seis-
mology. Striking examples include the international fi-
nancial crisis of 2007/08 and the L’Aquila earthquake
of 2009. After the financial crisis, much attention was
paid to economists who had correctly predicted the cri-
sis, and a superior predictive ability was attributed to
them. In 2011, against the protest of many scientists
around the world, a group of Italian seismologists was
put on trial for not warning the public of the devas-
tating L’Aquila earthquake of 2009 that caused 309
deaths (Hall, 2011). Six scientists and a government
official were found guilty of involuntary manslaughter
in October 2012 and sentenced to six years of prison
each. In November 2015, the scientists were acquitted
by the Supreme Court in Rome, whereas the sentence
of the deputy head of Italy’s civil protection depart-
ment, which had been reduced to two years in 2014,
was upheld.

At first sight, the practice of selecting extreme ob-
servations, while discarding nonextreme ones, and to
proceed using standard evaluation tools appears to be
a natural approach. Intuitively, accurate predictions on
the subset of extreme observations may suggest su-
perior predictive ability. However, the restriction of
the evaluation to subsets of the available observations
has unwanted effects that may discredit even the most
skillful forecast available (Denrell and Fang, 2010,
Diks, Panchenko and van Dijk, 2011, Gneiting and
Ranjan, 2011). In a nutshell, if forecast evaluation
proceeds conditionally on a catastrophic event having
been observed, always predicting calamity becomes a
worthwhile strategy. Given that media attention tends
to focus on extreme events, skillful forecasts are bound
to fail in the public eye, and it becomes tempting to
base decision-making on misguided inferential proce-
dures. We refer to this critical issue as the forecaster’s
dilemma.2

To demonstrate the phenomenon, we let N (μ,σ 2)

denote the normal distribution with mean μ and stan-
dard deviation σ and consider the following simple ex-
periment. Let the observation Y satisfy

(1.1) Y |μ ∼ N
(
μ,σ 2)

where μ ∼ N
(
0,1 − σ 2)

.

2Our notion of the forecaster’s dilemma differs from a previous
usage of the term in the marketing literature by Ehrman and Shugan
(1995), who investigated the problem of influential forecasting
in business environments. The forecaster’s dilemma in influential
forecasting refers to potential complications when the forecast it-
self might affect the future outcome, for example, by influencing
which products are developed or advertised.
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TABLE 2
Forecasts in the simulation study, where the observation Y satisfies (1.1) with σ 2 = 2

3 being fixed. The mean absolute error (MAE) and
mean squared error (MSE) for the point forecast X are based on a sample of size 10,000; the restricted versions rMAE and rMSE are based

on the subset of observations exceeding 1.64 only. The lowest value in each column is in bold

Forecast Predictive distribution X MAE MSE rMAE rMSE

Perfect N (μ,σ 2) μ 0.64 0.67 1.35 2.12
Unconditional N (0,1) 0 0.80 0.99 2.04 4.30
Extremist N (μ + 5

2 , σ 2) μ + 5
2 2.51 6.96 1.16 1.61

Table 2 introduces forecasts for Y , showing both the
predictive distribution, F , and the associated point
forecast, X, which we take to be the respective median
or mean.3 The perfect forecast has knowledge of μ,
while the unconditional forecast is the unconditional
standard normal distribution of Y . The deliberately
misguided extremist forecast shows a constant bias of
5
2 . As expected, the perfect forecast is preferred un-
der both the mean absolute error (MAE) and the mean
squared error (MSE). However, these results change
completely if we restrict attention to the largest 5% of
the observations, as shown in the last two columns of
the table, where the misguided extremist forecast re-
ceives the lowest mean score.

In this simple example, we have considered point
forecasts only, for which there is no obvious way to
abate the forecaster’s dilemma by adapting existing
forecast evaluation methods appropriately, such that
particular emphasis can be put on extreme outcomes.
Probabilistic forecasts in the form of predictive dis-
tributions provide a suitable alternative. Probabilis-
tic forecasts have become popular over the past few
decades, and in various key applications there has been
a shift of paradigms from point forecasts to probabilis-
tic forecasts, as reviewed by Tay and Wallis (2000),
Timmermann (2000), Gneiting (2008) and Gneiting
and Katzfuss (2014), among others. As we will see, the
forecaster’s dilemma is not limited to point forecasts
and occurs in the case of probabilistic forecasts as well.
However, in the case of probabilistic forecasts extant
methods of forecast evaluation can be adapted to place
emphasis on extremes in decision-theoretically coher-
ent ways. In particular, it has been suggested that suit-
ably weighted scoring rules allow for the comparative
evaluation of probabilistic forecasts with emphasis on

3The predictive distributions are symmetric, so their mean and
median coincide. We use X in upper case, as the point forecast
may depend on μ and, therefore, is a random variable.

extreme events (Diks, Panchenko and van Dijk, 2011,
Gneiting and Ranjan, 2011).

The contributions of this expository article lie in the
novelty of the interpretations, rather than methodolog-
ical development, and the remainder of the paper is or-
ganized as follows. In Section 2, theoretical founda-
tions on forecast evaluation and proper scoring rules
are reviewed, serving to analyze and explain the fore-
caster’s dilemma along with potential remedies. In Sec-
tion 3, this is followed up and illustrated in simulation
experiments. Furthermore, we elucidate the role of the
fundamental lemma of Neyman and Pearson, which
suggests the superiority of tests of equal predictive per-
formance that are based on the classical, unweighted
logarithmic score. A case study on probabilistic fore-
casts of gross domestic product (GDP) growth and in-
flation for the United States is presented in Section 4.
The paper closes with a discussion in Section 5.

2. FORECAST EVALUATION AND EXTREME
EVENTS

We now review relevant theory that is then used to
study and explain the forecaster’s dilemma.

2.1 The joint distribution framework for forecast
evaluation

In the following, the forecast and the observation are
treated as random variables, the distributions of which
are denoted by square brackets. In a seminal paper on
the evaluation of point forecasts, Murphy and Winkler
(1987) argued that the assessment ought to be based on
the joint distribution of the forecast, X, and the obser-
vation, Y , building on both the calibration-refinement
factorization,

[X,Y ] = [X] [Y |X],
and the likelihood-baserate factorization,

[X,Y ] = [Y ] [X|Y ].
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Gneiting and Ranjan (2013), Ehm et al. (2016) and
Strähl and Ziegel (2015) extend and adapt this frame-
work to include the case of potentially multiple proba-
bilistic forecasts. In this setting, the probabilistic fore-
casts and the observation form tuples

(F1, . . . ,Fk, Y ),

where the predictive distributions F1, . . . ,Fk are cu-
mulative distribution function (CDF)-valued random
quantities on the outcome space of the observation, Y .

Considering the case of a single probabilistic fore-
cast, F , the above factorizations have immediate ana-
logues in this setting, namely, the calibration-refine-
ment factorization

(2.1) [F,Y ] = [F ] [Y |F ]
and the likelihood-baserate factorization

(2.2) [F,Y ] = [Y ] [F |Y ].
The components of the calibration-refinement factor-
ization (2.1) can be linked to the sharpness and the
calibration of a probabilistic forecast (Gneiting, Bal-
abdaoui and Raftery, 2007). Sharpness refers to the
concentration of the predictive distributions and is a
property of the marginal distribution of the forecasts
only. Calibration can be interpreted in terms of the con-
ditional distribution of the observation, Y , given the
probabilistic forecast, F .

Various notions of calibration have been proposed,
with the concept of autocalibration being particularly
strong. Specifically, a probabilistic forecast F is auto-
calibrated if

(2.3) [Y |F ] = F

almost surely (Tsyplakov, 2013). This property car-
ries over to point forecasts, in that, given any func-
tional T, such as the mean or expectation functional, or
a quantile, autocalibration implies T([Y |F ]) = T(F ).
Furthermore, if the point forecast X = T(F ) character-
izes the probabilistic forecast, as is the case in Table 2,
where T can be taken to be the mean or median func-
tional, then autocalibration implies

(2.4) T
([Y |X]) = T

([Y |F ]) = T(F ) = X.

This property can be interpreted as unbiasedness of the
point forecast X = T(F ) that is induced by the predic-
tive distribution F .

Finally, a probabilistic forecast F is probabilisti-
cally calibrated if the probability integral transform
F(Y ) is uniformly distributed, with suitable technical
adaptations in cases in which F may have a discrete

component (Gneiting, Balabdaoui and Raftery, 2007,
Gneiting and Ranjan, 2013). An autocalibrated pre-
dictive distribution is necessarily probabilistically cal-
ibrated (Gneiting and Ranjan, 2013, Strähl and Ziegel,
2015).

In contrast, the interpretation of the second com-
ponent [F |Y ] in the likelihood-baserate factorization
(2.2) is much less clear. While the conditional distribu-
tion of the forecast given the observation can be viewed
as a measure of discrimination ability, it was noted by
Murphy and Winkler (1987) that forecasts can be per-
fectly discriminatory although they are uncalibrated.
Therefore, discrimination ability by itself is not infor-
mative, and forecast assessment might be misguided if
one stratifies by the realized value of the observation.
To demonstrate this, we return to the simpler setting
of point forecasts and revisit the simulation example of
equation (1.1) and Table 2, with σ 2 = 2

3 being fixed.
Figure 1 shows the perfect forecast, the deliberately
misspecified extremist forecast, and the observation in
this setting. The bias of the extremist forecast is read-
ily seen when all forecast cases are taken into account.
However, if we restrict attention to cases where the ob-
servation exceeds a high threshold of 2, it is not ob-
vious whether the perfect or the extremist forecast is
preferable.4

In this simple example, we have seen that if we
stratify by the value of the realized observation, a de-
liberately misspecified forecast may appear appealing,

FIG. 1. The sample illustrates the conditional distribution of the
perfect forecast (green) and the extremist forecast (red, darker
shade) given the observation in the setting of equation (1.1) and
Table 2, where σ 2 = 2

3 . The vertical stripe, which is enlarged at
right, corresponds to cases where the respective observation ex-
ceeds a threshold value of 2.

4To provide analytical results, Xperfect|Y = y ∼ N ((1 − σ 2)y,

σ 2(1 − σ 2)) and Xextr|Y = y ∼N ((1 − σ 2)y + 5
2 , σ 2(1 − σ 2)).
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while an ideal forecast may appear flawed, even though
the forecasts are based on the same information set.
Fortunately, unwanted effects of this type are avoided
if we stratify by the value of the forecast. To see this,
note that ideal predictive distributions and their in-
duced point forecasts satisfy the autocalibration prop-
erty (2.3) and, subject to conditions, the unbiasedness
property (2.4), respectively.

From a bivariate extreme value theory perspective,
an alternative approach to evaluating deterministic
forecasts of extreme events can be described as fol-
lows. In a first step, the marginal distributions of the
forecasts and the observations are compared. In case
of comparing the perfect and the extremist forecasts,
the difference in the respective distributions is appar-
ent. By contrast, if point forecasts are produced by
drawing random samples from the forecast distribu-
tions, the marginal distributions of the perfect and cli-
matological forecaster are identical. In a second step,
measures of asymptotic extremal dependence proposed
by Coles, Heffernan and Tawn (1999) can be used to
assess the closeness of the copula to perfect depen-
dence in the upper tail. While the perfect and extrem-
ist forecaster show identical asymptotic dependence,
computing such measures allows to clearly distinguish
between the perfect forecaster and the climatological
forecaster. Stephenson et al. (2008) use these measures
of extremal dependence to construct performance mea-
sures for evaluating binary forecasts of extreme events
based on contingency tables which, however, were
later shown to exhibit undesirable properties (Ferro and
Stephenson, 2011).

2.2 Proper scoring rules and consistent scoring
functions

In the preceding section, we have introduced calibra-
tion and sharpness as key aspects of the quality of prob-
abilistic forecasts. Proper scoring rules assess calibra-
tion and sharpness simultaneously and play key roles in
the comparative evaluation and ranking of competing
forecasts (Gneiting and Raftery, 2007). Specifically, let
F denote a class of probability distributions on �Y , the
set of possible values of the observation Y . A scoring
rule is a mapping S : F ×�Y −→ R∪{∞} that assigns
a numerical penalty based on the predictive distribution
F ∈ F and observation y ∈ �Y . We take scoring rules
to be negatively oriented, that is, smaller scores indi-
cate better predictions, and generally identify a predic-
tive distribution with its CDF. A scoring rule is proper
relative to the class F if

(2.5) EGS(G,Y ) ≤ EGS(F,Y )

for all probability distributions F,G ∈ F . It is strictly
proper relative to the class F if the above holds with
equality only if F = G. In what follows we assume
that �Y = R. Scoring rules provide summary mea-
sures of predictive performance, and in practical appli-
cations, competing forecasting methods are compared
and ranked in terms of the mean score over the cases
in a test set. Propriety is a critically important prop-
erty that encourages honest and careful forecasting, as
the expected score is minimized if the quoted predic-
tive distribution agrees with the actually assumed, un-
der which the expectation in (2.5) is computed.

The most popular proper scoring rules for real-
valued quantities are the logarithmic score (LogS), de-
fined as

(2.6) LogS(F, y) = − logf (y),

where f denotes the density of F (Good, 1952), which
applies to absolutely continuous distributions only,
and the continuous ranked probability score (CRPS),
which is defined as

(2.7) CRPS(F, y) =
∫ ∞
−∞

(
F(z) − 1{y ≤ z})2 dz

directly in terms of the predictive CDF (Matheson and
Winkler, 1976). The CRPS can be interpreted as the
integral of the proper Brier score (Brier, 1950, Gneiting
and Raftery, 2007),

(2.8) BSz(F, y) = (
F(z) − 1{y ≤ z})2

,

for the induced probability forecast for the binary event
of the observation not exceeding the threshold value z.
Alternative representations of the CRPS are discussed
in Gneiting and Raftery (2007) and Gneiting and Ran-
jan (2011).

The quality of point forecasts is typically assessed
by means of a scoring function s(x, y) that assigns a
numerical score based on the point forecast, x, and
the respective observation, y. As in the case of proper
scoring rules, competing forecasting methods are com-
pared and ranked in terms of the mean score over the
cases in a test set. Popular scoring functions include the
squared error, s(x, y) = (x − y)2, and the absolute er-
ror, s(x, y) = |x −y|, for which we have reported mean
scores in Table 2.

To avoid misguided inferences, the scoring function
and the forecasting task have to be matched carefully,
either by specifying the scoring function ex ante, or by
employing scoring functions that are consistent for a
target functional T, relative to the class F of predictive
distributions at hand, in the technical sense that

EF s
(
T(F ),Y

) ≤ EF s(x,Y )
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for all x ∈ R and F ∈ F (Gneiting, 2011). For instance,
the squared error scoring function is consistent for the
mean or expectation functional relative to the class of
the probability measures with finite first moment, and
the absolute error scoring function is consistent for the
median functional.

Consistent scoring functions become proper scoring
rules if the point forecast is chosen to be the Bayes rule
or optimal point forecast under the respective predic-
tive distribution. In other words, if the scoring function
s is consistent for the functional T, then

S(F, y) = s
(
T(F ), y

)
defines a proper scoring rule relative to the class F . For
instance, squared error can be interpreted as a proper
scoring rule provided the point forecast is the mean of
the respective predictive distribution, and absolute er-
ror yields a proper scoring rule if the point forecast is
the median of the predictive distribution.

2.3 Understanding the forecaster’s dilemma

We are now in the position to analyze and understand
the forecaster’s dilemma both within the joint distri-
bution framework and from the perspective of proper
scoring rules. While there is no unique definition of
extreme events in the literature, we follow common
practice and take extreme events to be observations
that fall into the tails of the underlying distribution. In
public discussions of the quality of forecasts, attention
often falls exclusively on cases with extreme observa-
tions. As we have seen, under this practice even the
most skillful forecasts available are bound to fail in the
public eye, particularly when the signal-to-noise ratio
in the data generating process is low. In a nutshell, if
forecast evaluation is restricted to cases where the ob-
servation falls into a particular region of the outcome
space, forecasters are encouraged to unduly emphasize
this region.

Within the joint distribution framework of Sec-
tion 2.1, any stratification by, and conditioning on,
the realized values of the outcome is problematic and
ought to be avoided, as general theoretical guidance
for the interpretation and assessment of the resulting
conditional distribution [F |Y ] does not appear to be
available. In view of the likelihood-baserate factoriza-
tion (2.2) of the joint distribution of the forecast and the
observation, the forecaster’s dilemma arises as a conse-
quence. Fortunately, stratification by, and conditioning
on, the values of a point forecast or probabilistic fore-
cast is unproblematic from a decision-theoretic per-
spective, as the autocalibration property (2.3) lends it-
self to practical tools and tests for calibration checks, as

discussed by Gneiting, Balabdaoui and Raftery (2007),
Held, Rufibach and Balabdaoui (2010) and Strähl and
Ziegel (2015), among others.

From the perspective of proper scoring rules,
Gneiting and Ranjan (2011) showed that a proper scor-
ing rule S0 is rendered improper if the product with a
nonconstant weight function w(y) is formed. Specifi-
cally, consider the weighted scoring rule

(2.9) S(F, y) = w(y)S0(F, y).

Then if Y has density g, the expected score EgS(F,Y )

is minimized by the predictive distribution F with den-
sity

(2.10) f (y) = w(y)g(y)∫
w(z)g(z)dz

,

which is proportional to the product of the weight func-
tion, w, and the true density, g. In other words, fore-
casters are encouraged to deviate from their true beliefs
and misspecify their predictive densities, with multipli-
cation by the weight function (and subsequent normal-
ization) being an optimal strategy. Therefore, the scor-
ing rule S in (2.9) is improper.

To connect to the forecaster’s dilemma, consider the
indicator weight function wr(y) = 1{y ≥ r}. The use
of the weight function wr does not directly corre-
spond to restricting the evaluation set to cases where
the observation exceeds or equals the threshold value
r , as instead of excluding the nonextreme cases, a
score of zero is assigned to them. However, when fore-
cast methods are compared, the use of the indicator
weighted scoring rule corresponds to a multiplicative
scaling of the restricted score, and so the ranking of
competing forecasts is the same as that obtained by re-
stricting the evaluation set.

2.4 Tailoring proper scoring rules

The forecaster’s dilemma gives rise to the question
how one might apply scoring rules to probabilistic
forecasts when particular emphasis is placed on ex-
treme events, while retaining propriety. To this end,
Diks, Panchenko and van Dijk (2011) and Gneiting
and Ranjan (2011) consider the use of proper weighted
scoring rules that emphasize specific regions of inter-
est.

Diks, Panchenko and van Dijk (2011) propose the
conditional likelihood (CL) score,

(2.11) CL(F, y) = −w(y) log
(

f (y)∫ ∞
−∞ w(z)f (z)dz

)
,



112 LERCH, THORARINSDOTTIR, RAVAZZOLO AND GNEITING

and the censored likelihood (CSL) score,

CSL(F, y)

= −w(y) logf (y)(2.12)

− (
1 − w(y)

)
log

(
1 −

∫ ∞
−∞

w(z)f (z)dz

)
.

Here, w is a weight function such that 0 ≤ w(z) ≤ 1
and

∫
w(z)f (z)dz > 0 for all potential predictive dis-

tributions, where f denotes the density of F . When
w(z) ≡ 1, both the CL and the CSL score reduce to the
unweighted logarithmic score (2.6). Gneiting and Ran-
jan (2011) propose the threshold-weighted continuous
ranked probability score (twCRPS), defined as

(2.13)

twCRPS(F, y)

=
∫ ∞
−∞

w(z)
(
F(z) − 1{y ≤ z})2 dz,

where, again, w is a nonnegative weight function.
When w(z) ≡ 1, the twCRPS reduces to the un-
weighted CRPS (2.7). For recent applications of the
twCRPS and a quantile-weighted version of the CRPS
see, for example, Cooley, Davis and Naveau (2012),
Lerch and Thorarinsdottir (2013) and Manzan and Ze-
rom (2013). Zou and Yuan (2008) use the quantile-
weighted version as an objective function in quantile
regression.

As noted, these scoring rules are proper and can be
tailored to the region of interest. When interest cen-
ters on the right tail of the distribution, we may choose
w(z) = 1{z ≥ r} for some high threshold r . However,
the indicator weight function might result in violations
of the regularity conditions for the CL and CSL scor-
ing rule, unless all predictive densities considered are
strictly positive. Furthermore, predictive distributions
that are identical on [r,∞), but differ on (−∞, r),
cannot be distinguished. Weight functions based on
Gaussian CDFs as proposed by Amisano and Giaco-
mini (2007) and Gneiting and Ranjan (2011) provide
suitable alternatives. For instance, we can set w(z) =
�(z|r, σ 2) for some σ > 0, where �(·|μ,σ 2) denotes
the CDF of a normal distribution with mean μ and vari-
ance σ 2. Weight functions emphasizing the left tail of
the distribution can be constructed similarly, by using
w(z) = 1{z ≤ r} or w(z) = 1 − �(z|r, σ 2) for some
low threshold r . In practice, the weighted integrals in
(2.11), (2.12) and (2.13) may need to be approximated
by discrete sums, which corresponds to the use of a dis-
crete weight measure, rather than a weight function, as
discussed by Gneiting and Ranjan (2011).

In what follows, we focus on the above proper
variants of the LogS and the CRPS. However, fur-
ther types of proper weighted scoring rules can be
developed. Pelenis (2014) introduces the penalized
weighted likelihood score and the incremental CPRS.
Tödter and Ahrens (2012) and Juutilainen, Tamminen
and Röning (2012) propose a logarithmic scoring rule
that depends on the predictive CDF rather than the
predictive density. As hinted at by Juutilainen, Tam-
minen and Röning (2012), page 466, this score can
be generalized to a weighted version, which we call
the threshold-weighted continuous ranked logarithmic
score (twCRLS),

(2.14)
twCRLS(F, y)

= −
∫
R

w(z) log
∣∣F(z) − 1{y > z}∣∣ dz.

In analogy to the twCRPS (2.13) being a weighted in-
tegral of the Brier score in (2.8), the twCRLS (2.14)
can be interpreted as a weighted integral of the dis-
crete logarithmic score (LS) (Good, 1952, Gneiting
and Raftery, 2007),

LSz(F, y) = − log
∣∣F(z) − 1{y > z}∣∣

= −1{y ≤ z} logF(z)

− 1{y > z} log
(
1 − F(z)

)
,

(2.15)

for the induced probability forecast for the binary event
of the observation not exceeding the threshold value z.
The aforementioned weight functions and discrete ap-
proximations can be employed.

2.5 Diebold–Mariano tests

Formal statistical tests of equal predictive perfor-
mance have been widely used, particularly in the eco-
nomic literature. Turning now to a time series setting,
we consider probabilistic forecasts Ft and Gt for an
observation yt+k that lies k time steps ahead. Given a
proper scoring rule S, we denote the respective mean
scores on a test set ranging from time t = 1, . . . , n by

S̄F
n = 1

n

n∑
t=1

S(Ft , yt+k)

and

S̄G
n = 1

n

n∑
t=1

S(Gt , yt+k),

respectively. Diebold and Mariano (1995) proposed the
use of the test statistic

(2.16) tn = √
n

S̄F
n − S̄G

n

σ̂n

,
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where σ̂ 2
n is a suitable estimator of the asymptotic vari-

ance of the score difference. Under the null hypothesis
of a vanishing expected score difference and standard
regularity conditions, the test statistic tn in (2.16) is
asymptotically standard normal (Diebold and Mariano,
1995, Giacomini and White, 2006, Diebold, 2015).
When the null hypothesis is rejected in a two-sided test,
F is preferred if the test statistic tn is negative, and G

is preferred if tn is positive.
For j = 0,1, . . . , let γ̂j denote the lag j sam-

ple autocovariance of the sequence S(F1, y1+k) −
S(G1, y1+k), . . . ,S(Fn, yn+k) − S(Gn, yn+k) of score
differences. Diebold and Mariano (1995) noted that for
ideal forecasts at the k step ahead prediction horizon
the respective errors are at most (k − 1)-dependent.
Motivated by this fact, Gneiting and Ranjan (2011) use
the estimator

(2.17) σ̂ 2
n =

⎧⎪⎪⎨
⎪⎪⎩

γ̂0 if k = 1,

γ̂0 + 2
k−1∑
j=1

γ̂j if k ≥ 2

for the asymptotic variance in the test statistic (2.16).
While the at most (k − 1)-dependence assumption
might be violated in practice for various reasons, this
appears to be a reasonable and practically useful choice
nonetheless. Diks, Panchenko and van Dijk (2011) pro-
pose the use of the heteroskedasticity and autocorrela-
tion consistent (HAC) estimator

(2.18) σ̂ 2
n = γ̂0 + 2

J∑
j=1

(
1 − j

J

)
γ̂j ,

where J is the largest integer less than or equal to n1/4.
When this latter estimator is used, larger estimates of
the asymptotic variance and smaller absolute values of
the test statistic (2.16) tend to be obtained, as com-
pared to using the estimator (2.17), particularly when
the sample size n is large.

3. SIMULATION STUDIES

We now present simulation studies. In Section 3.1,
we mimic the experiment reported on in Table 2
for point forecasts, now illustrating the forecaster’s
dilemma on probabilistic forecasts. Furthermore, we
consider the influence of the signal-to-noise ratio in
the data generating process. Thereafter in the following
sections, we investigate whether or not there is a case
for the use of proper weighted scoring rules, as op-
posed to their unweighted counterparts, when interest
focuses on extremes. As it turns out, the fundamental

lemma of Neyman and Pearson (1933) provides theo-
retical guidance in this regard. All results in this section
are based on 10,000 replications.

3.1 The influence of the signal-to-noise ratio

Let us recall that in the simulation setting of equa-
tion (1.1) the observation satisfies Y |μ ∼ N (μ,σ 2)

where μ ∼ N (0,1 − σ 2). In Table 2, we have consid-
ered three competing point forecasts – termed the per-
fect, unconditional and extremist forecasts – and have
noted the appearance of the forecaster’s dilemma when
the quality of the forecasts is assessed on cases of ex-
treme outcomes only.

We now turn to probabilistic forecasts and study
the effect of the parameter σ ∈ (0,1) that governs
predictability. Small values of σ correspond to high
signal-to-noise ratios, and large values of σ to small
signal-to-noise ratios, respectively. Marginally, Y is
standard normal for all values of σ . In the limit as
σ → 0, the perfect predictive distribution approaches
the point measure in the random mean μ; as σ → 1,
it approaches the unconditional standard normal dis-
tribution. The perfect probabilistic forecast is ideal in
the technical sense of Section 2.1, and thus will be pre-
ferred over any other predictive distribution (with iden-
tical information basis) by any rational user (Diebold,
Gunther and Tay, 1998, Tsyplakov, 2013).

In Table 3, we report mean scores for the three prob-
abilistic forecasts when σ 2 = 2

3 is fixed. Under the
CRPS and LogS, the perfect forecast outperforms the
others, as expected, and the extremist forecast performs
by far the worst. However, these results change dras-
tically if cases with extreme observations are consid-
ered only. In analogy to the results in Table 2, the per-
fect forecast is discredited under the restricted scores
rCRPS and rLogS, whereas the misguided extrem-
ist forecast appears to excel, thereby demonstrating

TABLE 3
Mean scores for the probabilistic forecasts in Table 2, where the
observation Y satisfies (1.1) with σ 2 = 2

3 being fixed. The CRPS
and LogS are computed based on all observations, whereas the

restricted versions (rCRPS and rLogS) are based on observations
exceeding 1.64, the 95th percentile of the population, only. The

lowest value in each column is shown in bold

Forecast CRPS LogS rCRPS rLogS

Perfect 0.46 1.22 0.96 2.30
Unconditional 0.57 1.42 1.48 3.03
Extremist 2.05 5.90 0.79 1.88
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TABLE 4
Mean scores for the probabilistic forecasts in Table 2, where the
observation Y satisfies (1.1) with σ 2 = 2

3 being fixed, under the
proper weighted scoring rules twCRPS, CL, and CSL. For each
weight function and column, the lowest value is shown in bold

Threshold r Forecast twCRPS CL CSL

Indicator weight function, w(z) = 1{z ≥ 1.64}
1.64 Perfect 0.018 <0.001 0.164

Unconditional 0.019 0.002 0.204
Extremist 0.575 0.093 2.205

Gaussian weight function, w(z) = �(z|1.64,1)

1.64 Perfect 0.053 −0.043 0.298
Unconditional 0.062 −0.028 0.345
Extremist 0.673 0.379 1.625

the forecaster’s dilemma in the setting of probabilis-
tic forecasts. As shown in Table 4, under the proper
weighted scoring rules introduced in Section 2.4 with
weight functions that emphasize the right tail, the rank-
ings under the unweighted CRPS and LogS are re-
stored.

Next, we investigate the influence of the signal-to-
noise ratio in the data generating process on the appear-
ance and extent of the forecaster’s dilemma. As noted,
predictability increases with the parameter σ ∈ (0,1).
Figure 2 shows the mean CRPS and LogS for the three
probabilistic forecasts as a function of σ . The scores
for the unconditional forecast do not depend on σ .
The predictive performance of the perfect forecast de-
creases in σ , which is natural, as it is less beneficial
to know the value of μ when σ is large. The extrem-
ist forecast yields better scores as σ increases, which

can be explained by the increase in the predictive vari-
ance that allows for a better match between the prob-
abilistic forecast and the true distribution. For the im-
proper restricted scoring rules rCRPS and rLogS, the
same general patterns can be observed in Figure 3 –
the mean score increases in σ for the perfect forecast
and decreases for the extremist forecast. In accordance
with the forecaster’s dilemma, the extremist forecast
is now perceived to outperform its competitors for all
sufficiently large values of σ . However, for small val-
ues of σ , when the signal in μ is strong, the rankings
are the same as under the CRPS and LogS in Figure 2.
This illustrates the intuitively obvious observation that
the forecaster’s dilemma is tied to stochastic systems
with moderate to low signal-to-noise ratios, so that pre-
dictability is weak.

3.2 Power of Diebold–Mariano tests: Diks,
Panchenko and van Dijk (2011) revisited

While thus far we have illustrated the forecaster’s
dilemma, the unweighted CRPS and LogS are well
able to distinguish between the perfect forecast and its
competitors. In the subsequent sections, we investigate
whether there are benefits to using proper weighted
scoring rules, as opposed to their unweighted versions.

To begin with, we adopt the simulation setting in
Section 4 of Diks, Panchenko and van Dijk (2011).
Suppose that at time t = 1, . . . , n, the observations yt

are independent standard normal. We apply the two-
sided Diebold–Mariano test of equal predictive perfor-
mance to compare the ideal probabilistic forecast, the
standard normal distribution, to a misspecified com-

FIG. 2. Mean CRPS and LogS for the probabilistic forecasts in the setting of equation (1.1) and Table 2 as functions of the parameter
σ ∈ (0,1).
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FIG. 3. Mean of the improper restricted scoring rules rCRPS and rLogS for the probabilistic forecasts in the setting of equation (1.1) and
Table 2 as functions of the parameter σ ∈ (0,1). The restricted mean scores are based on the subset of observations exceeding 1.64 only.

petitor, a Student t distribution with five degrees of
freedom, mean 0 and variance 1. Following Diks,
Panchenko and van Dijk (2011), we use the nominal
level 0.05, the variance estimate (2.18), and the indi-
cator weight function w(z) = 1{z ≤ r}, and we vary
the sample size, n, with the threshold value r in such
a way that under the standard normal distribution the
expected number, c = 5, of observations in the relevant
region (−∞, r] remains constant.

Figure 4 shows the proportion of rejections of the
null hypothesis of equal predictive performance in fa-
vor of either the standard normal or the Student t dis-
tribution, respectively, as a function of the threshold
value r in the weight function. Rejections in favor of
the standard normal distribution represent true power,
whereas rejections in favor of the misspecified Stu-
dent t distribution are misguided. The curves for the
tests based on the twCRPS, CL and CSL scoring rules
agree with those in the left column of Figure 5 of Diks,
Panchenko and van Dijk (2011). At first sight, they
might suggest that the use of the indicator weight func-
tion w(z) = 1{z ≤ r} with emphasis on the extreme left
tail, as reflected by increasingly smaller values of r ,
yields increased power. At second sight, we need to
compare to the power curves for tests using the un-
weighted CRPS and LogS, based on the same sample
size, n, as corresponds to the threshold r at hand. These
curves suggest, perhaps surprisingly, that there may not
be an advantage to using weighted scoring rules. To the
contrary, the left-hand panel in Figure 4 suggests that
tests based on the unweighted LogS are competitive in
terms of statistical power.

3.3 The role of the Neyman–Pearson lemma

In order to understand this phenomenon, we draw a
connection to a cornerstone of test theory, namely, the
fundamental lemma of Neyman and Pearson (1933),
following the lead of Feuerverger and Rahman (1992)
and Reid and Williamson (2011). For the moment, we
consider one-sided rather than two-sided tests.

In the simulation setting described by Diks,
Panchenko and van Dijk (2011) and in the previous
section, any test of equal predictive performance can
be re-interpreted as a test of the simple null hypothesis
H0 of a standard normal population against the sim-
ple alternative H1 of a Student t population. We write
f0 and f1 for the associated density functions and P0
and P1 for probabilities under the respective hypothe-
ses. By the Neyman–Pearson lemma (Lehmann and
Romano, 2005, Theorem 3.2.1), under H0 and at any
level α ∈ (0,1) the unique most powerful test of H0
against H1 is the likelihood ratio test. The likelihood
ratio test rejects H0 if

∏n
t=1 f1(yt )/

∏n
t=1 f0(yt ) > k

or, equivalently, if

(3.1)
n∑

t=1

logf1(yt ) −
n∑

t=1

logf0(yt ) > log k,

where the critical value k is such that

P0

(∏n
t=1 f1(yt )∏n
t=1 f0(yt )

> k

)
= α.

Due to the optimality property of the likelihood ratio
test, its power,

(3.2) P1

(∏n
t=1 f1(yt )∏n
t=1 f0(yt )

> k

)
,
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FIG. 4. Frequency of correct rejections (in favor of the standard normal distribution, left panel) and false rejections (in favor of the Student
t distribution, right panel) in two-sided Diebold–Mariano tests in the simulation setting described in Section 3.2. The panels correspond to
those in the left hand column of Figure 5 in Diks, Panchenko and van Dijk (2011). The sample size n for the tests depends on the threshold r

in the indicator weight function w(z) = 1{z ≤ r} for the twCRPS, CL and CSL scoring rules such that under the standard normal distribution
there are five expected observations in the relevant interval (−∞, r].

gives a theoretical upper bound on the power of any test
of H0 versus H1. Furthermore, the optimality result is
robust, in the technical sense that minor misspecifica-
tions of either H0 or H1, as quantified by the Kullback–
Leibler divergence, lead to minor loss of power only
(Eguchi and Copas, 2006).

We now compare the likelihood ratio test to the one-
sided Diebold–Mariano test based on the logarithmic
score (LogS; equation (2.6)). This test uses the statistic
(2.16) and rejects H0 if

(3.3)
n∑

t=1

logf1(yt ) −
n∑

t=1

logf0(yt ) >
√

nσ̂nz1−α,

where z1−α is a standard normal quantile and σ̂ 2
n is

given by (2.17) or (2.18). Comparing with (3.1), we see
that the one-sided Diebold–Mariano test that is based
on the LogS has the same type of rejection region as the
likelihood ratio test. However, the Diebold–Mariano
test uses an estimated critical value, which may lead
to a level less or greater than the nominal level, α,
whereas the likelihood ratio test uses the (in the prac-
tice of forecasting unavailable) critical value that guar-
antees the desired nominal level, α.

In this light, it is not surprising that the one-sided
Diebold–Mariano test based on the LogS has power
close to the theoretical optimum in (3.2). We illustrate
this in Figure 5, where we plot the power and size of the

likelihood ratio test and one-sided Diebold–Mariano
tests based on the CRPS, twCRPS, LogS, CL and CSL
in the setting of the previous section. For small thresh-
old values, the Diebold–Mariano test based on the un-
weighted LogS has much higher power than tests based
on the weighted scores, even though it does not reach
the power of the likelihood ratio test, which can be ex-
plained by the use of an estimated critical value and in-
correct size properties. The theoretical upper bound on
the power is violated by Diebold–Mariano tests based
on the twCRPS and CL for threshold values between
0 and 1. However, the level of these tests exceeds the
nominal level of α = 0.05 with too frequent rejections
of H0. Adjusting the level of the tests to the nominal
level by using simulation-based critical values instead
increases the power of the tests and removes most of
the nonmonotonicity of the power curves, as illustrated
in the online supplement (Lerch et al., 2016). However,
such adjustments are not feasible in practice.

In the setting of two-sided tests, the connection to
the Neyman–Pearson lemma is less straightforward,
but the general principles remain valid and provide a
partial explanation of the behavior seen in Figure 4.

3.4 Power of Diebold–Mariano tests: Further
experiments

In the simulation experiments just reported,
Diebold–Mariano tests based on proper weighted scor-
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FIG. 5. Power (left) and level (right) of the likelihood ratio test (LRT) and one-sided Diebold–Mariano tests in the simulation setting
described in Section 3.2. The sample size n for the tests depends on the threshold r in the indicator weight function w(z) = 1{z ≤ r} for
the twCRPS, CL and CSL scoring rules such that under the standard normal distribution there are five expected observations in the relevant
interval (−∞, r]. In the panel for power, the shaded area above the curve for the LRT corresponds to theoretically unattainable values for a
test with nominal level. In the panel for level, the dashed line indicates the nominal level.

ing rules generally are unable to outperform tests based
on traditionally used, unweighted scoring rules. Sev-
eral potential reasons come to mind. As we have just
seen, when the true data generating process is given
by one of the competing forecast distributions, the
Neyman–Pearson lemma points at the superiority of
tests based on the unweighted LogS. Furthermore, in
the simulation setting considered thus far, the distribu-
tions considered differ both in the center, the left tail
and the right tail, and the test sample size varied with
the threshold for the weight function in a peculiar way.

Therefore, we now consider a revised simulation set-
ting, where we compare two forecast distributions nei-
ther of which corresponds to the true sampling distri-
bution, where the forecast distributions only differ on
the positive half-axis, and where the test sample size is
fixed at n = 100. The three candidate distributions are
given by �, a standard normal distribution with density
φ, by a heavy-tailed distribution H with density

h(x) = 1{x ≤ 0}φ(x) + 1{x > 0}3

8

(
1 + x2

4

)−5/2
,

and by an equally weighted mixture F of � and H ,
with density

f (x) = 1

2

(
φ(x) + h(x)

)
.

We perform two-sided Diebold–Mariano tests of equal
predictive performance based on the CRPS, twCRPS,
LogS, CL and CSL.

In Scenario A, the data are a sample from the stan-
dard normal distribution �, and we compare the fore-
casts F and H , respectively. In Scenario B, we inter-
change the roles of � and H , that is, the data are a
sample from H , and we compare the forecasts F and
�. The Neyman–Pearson lemma does not apply in this
setting. However, the definition of F as a weighted
mixture of the true distribution and a misspecified com-
petitor lets us expect that F is to be preferred over
the latter. Indeed, by Proposition 3 of Nau (1985), if
F = wG+ (1 −w)H with w ∈ [0,1] is a convex com-
bination of G and H , then

EGS(G,Y ) ≤ EGS(F,Y ) ≤ EGS(H,Y )

for any proper scoring rule S. As any utility function
induces a proper scoring rule via the respective Bayes
act,5 this implies that under G any rational decision
maker favors F over H (Dawid, 2007, Gneiting and
Raftery, 2007).

We estimate the frequencies of rejections of the null
hypothesis of equal predictive performance at level

5The Bayes act is the action that maximizes the ex ante expected
utility (Ferguson, 1967).
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FIG. 6. Scenario A in Section 3.4. The null hypothesis of equal predictive performance of F and H is tested under a standard normal pop-
ulation. The panels show the frequency of rejections in two-sided Diebold–Mariano tests in favor of either F (desired, left) or H (misguided,
right). The tests under the twCRPS, CL, use the weight function w(z) = 1{z ≥ r}, and the sample size is fixed at n = 100.

α = 0.05. The choice of the estimator for the asymp-
totic variance of the score difference in the Diebold–
Mariano test statistic (2.16) does not have a recogniz-
able effect in this setting, and so we show results under
the estimator (2.17) with k = 1 only.

Figure 6 shows rejection rates under Scenario A in
favor of F and H , respectively, as a function of the
threshold r in the indicator weight function w(z) =
1{z ≥ r} for the weighted scoring rules. The frequency
of the desired rejections in favor of F increases with
larger thresholds for tests based on the twCRPS and
CSL, thereby suggesting an improved discrimination
ability at high threshold values. Under the CL scor-
ing rule, the rejection rate decreases rapidly for larger
threshold values. This can be explained by the fact
that the weight function is a multiplicative component
of the CL score in (2.11). As r becomes larger and
larger, none of the 100 observations in the test sam-
ple exceed the threshold, and so the mean scores un-
der both forecasts vanish. This can also be observed in
Figure 4, where, however, the effect is partially con-
cealed by the increase of the sample size for more
extreme threshold values. Interestingly, an issue very
similar to that for the CL scoring rule arises in the as-
sessment of deterministic forecasts of rare and extreme
binary events, where performance measures based on
contingency tables have been developed and standard
measures degenerate to trivial values as events become
rarer (Marzban, 1998, Stephenson et al., 2008), pos-
ing a challenge that has been addressed by Ferro and
Stephenson (2011).

Figure 7 shows the respective rejection rates under
Scenario B, where the sample is generated from the
heavy-tailed distribution H , and the forecasts F and
� are compared. In contrast to the previous examples
the Diebold–Mariano test based on the CRPS shows a
higher frequency of the desired rejections in favor of F

than the test based on the LogS. However, for the tests
based on proper weighted scoring rules, the frequency
of the desired rejections in favor of F decays to zero
with increasing threshold value, and for the tests based
on the twCRPS and CSL, the frequency of the unde-
sired rejections in favor of � rises for larger threshold
values.

This seemingly counterintuitive observation can be
explained by the tail behavior of the forecast distribu-
tions, as follows. Consider the twCRPS and CSL with
the indicator weight function w(z) = 1{z ≥ r} and a
threshold r that exceeds the maximum of the given
sample. In this case, the scores do not depend on the
observations, and are solely determined by the respec-
tive tail probabilities, with the lighter tailed forecast
distribution receiving the better score. In a nutshell,
when the emphasis lies on a low-probability region
with few or no observations, the forecaster assigning
smaller probability to this region will be preferred. The
traditionally used unweighted scoring rules do not de-
pend on a threshold, and thus do not suffer from this
deficiency.

In comparisons of the mixture distribution F and the
lighter-tailed forecast distribution �, this leads to a loss
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FIG. 7. Scenario B in Section 3.4. The null hypothesis of equal predictive performance of F and � is tested under a Student t population.
The panels show the frequency of rejections in two-sided Diebold–Mariano tests in favor of either F (desired, left) or � (misguided, right).
The tests under the twCRPS, CL, and CSL scoring rules use the weight function w(z) = 1{z ≥ r}, and the sample size is fixed at n = 100.

of finite sample discrimination ability of the proper
weighted scoring rules as the threshold r increases.
This observation also suggests that any favorable finite
sample behavior of the Diebold–Mariano tests based
on weighted scoring rules in Scenario A might be gov-
erned by rejections due to the lighter tails of F com-
pared to H .

In summary, even though the simulation setting
at hand was specifically tailored to benefit proper
weighted scoring rules, these do not consistently per-
form better in terms of statistical power when com-
pared to their unweighted counterparts. Any advan-
tages vanish at increasingly extreme threshold values
in case the actually superior distribution has heavier
tails.

4. CASE STUDY

Based on the work of Clark and Ravazzolo (2015),
we compare probabilistic forecasting models for key
macroeconomic variables for the United States, serving
to demonstrate the forecaster’s dilemma and the use of
proper weighted scoring rules in an application setting.

4.1 Data

We consider time series of quarterly gross domestic
product (GDP) growth, computed as 100 times the log
difference of real GDP, and inflation in the GDP price
index (henceforth inflation), computed as 100 times the
log difference of the GDP price index, over an evalua-
tion period from the first quarter of 1985 to the second

quarter of 2011, as illustrated in Figure 8. The data are
available from the Federal Reserve Bank of Philadel-
phia’s real time dataset.6

For each quarter t in the evaluation period, we use
the real-time data vintage t to estimate the forecast-
ing models and construct forecasts for period t and be-
yond. The data vintage t includes information up to
time t −1. The one-quarter ahead forecast is thus a cur-
rent quarter (t) forecast, while the two-quarter ahead
forecast is a next quarter (t + 1) forecast, and so forth
(Clark and Ravazzolo, 2015). Here, we focus on fore-
cast horizons of one and four quarters ahead.

As the GDP data are continually revised, it is not
immediate which revision should be used as the real-
ized observation. We follow Romer and Romer (2000)
and Faust and Wright (2009) who use the second avail-
able estimates as the actual data. Specifically, suppose
a forecast for quarter t + k is issued based on the vin-
tage t data ending in quarter t − 1. The correspond-
ing realized observation is then taken from the vintage
t + k + 2 data set. This approach may entail structural
breaks in case of benchmark revisions, but is compa-
rable to real-world forecasting situations where noisy
early vintages are used to estimate predictive models
(Faust and Wright, 2009).

6http://www.phil.frb.org/research-and-data/real-time-center/
real-time-data/.

http://www.phil.frb.org/research-and-data/real-time-center/real-time-data/
http://www.phil.frb.org/research-and-data/real-time-center/real-time-data/
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FIG. 8. Observations of GDP growth and inflation in the U.S. from the first quarter of 1985 to the second quarter of 2011. Solid circles
indicate observations considered here as extreme events.

4.2 Forecasting models

We consider autoregressive (AR) and vector autore-
gressive (VAR) models, the specifications of which are
given now. For further details and a discussion of alter-
native models, see Clark and Ravazzolo (2015).

Our baseline model is an AR(p) scheme with con-
stant shock variance. Under this model, the conditional
distribution of Yt is given by

(4.1)

Yt |y<t , b0, . . . , bp, σ

∼ N
(
b0 +

p∑
i=1

biyt−i , σ
2

)
,

where p = 2 for GDP growth and p = 4 for inflation.
Here, y<t denotes the vector of the realized values of
the variable Y prior to time t . We estimate the model
parameters b0, . . . , bp and σ in a Bayesian fashion us-
ing Markov chain Monte Carlo (MCMC) under a re-
cursive estimation scheme, where the data sample y<t

is expanded as forecasting moves forward in time. The
conditional predictive distribution then is the Gaussian
variance-mean mixture

(4.2)
1

m

m∑
j=1

N
(
b

(j)
0 +

p∑
i=1

b
(j)
i yt−i ,

(
σ (j))2

)
,

where m = 5000 and (b
(1)
0 , . . . , b

(1)
p , σ (1)), . . . ,

(b
(m)
0 , . . . , b

(m)
p , σ (m)) is a sample from the posterior

distribution of the model parameters. For the other
forecasting models, we proceed analogously.

A more flexible approach is the Bayesian AR model
with time-varying parameters and stochastic specifi-
cation of the volatility (AR-TVP-SV) proposed by

Cogley and Sargent (2005), which has the hierarchical
structure given by

Yt |y<t , b0,t , . . . , bp,t , λt

∼ N
(
b0,t +

p∑
i=1

bi,t yt−i , λt

)
,

bi,t |bi,t−1, τ ∼ N
(
bi,t−1, τ

2)
, i = 0, . . . , p,

logλt |λt−1, σ ∼ N
(
logλt−1, σ

2)
.

(4.3)

Again, we set p = 2 for GDP growth and p = 4 for
inflation.

In a multivariate extension of the AR models, we
consider VAR schemes where GDP growth, inflation,
unemployment rate and three-month government bill
rate are modeled jointly. Specifically, the conditional
distribution of the four-dimensional vector Yt is given
by the multivariate normal distribution

(4.4)

Yt |Y<t ,b0,B1, . . . ,Bp,�

∼ N4

(
b0 +

p∑
i=1

Biyt−1,�

)
,

where Y<t denotes the data prior to time t , � is a 4×4
covariance matrix, b0 is a vector of intercepts, and Bi is
a 4× 4 matrix of lag i coefficients, where i = 1, . . . , p.
Here, we take p = 4. The univariate predictive distri-
butions for GDP growth and inflation arise as the re-
spective margins of the multivariate posterior predic-
tive distribution.

Finally, we consider a VAR model with time-varying
parameters and stochastic specification of the volatility
(VAR-TVP-SV), which is a multivariate extension of
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FIG. 9. One-quarter ahead forecasts of U.S. GDP growth generated by the AR, AR-TVP-SV, VAR, and VAR-TVP-SV models. The median
of the predictive distribution is shown in the black solid line, and the central 50% and 90% prediction intervals are shaded in dark and light
gray, respectively. The red line shows the corresponding observations.

the AR-TVP-SV model (Cogley and Sargent, 2005).
Let β t denote the vector of size 4(4p + 1) compris-
ing the parameters b0,t and B1,t , . . . ,Bp,t at time t , set
�t = diag(λ1,t , . . . , λ4,t ) and let A be a lower triangu-
lar matrix with ones on the diagonal and nonzero ran-
dom coefficients below the diagonal. The VAR-TVP-
SV model takes the hierarchical form

Yt |Y<t ,β t ,�t ,A

∼ N4

(
b0,t +

p∑
i=1

Bi,tyt−1,A−1�t

(
A−1)�)

,

β t |β t−1,Q ∼ N4(4p+1)(β t−1,Q),(4.5)

logλi,t |λi,t−1, σi ∼ N
(
logλi,t−1, σ

2
i

)
,

i = 1, . . . ,4.

We set p = 2 and refer to Clark and Ravazzolo (2015)
for further details of the notation, the model, and its
estimation.

Figure 9 shows one-quarter ahead forecasts of GDP
growth over the evaluation period. The baseline models
with constant volatility generally exhibit wider predic-
tion intervals, while the TVP-SV models show more
pronounced fluctuations both in the median forecast
and the associated uncertainty. In 1992 and 1996, the
Bureau of Economic Analysis performed benchmark
data revisions, which causes the prediction uncertainty
of the baseline models to increase substantially. The
more flexible TVP-SV models seem less sensitive to
these revisions.

4.3 Results

To compare the predictive performance of the four
forecasting models, Table 5 shows the mean CRPS
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TABLE 5
Mean CRPS and mean LogS for probabilistic forecasts of GDP
growth and inflation in the U.S. at prediction horizons of k = 1
and k = 4 quarters, respectively, for the first quarter of 1985 to
the second quarter of 2011. For each variable and column, the

lowest value is in bold

CRPS LogS

k = 1 k = 4 k = 1 k = 4

GDP growth
AR 0.330 0.359 1.044 1.120
AR-TVP-SV 0.292 0.329 0.833 1.019
VAR 0.385 0.402 1.118 1.163
VAR-TVP-SV 0.359 0.420 0.997 1.257

Inflation
AR 0.167 0.187 0.224 0.374
AR-TVP-SV 0.143 0.156 0.047 0.175
VAR 0.170 0.198 0.235 0.428
VAR-TVP-SV 0.162 0.201 0.179 0.552

and LogS over the evaluation period. For the LogS,
we follow extant practice in the economic literature
and employ the quadratic approximation proposed by
Adolfson, Lindé and Villani (2007). Specifically, we
find the mean, μ̂F and variance, σ̂ 2

F , of a sample
x̂1, . . . , x̂m, where x̂i is a random number drawn from
the ith mixture component of the posterior predictive
distribution (4.2), and compute the logarithmic score
under the assumption of a normal predictive distribu-
tion with mean μ̂F and variance σ̂ 2

F .7 To compute the
CRPS and the threshold-weighted CRPS, we use the
numerical methods proposed by Gneiting and Ranjan
(2011).

The relative predictive performance of the forecast-
ing models is consistent across the two variables and
the two proper scoring rules. The AR-TVP-SV model
has the best predictive performance and outperforms

7We believe that there are more efficient and more theoretically
principled ways of approximating the LogS in Bayesian settings.
However, these considerations are beyond the scope of the paper,
and we leave them to future work. Here, we use the quadratic ap-
proximation based on a sample. This very nearly corresponds to
replacing the LogS by the proper Dawid–Sebastiani score (Dawid
and Sebastiani, 1999, DSS; Gneiting and Raftery, 2007), which for
a predictive distribution F with mean μF and finite variance σ 2

F is
given by

DSS(F, y) = 2 logσF + (y − μF )2

σ 2
F

.

The quadratic approximation is infeasible for the CL and CSL scor-
ing rules, as it then leads to improper scoring rules; see Appendix.

the baseline AR model. The p-values for the respec-
tive two-sided Diebold–Mariano tests range from 0.00
to 0.06, except for the LogS for GDP growth at a pre-
diction horizon of k = 4 quarters, where the p-value
is 0.37. However, the VAR models fail to outperform
the simpler AR models. As we do not impose sparsity
constraints on the parameters of the VAR models, this
is likely due to overly complex forecasting models and
overfitting, in line with results of Holzmann and Eu-
lert (2014) and Clark and Ravazzolo (2015) in related
economic and financial case studies.

To relate to the forecaster’s dilemma, we restrict at-
tention to extremes events. For GDP growth, we con-
sider quarters with observed growth less than r = 0.1
only. For inflation, we restrict attention to high values
in excess of r = 0.98. In either case, this corresponds
to using about 10% of the observations. Table 6 shows
the results of restricting the computation of the mean
CRPS and the mean LogS to these observations only.
For both GDP growth and inflation, the baseline AR
model is considered best, and the AR-TVP-SV model
appears to perform poorly. These restricted scores thus
result in substantially different rankings than the proper
scoring rules in Table 5, thereby illustrating the fore-
caster’s dilemma. Strikingly, under the restricted as-
sessment all four models seem less skillful at predict-
ing inflation in the current quarter than four quarters
ahead. This is a counterintuitive result that illustrates
the dangers of conditioning on outcomes and should

TABLE 6
Mean restricted CRPS (rCRPS) and restricted LogS (rLogS) for

probabilistic forecasts of GDP growth and inflation in the U.S. at
prediction horizons of k = 1 and k = 4 quarters, respectively, for

the first quarter of 1985 to the second quarter of 2011. The means
are computed on instances when the observation is smaller than

0.10 (GDP) or larger than 0.98 (inflation) only. For each variable
and column, the lowest value is shown in bold

rCRPS rLogS

k = 1 k = 4 k = 1 k = 4

GDP growth
AR 0.654 0.870 1.626 2.010
AR-TVP-SV 0.659 0.970 2.016 3.323
VAR 0.827 0.924 2.072 2.270
VAR-TVP-SV 0.798 0.978 2.031 2.409

Inflation
AR 0.214 0.157 0.484 0.296
AR-TVP-SV 0.236 0.179 0.619 0.327
VAR 0.203 0.147 0.424 0.317
VAR-TVP-SV 0.302 0.247 0.950 0.849
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TABLE 7
Mean threshold-weighted CRPS for probabilistic forecasts of GDP

growth and inflation in the U.S. at prediction horizons of k = 1
and k = 4 quarters, respectively, under distinct weight functions,
for the first quarter of 1985 to the second quarter of 2011. For

each variable and column, the lowest value is shown in bold

twCRPS

k = 1 k = 4 k = 1 k = 4

GDP growth wI(z) = 1{z ≤ 0.1} wG(z) = 1−�(z|0.1,1)

AR 0.062 0.068 0.111 0.120
AR-TVP-SV 0.052 0.062 0.101 0.115
VAR 0.062 0.062 0.119 0.119
VAR-TVP-SV 0.059 0.080 0.115 0.135

Inflation wI(z) = 1{z ≥ 0.98} wG(z) = �(z|0.98,1)

AR 0.026 0.032 0.027 0.031
AR-TVP-SV 0.018 0.018 0.021 0.022
VAR 0.026 0.033 0.025 0.031
VAR-TVP-SV 0.022 0.037 0.024 0.034

be viewed as a further manifestation of the forecaster’s
dilemma.

In Table 7, we show results for the proper twCRPS
under weight functions that emphasize the respective
region of interest. For both variables, this yields rank-
ings that are similar to those in Table 5. However,
the p-values for binary comparisons with two-sided
Diebold–Mariano tests generally are larger than those
under the unweighted CRPS. The AR-TVP-SV model
is predominantly the best, and the current quarter fore-
casts are deemed more skillful than those four quar-
ters ahead. To summarize, our case study suggests
that modeling volatility with time-varying parameters
improves predictive performance, and that univariate
models outperform multivariate models, at least in the
absence of sparsity constraints. These findings also
hold when interest centers on events in the tails of
the distributions, and proper weighted scoring rules are
used for forecast evaluation. The model rankings and
relative score differences are largely consistent when
the threshold in the weight functions is varied, as illus-
trated in the online supplement (Lerch et al., 2016).

5. DISCUSSION

We have studied the dilemma that occurs when fore-
cast evaluation is restricted to cases with extreme ob-
servations, a procedure that appears to be common
practice in public discussions of forecast quality. As
we have seen, under this practice even the most skillful
forecasts available are bound to be discredited when

the signal-to-noise ratio in the data generating pro-
cess is low. Key examples might include macroeco-
nomic and seismological predictions. Notably, in oper-
ational earthquake forecasting predicted event proba-
bilities are low, but high probability gains are achieved
by state of the art forecasting methods (Jordan et al.,
2011). In such settings, it is important for forecasters,
decision makers, journalists and the general public to
be aware of the forecaster’s dilemma. Otherwise, char-
latans might be given undue attention and recognition,
and critical societal decisions could be based on mis-
guided predictions. The forecaster’s dilemma is closely
connected to the concept of hindsight bias in psychol-
ogy (Kahneman, 2012), and can be interpreted as an
extreme form thereof.

We have offered two complementary explanations of
the forecaster’s dilemma. From the joint distribution
perspective of Section 2.1 stratifying by, and condition-
ing on, the realized value of the outcome is problem-
atic in forecast evaluation, as theoretical guidance for
the interpretation and assessment of the resulting con-
ditional distributions is unavailable. In contrast strati-
fying by, and conditioning on, the forecast is unprob-
lematic. From the perspective of proper scoring rules in
Section 2.3, restricting the outcome space corresponds
to the multiplication of the scoring rule by an indicator
weight function, which renders any proper score im-
proper, with an explicit hedging strategy being avail-
able.

Arguably the only remedy is to consider all available
cases when evaluating predictive performance. Proper
weighted scoring rules emphasize specific regions of
interest and facilitate interpretation (Haiden, Magnus-
son and Richardson, 2014). By identifying which of
several competing forecast models perform best for re-
gions of interest, they may further prove useful for
combining forecasts; see Gneiting and Ranjan (2013)
for a recent review of combination methods for predic-
tive distributions, and Lerch and Thorarinsdottir (2013)
for a related approach in probabilistic weather fore-
casting. Interestingly, however, the Neyman–Pearson
lemma and our simulation studies suggest that in gen-
eral the benefits of using proper weighted scoring rules
in terms of power are rather limited, as compared to us-
ing standard, unweighted scoring rules. Any potential
advantages vanish under weight functions with increas-
ingly extreme threshold values, where the finite sample
behavior of Diebold–Mariano tests depends on the tail
properties of the forecast distributions only.

When evaluating probabilistic forecasts with empha-
sis on extremes, one could also consider functionals of
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the predictive distributions, such as the induced prob-
ability forecasts for binary tail events, as utilized in
a recent comparative study by Williams, Ferro and
Kwasniok (2014). Another option is to consider the
induced quantile forecasts, or related point summaries
of the (tails of the) predictive distributions, at low or
high levels, say α = 0.975 or α = 0.99, as is com-
mon practice in financial risk management, both for
regulatory purposes and internally at financial institu-
tions (McNeil, Frey and Embrechts, 2015). In this con-
text, Holzmann and Eulert (2014) studied the power
of Diebold–Mariano tests for quantile forecasts at ex-
treme levels, and Fissler, Ziegel and Gneiting (2016)
raise the option of comparative backtests of Diebold–
Mariano-type in banking regulation. Ehm et al. (2016)
propose decision-theoretically principled, novel ways
of evaluating quantile and expectile forecasts.

Variants of the forecaster’s dilemma have been dis-
cussed in various strands of literature. Centuries ago,
Bernoulli (1713) argued that even the most foolish pre-
diction might attract praise when a rare event happens
to materialize, referring to lyrics by Owen (1607) that
are quoted in the front matter of our paper.

Tetlock (2005) investigated the quality of probabil-
ity forecasts made by human experts for U.S. and
world events. He observed that while forecast quality
is largely independent of an expert’s political views, it
is strongly influenced by how a forecaster thinks. Fore-
casters who “know one big thing” tend to state overly
extreme predictions and, therefore, tend to be outper-
formed by forecasters who “know many little things”.
Furthermore, Tetlock (2005) found an inverse relation-
ship between the media attention received by the ex-
perts and the accuracy of their predictions, and of-
fered psychological explanations for the attractiveness
of extreme predictions for both forecasters and fore-
cast consumers. Media attention might thus not only
be centered around extreme events, but also around less
skillful forecasters with a tendency towards misguided
predictions.

Denrell and Fang (2010) reported similar observa-
tions in the context of managers and entrepreneurs pre-
dicting the success of a new product. In a study of
the Wall Street Journal Survey of Economic Forecasts,
they found a negative association between the predic-
tive performance on a subset of cases with extreme ob-
servations and measures of general predictive perfor-
mance based on all cases, and argued that accurately
predicting a rare and extreme event actually is a sign of
poor judgment. Their discussion was limited to point
forecasts, and the suggested solution was to take into

account all available observations, much in line with
the findings and recommendations in our paper.

APPENDIX: IMPROPRIETY OF QUADRATIC
APPROXIMATIONS OF WEIGHTED LOGARITHMIC

SCORES

Let F be a predictive distribution with mean μF and
standard deviation σF . As regards the conditional like-
lihood (CL) score (2.11), the quadratic approximation
is given by

CLq(F, y) = −w(y) log
(

φ(y|F)∫
w(x)φ(x|F)dx

)
,

where φ(·|F) denotes a normal density with mean μF

and standard deviation σF , respectively. Let

cF =
∫

w(x)φ(x|F)dx,

cG =
∫

w(x)φ(x|G)dx,

cg =
∫

w(x)g(x)dx,

and recall that the Kullback–Leibler divergence be-
tween two probability densities u and v is given by

K(u, v) =
∫

u(x) log
(

u(x)

v(x)

)
dx.

Assuming that CLq is proper, it is true that

EG

(
CLq(F,Y ) − CLq(G,Y )

)
= cg

[
K

(
w(y)g(y)

cg

,
w(y)φ(y|F)

cF

)

− K

(
w(y)g(y)

cg

,
w(y)φ(y|G)

cG

)]

is nonnegative. Let G be uniform on [−√
3,

√
3] so that

μG = 0 and σG = 1, and let w(y) = 1{y ≥ 1}. Denot-
ing the cumulative distribution function of the standard
normal distribution by �, we find that

K

(
w(y)g(y)

cg

,
w(y)φ(y|F)

cF

)

− K

(
w(y)g(y)

cg

,
w(y)φ(y|G)

cG

)

= log
(
σF

1 − �((1 − μF )/σF )

1 − �(1)

)

+ 3(
√

3 − 1)μ2
F − 6μF + (3

√
3 − 1)(1 − σ 2

F )

6(
√

3 − 1)σ 2
F

,
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which is strictly negative in a neighborhood of μF =
1.314 and σF = 0.252, for the desired contradiction.
Therefore, CLq is not a proper scoring rule.

As regards the censored likelihood (CSL) score
(2.12), the quadratic approximation is

CSLq(F, y)

= −w(y) log
(
φ(y|F)

)
− (

1 − w(y)
)

log
(

1 −
∫

w(z)φ(z|F)dz

)
.

Under the same choice of w, F , and G as before, we
find that

EG

(
CSLq(F,Y ) − CSLq(G,Y )

)
=

√
3 − 1

2
√

3
logσF

−
√

3 + 1

2
√

3
log

(
�((1 − μF )/σF )

�(1)

)

+ 3(
√

3 − 1)μ2
F − 6μF + (3

√
3 − 1)(1 − σ 2

F )

12
√

3σ 2
F

,

which is strictly negative in a neighborhood of μF =
0.540 and σF = 0.589. Therefore, CSLq is not a proper
scoring rule.
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