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Multiple Change-Point Detection:
A Selective Overview
Yue S. Niu, Ning Hao and Heping Zhang

Abstract. Very long and noisy sequence data arise from biological sciences
to social science including high throughput data in genomics and stock prices
in econometrics. Often such data are collected in order to identify and un-
derstand shifts in trends, for example, from a bull market to a bear market
in finance or from a normal number of chromosome copies to an excessive
number of chromosome copies in genetics. Thus, identifying multiple change
points in a long, possibly very long, sequence is an important problem. In this
article, we review both classical and new multiple change-point detection
strategies. Considering the long history and the extensive literature on the
change-point detection, we provide an in-depth discussion on a normal mean
change-point model from aspects of regression analysis, hypothesis testing,
consistency and inference. In particular, we present a strategy to gather and
aggregate local information for change-point detection that has become the
cornerstone of several emerging methods because of its attractiveness in both
computational and theoretical properties.

Key words and phrases: Binary segmentation, consistency, multiple test-
ing, normal mean change-point model, regression, screening and ranking al-
gorithm.

1. INTRODUCTION

Studies of change-point detection problem date back
to 1950s (Page, 1954, 1955, 1957). Since then, this
topic has been of interest to statisticians and re-
searchers in many other fields such as engineering,
economics, climatology, biosciences, genomics and
linguistics, just to name a few. In many applications,
observed are an ordered sequence of random quanti-
ties, from which the change points, that is, positions
of structural change are inferred. Examples of such se-
quences include the daily average temperatures of a
specific location over the years, the quantity of some

Yue S. Niu is Assistant Professor and Ning Hao is Assistant
Professor, Department of Mathematics, University of
Arizona, 617 N. Santa Rita Ave., Tucson,
Arizona 85721, USA (e-mail:
yueniu@math.arizona.edu; nhao@math.arizona.edu).
Heping Zhang is Susan Dwight Bliss Professor of
Biostatistics, Yale School of Public Health, 60 College
Street, New Haven, Connecticut 06520-8034, USA (e-mail:
heping.zhang@yale.edu).

harmful elements, for example, antimony, in the drink-
ing water, stock prices at some time points over a pe-
riod, and recently, sequencing data in genomics. De-
pending on the goal of the data that are collected, de-
tection of change points can be crucial for decision
making or necessary for understanding certain scien-
tific issues. Many methods have been introduced to de-
tect the change of the mean, variance, slope of regres-
sion line, hazard rate, or nonparametric distribution for
various models. We refer to the books by Brodsky and
Darkhovsky (1993, 2000), Carlstein, Müller and Sieg-
mund (1994), Csörgő and Horváth (1997), Chen and
Gupta (2000) for various aspects for classical change-
point analysis, and to a recent article Lee (2010) for
a list of comprehensive bibliography of books and re-
search papers on this topic. While this body of work
constitutes a rich literature, it mainly deals with the in-
ference of a single change in a short or moderate sized
sequence. Detecting multiple change points in a very
long sequence has emerged as an important problem
that has attracted more and more attention recently.

We review both classical and new multiple change-
point detection strategies and discuss their strengths
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and limitations by examining the general strategies, as-
sessing the computational complexity, and establishing
the asymptotic theory. In particular, we present the dis-
tinctive characteristic of multiple change-point model
from the single change-point model, and give insights
on the strategies employed by state-of-the-art change-
point detection methods. Some interesting research di-
rections are also discussed. We should point out that
there exist a massive number of research papers on
change-point detection or closely related topics. We
will concentrate mainly on the frequentist approach
and narrow our review and discussion to the so-called
“posteriori change-point detection” problem according
to the terminology of Fryzlewicz (2014). Even with
this focus, it is impossible to do justice for all related
work, and hence we can offer only a selective overview.

The rest of paper is organized as follows. Section 2
introduces several formulations of multiple change-
point model and its distinct features. Section 3 re-
views a variety of multiple change-point detection
techniques. Section 4 focuses on theoretical properties
of these methods. Section 5 summarizes new strategies
used by some recent methods. We end this paper with
some concluding remarks in Section 6.

2. MULTIPLE CHANGE-POINT PROBLEM

2.1 From Classical to Modern Data

Two datasets, Nile river data (Cobb, 1978) and
British coal mine disaster data (Carlin, Gelfand and
Smith, 1992), plotted in Figure 1(a) and (b), respec-
tively, have been commonly used in classical change-
point analyses. The main focus of those analyses was
to test whether there was a change point along the se-
quence. Work on detection for multiple change points
began in the 1980s (e.g., Vostrikova, 1981, Yin, 1988,
Yao, 1988, Yao and Au, 1989), although the applica-
tions seemed limited during that decade. The advent
of high-throughput technologies has produced high di-
mensional data that are of great interest in statistical
sciences, and not surprisingly, revitalized the change-
point analysis. In Figure 2, we plot a time series data
set and a SNP array data set, which represent typical
modern applications of multiple change-point model.
A key difference between Figures 1 and 2 is the num-
ber of data points.

2.2 A Variety of Multiple Change-Point Model
Formulations

Let Y = (Y1, . . . , Yn)
� be a sequence of independent

random variables (or vectors) with probability distribu-
tion functions F1, . . . ,Fn, respectively. A change point

FIG. 1. Two classical data sets. (a) Measurements of the annual
flow of the river Nile at Ashwan 1871–1970. (b) Yearly counts of
British coal-mining disasters between 1851–1962.

FIG. 2. Two contemporary data sets. (a) Log-returns on the daily
closing values of S&P 500 of length 2000, ending 26 October 2012.
(b) Log R ratios of length 27272 along Chromosome 11 of the sub-
ject father from a SNP genotying data set for a father-mother-off-
spring trio produced by Illumina 550K platform, downloaded from
http://www.openbioinformatics.org/penncnv/ .

http://www.openbioinformatics.org/penncnv/
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occurs at τ when Fτ �= Fτ+1. The goal is to estimate
the number of change points, J , and location vector
of change points τ = (τ1, . . . , τJ )�. We use the con-
vention τ0 = 0 and τJ+1 = n throughout this paper.
Depending on applications, we may assume that the
distributions {Fi}ni=1 belong to a common parametric
family or keep the setting nonparametric.

The simplest case where J ≤ 1 has been studied ex-
tensively. It is usually formulated as a hypothesis test-
ing problem:

H0 : F1 = F2 = · · · = Fn versus

H1 : F1 = · · · = Fτ �= Fτ+1 = · · ·(1)

= Fn with unknown τ.

The first step is to test hypotheses J = 0 versus J = 1,
and if we reject J = 0, the next step is to make infer-
ence on the location parameter τ (Hawkins, 1977).

Both steps turned out to be much more compli-
cated than they appeared. For example, even if {Fi}ni=1
are Gaussian with equal variance, the exact distri-
bution of the likelihood ratio test statistic under H0
is formidable, and usually approximated by asymp-
totic or numerical methods (Sen and Srivastava, 1975,
Hawkins, 1977, Csörgő and Horváth, 1997). The infer-
ence on τ has been regarded as a difficult problem, and
studied in Hinkley (1970), Worsley (1986), Siegmund
(1988) for normal mean model and one-parameter ex-
ponential families.

Concerning J > 1, a normal mean change-point
model is typically employed, and here we focus on this
model. First of all, it is the most basic multiple change-
point model (MCM). In fact, even under this basic
model, there are many challenging and open problems.
Second, despite the simplicity, it is useful in many ap-
plications including genomics and econometrics; see
Braun, Braun and Müller (2000), Olshen et al. (2004),
Zhang and Siegmund (2007), Niu and Zhang (2012),
Frick, Munk and Sieling (2014), Fryzlewicz (2014),
among many others. Third, detecting changes in a se-
quence can often be reduced to the detection of mean
changes in another derived sequence (Carlstein, Müller
and Siegmund, 1994, Brodsky and Darkhovsky, 2000).
Last but not least, it serves as a benchmark model
for comparing different methods of detecting change
points (Fryzlewicz, 2014). Next, we discuss a few for-
mulations of the normal mean MCM.

2.2.1 Normal mean multiple change-point model.
Consider a sequence of independent random variables
Y1, . . . , Yn with Yi ∼ N (θi, σ

2) and the mean parame-
ter shifts at J unknown locations as introduced above.

The normal mean MCM can be presented as

Yi = θi + εi, εi
i.i.d.∼ N

(
0, σ 2)

,1 ≤ i ≤ n,with

(2) θ1 = θ2 = · · · = θτ1 �= θτ1+1 = · · · = θτ2 �= θτ2+1

= · · · = θτJ
�= θτJ +1 = · · · = θn.

In other words, we assume that θ = (θ1, . . . , θn)
�

is piecewise constant with jumps or drops at τ =
(τ1, . . . , τJ )�.

Besides the piecewise structure, the change points
are usually assumed to be sparsely located along the
sequence. Roughly speaking, it means that J is much
smaller than n and change points are not too close to
each other. Therefore, we may view (2) as a high di-
mensional sparse model. Moreover, its natural sequen-
tial structure is a distinct feature and crucial in devel-
oping efficient algorithms.

2.2.2 A regression model. Let

β0 = θ1, βj = θj+1 − θj ; j = 1, . . . , n − 1.

Then model (2) is transformed to a linear model,

Yi =
i−1∑
j=0

βj + εi, i = 1, . . . , n,(3)

or in matrix form

Y = Xβ + ε,(4)

where β = (β0, . . . , βn−1)
� is coefficient vector with J

nonzero entries besides the intercept β0 and the design
matrix X = (X0, . . . ,Xn−1), with Xj = (0�

j ,1�
n−j )

�.
Here, 1k and 0k are k-dimensional column vectors with
equal entries 1 and 0, respectively. We see that X is
simply a lower triangular matrix with all nonzero ele-
ments equal to 1. Model (3) is sparse when J is much
smaller than n.

We can observe from

θ = Xβ

that the columns of X spans the space of all piece-
wise constant vectors of length n. Note that each col-
umn, say, (0�

j ,1�
n−j )

�, has only one discontinuity at j .
Therefore, the piecewise constant θ is a linear combi-
nation of piecewise constant vectors with a single dis-
continuity.

With this formulation, modern high dimensional
sparse regression techniques can be applied to solve
change-point problem directly; see, for example,
Huang et al. (2005), Tibshirani and Wang (2008),
Rinaldo (2009), Zhang et al. (2010), Harchaoui and
Lévy-Leduc (2010), Qian and Jia (2012).
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2.2.3 Multiple hypothesis testing. We can general-
ize the hypothesis testing problem for a single change
in (1) to the multiple change-point setting as

H0 : there is no change point versus
(5)

H1 : at least one change point.

Unfortunately, the alternative hypothesis above is too
broad to be useful in practice. To be specific about each
location as a candidate of change, it becomes a multi-
ple testing problem which tests whether or not each of
individual positions is a change point. In other words,
we test

H0(j) : j is a not change point versus
(6)

H1(j) : j is a change point,

where j = 1,2, . . . , n − 1. In particular, for the normal
mean model, H0(j) and H1(j) correspond to βj = 0
and βj �= 0 in model (3), respectively. This clearly in-
volves a large number of tests. The existing methods
and theory on the control of false discover rate (FDR,
Benjamini and Hochberg, 1995) can be applied if we
ignore the sequential structure in the data. However, if
we want to take advantage of the sequential structure,
this is not a typical multiple testing problem. Hao, Niu
and Zhang (2013) attempted to address this problem by
generalizing the concept of FDR and testing a series of
window-shifting hypotheses:

H0(j) : Fj+1−h = · · · = Fj+h versus

H1(j) : Fj+1−h = · · · = Fj �= Fj+1 = · · ·(7)

= Fj+h,

where h is a fixed integer with the assumption that any
adjacent change points must be least h points apart.
Based on our theoretical analysis, the optimal choice
of h depends on the minimal distance between adja-
cent change points and typically grows at a slower rate
than n. In practice, we may determine h when prior
knowledge on the distances among the change points
is available. For the normal mean change-point model,
(7) is reduced to

H0(j) : θj+1−h = θj+2−h = · · · = θj+h; versus
(8)

H1(j) : θj+1−h = · · · = θj �= θj+1 = · · · = θj+h.

Note that the alternative hypothesis in (7) is more spe-
cific than that in (6).

2.3 Locality and Symmetry

Relative to the single change point problem, MCM
involves the unknown J which creates additional dif-
ficulties to the case when J is known. MCM is also
distinct from the single change point problem in two
other aspects.

The first one is the local nature of the MCM. Con-
sider a simple normal mean model with three change
points at τ1 < τ2 < τ3 and assume that the error distri-
bution is known. In order to infer τ2, the best way is to
use only the data between τ1 and τ3 as other data are ir-
relevant. In practice, the error distribution is unknown,
and the data outside the interval (τ1, τ3] may be helpful
only to learn the error distribution and find a threshold
or stopping rule for some detection procedure. On the
other hand, misuse of the information outside of the
interval (τ1, τ3] may bias the inference on τ2. There-
fore, ideally, an oracle procedure would divide mul-
tiple change-point problem (2) into J simple and lo-
cal subproblems, which are single change-point prob-
lems over the segments (0, τ2], (τ1, τ3], . . . , (τJ−1, n],
respectively. Although such a division is not feasible in
practice, it is still helpful to mimic the oracle by using
local information.

The second one is symmetry. As in Olshen et al.
(2004), we can connect the head and tail of the se-
quence to make it a circle. Now, the MCM becomes
symmetric. As a result, there is no boundary effect and
all locations play the same role. We should be cautious
with this technique when J is small, such as the sin-
gle change point problem. The reason is that we might
have a priori knowledge on whether there is a change
point where the head and tail connect. We may lose
such information using this circular model. Neverthe-
less, in many applications it is harmless to consider this
symmetric model. With this symmetry, it is interesting
to study equivariant detection tools.

Both the difficulties and uniqueness of MCM make
it a more interesting and challenging problem to inves-
tigate than the single change-point problem.

2.4 Signal Strength Levels of MCM

Change itself is a relative concept. Therefore, it is
necessary for us to impose certain reasonable assump-
tions to avoid nonidentifiability. Intuitively, there are
two situations where it is difficult, if not impossible
to detect a change point. The first case is when the
mean shifts so small that we cannot distinguish be-
tween a real change or an effect of noise. The second
scenario is when there are two (or more) change points
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so close to each other that we do not have enough
data to draw inference. Therefore, it is reasonable to
measure the overall signal strength of normal mean
MCM by S = δ2L, where L = min0≤κ≤J {τκ+1 − τκ}
is the minimal distance between change points and
δ = min1≤i<n{|θi − θi+1|}/σ is the ratio of the mini-
mal shift to the noise level. We present in Table 1 some
commonly used technical conditions. As we will see,
the existing methods work best when these assump-
tions are satisfied.

Early work such as Yao (1988), Yao and Au (1989)
usually assumed that τ/n → t, a constant vector, and
the mean shifts at change points and the noise variance
σ 2 remain constants as n → ∞. Under these assump-
tions, ‖τ̂ − τ‖∞ = OP (1), which is the optimal result
(unless δ → ∞). An equivalent formulation is to as-
sume that there is a fixed piecewise constant function
on the interval [0,1] to be estimated as the number
of observations n → ∞. This result extended the the-
ory from the single change-point case to the multiple
change-point case, but may not be applicable to some
modern applications when the sequence is long and
some change points are close to each other. Rinaldo
(2009), Qian and Jia (2012) used regression approach
and obtained the consistency result P(τ̂ = τ ) → 1. But
they required δ2 	 logn, which may be unrealistic
in practice. On the other hand, Arias-Castro, Donoho
and Huo (2005) showed that δ2L ≥ 2 logn is a neces-
sary condition to recover all change points even for an
MCM with two change points. Hao, Niu and Zhang
(2013) further showed that δ2‖τ̂ − τ‖∞ = OP (1)

under a slightly relaxed condition δ2L ≥ 32 logn. It
remains an open problem to find weakest possible suf-
ficient and necessary conditions on δ2L for full recov-
ery of all change points. When the signal is not strong
enough for us to recover all change points, it is desir-
able to control the false positives. As discussed by Hao,
Niu and Zhang (2013), it is challenging to establish a
reasonable framework for this atypical multiple testing
problem.

3. MULTIPLE CHANGE-POINT DETECTION TOOLS

For the multiple change-point problem, the main
goal is to estimate the number of change points and
their locations. In this section, we review some classi-
cal and new approaches to identifying change points.
From now on, we use J ∗ and τ ∗ = (τ ∗

1 , . . . , τ ∗
J )� to

denote the true number of change points and their loca-
tion (in ascending order) vector of a specific data gen-
erating process.

3.1 Exhaustive Search

Ignoring its computational complexity, an exhaus-
tive search among all possibilities 0 ≤ J ≤ n − 1 and
0 < τ1 < · · · < τJ < n can be applied. Define 	J =
{τ = (τ1, . . . , τJ ) : 0 < τ1 < · · · < τJ < n} the set of
all possible ordered J -dimensional vectors represent-
ing locations of J change points. For any J , define

σ̂ 2
J = min

τ∈	J

σ̂ 2
τ ,

where σ̂ 2
τ is the maximum likelihood estimator for vari-

ance conditional on the change-point location τ . Yao
(1988) showed the consistency property of the estima-
tor Ĵ determined by Bayesian Information Criterion
(BIC)

Ĵ = argmin
J

n

2
log σ̂ 2

J + J logn.(9)

Furthermore, Yao and Au (1989) showed the conver-
gence rate of the location estimator

τ̂κ − τ ∗
κ = OP (1), 1 ≤ κ ≤ J ∗,(10)

where τ̂ = (τ̂1, . . . , τ̂J ∗)� = argminτ∈	J∗ σ̂ 2
τ , and J ∗

is the true number of change points, which can be esti-
mated consistently by (9).

Exhaustive search among all possible subsets is not
efficient from a computational point of view, and too
intensive when n is large. Making use of the sequen-
tial structure, dynamic programming techniques can be
applied to reduce the computational burden down to

TABLE 1
Different signal strength levels of MCM (2) used in the literature. Here, an 
 bn means 0 < 1

M1
<

an
bn

< M2 < ∞ as
n → ∞ for some constants M1, M2. ‖ · ‖∞ is infinity norm

Signal strength level Typical assumption Typical conclusion

S1. very strong on L (A1) L 
 n, δ 
 1 (C1) ‖τ̂ − τ‖∞ = OP (1)

S2. very strong on δ (A2) δ2 	 logn (C2) P(τ̂ = τ ) → 1
S3. strong (A3) δ2L 
 logn (C3) δ2‖τ̂ − τ‖∞ = OP (1)

S4. weak (A4) N/A (C4) FDR control
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the order of O(n2) (Braun, Braun and Müller, 2000,
Jackson et al., 2005). Killick, Fearnhead and Eckley
(2012) further reduced the complexity to O(n), under,
however, an assumption which may not be practical in
applications (Fryzlewicz, 2014).

3.2 Stepwise Selection

Stepwise selection is a popular substitute for the
exhaustive search with reduced complexity and sim-
ple implementation. Forward and backward selection
methods are well-known stepwise procedures in model
selection. Both of them can be applied to the change-
point problem. In particular, the forward selection
method, which is called binary segmentation (BS), has
been studied for a long time (Scott and Knott, 1974,
Vostrikova, 1981). Recently, circular binary segmenta-
tion (CBS, Olshen et al., 2004) and wild binary seg-
mentation (WBS, Fryzlewicz, 2014) have been pro-
posed enhance the power of BS in identifying short
segments. In contrast, the backward selection proce-
dure has not been widely used for change point detec-
tion with the exception of Shin, Wu and Hao (2014).

3.2.1 Forward selection approach. We now intro-
duce the binary segmentation algorithm (Scott and
Knott, 1974, Vostrikova, 1981). It is a forward stepwise
method with the following steps:

Step 1: Test for no change point versus one change
point (1). If H0 is not rejected, stop. Otherwise, esti-
mate the first change point τ̂ , which divides the whole
sequence into two segments;

Step 2: Test these two segments, respectively, for
further segmentation;

Step 3: Repeat the procedure for each segment until
no one can be segmented further.

We illustrate here a special BS algorithm for solving
model (2) with known variance σ 2 = 1 based on the
likelihood ratio method. BS tests the hypotheses recur-
sively in each segment. The following is for the initial
segment and the rest is similar:

H0 : θ1 = · · · = θn, versus

H1 : θ1 = · · · = θj �= θj+1 = · · ·(11)

= θn for some 1 ≤ j < n.

A likelihood ratio type statistics

T1 = max
1≤j≤n−1

(−2 log
j)(12)

can be used (Sen and Srivastava, 1975), where

−2 log
j = (Ȳj+ − Ȳj−)2

(13)
/
[
j−1 + (n − j)−1]

,

and Ȳj− = ∑j
k=1 Yk/j and Ȳj+ = ∑n

k=j+1 Yk/(n − j).
Moreover, when the alternative is supported, the seg-
ment can be divided into two parts by ĵ , obtained
from

ĵ = argmax
1≤j≤n−1

(−2 log
j).(14)

The distribution of T1 under H0 can be approximated
numerically or asymptotically. We refer to Csörgő
and Horváth (1997) for asymptotic properties of T1
and ĵ .

The main drawback of the BS algorithm is that it can
rarely detect short segments embedded in the middle of
long segments (Olshen et al., 2004, Fryzlewicz, 2014,
Shin, Wu and Hao, 2014). To increase the power for
the BS algorithm in detecting short segments, Olshen
et al. (2004) proposed the Circular Binary Segmenta-
tion (CBS) algorithm. The main idea is to splice two
ends of the segment to make it a circle and check
whether there exists a segment, say between l and r ,
such that its mean is significantly different from the
mean of the remaining part. In particular, they con-
sidered and applied recursively a test of no change
against a so-called epidemic alternative, as described
below.

H0 : θ1 = · · · = θn, versus

H1 : θ1 = · · · = θl = θr+1 = · · · = θn(15)

�= θl+1 = · · · = θr for a pair l < r.

Here, the alternative hypothesis is called epidemic
in analogy to an epidemic running from l through
r after which the normal state is restored (Levin
and Kline, 1985, Yao, 1993). Similar to (13), we
can calculate the log likelihood ratio for a fixed pair
(l, r),

−2 log
l,r = (ȲI − ȲO)2

(16)
/
[
(r − l)−1 + (n − r + l)−1]

,

where the outside mean ȲO = ∑
k≤l or k>r Yk/(n −

r + l) and inside mean ȲI = ∑r
k=l+1 Yk/(r − l).

Therefore, one may use

T2 = max
1≤l<r≤n

(−2 log
l,r )

as a test statistic for problem (15).
Since the CBS algorithm considers all pairs of points

when calculating the test statistic, it is more powerful
in detecting the short segments and has become one
of the most popular algorithms in some applications
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such as copy number variation detection. However, it
is computationally more expensive than BS.

Recently, Fryzlewicz (2014) proposed the wild bi-
nary segmentation (WBS) to improve BS algorithm.
Instead of the global test (11), WBS considers the same
test on a random segment [s, e], that is,

H0 : θs = · · · = θe, versus

H1 : θs = · · · = θj �= θj+1 = · · ·(17)

= θe for some s ≤ j < e.

The test statistic T
[s,e]
1 and ĵ [s,e] are defined similar to

T1 and ĵ in (12) and (14). WBS first draws random
intervals [sm, em] ⊂ [1, n], m = 1, . . . ,M and defines
the first change point as

ĵWBS = ĵ [sm̂,em̂], where m̂ = argmax
1≤m≤M

T
[sm,em]

1 .

Then WBS repeats the same procedure on each seg-
ment until some stopping rule is met. WBS offers one
way to localize the BS procedure using local and ran-
dom intervals instead of the whole segment in segmen-
tation.

3.2.2 Backward selection approach. Shin, Wu and
Hao (2014) considered a backward detection (BWD)
procedure. It starts with n groups, each of which con-
tains only one data point, and then merges groups
based on some criterion until a stopping time. This
is similar to the bottom-up clustering analysis where
small clusters in the lower levels are joined to form
larger ones in the upper levels. Specifically:

1. Start with a superset G
(0) = {G(0)

1 ,G(0)
2 , . . . ,

G(0)
n } where G(0)

i = {i}.
2. At step k given G

(k−1) = {G(k−1)
1 ,G(k−1)

2 , . . . ,

G(k−1)
n−k+1}, a decision is made to merge two consecutive

groups in G
(k−1). Say, if G(k−1)

i and G(k−1)
i+1 are merged

to one group, then in G
(k),

G(k)
j =

⎧⎪⎪⎨
⎪⎪⎩
G(k−1)

j , if j < i;
G(k−1)

j ∪ G(k−1)
j+1 , if j = i;

G(k−1)
j+1 , if j > i.

3. Either stop if a stopping criterion is met; or
complete the whole process and then determine a best
model along the sequence G

(k), 0 ≤ k ≤ n.

For the normal mean model (2), Shin, Wu and Hao
(2014) employed a dissimilarity index to decide which

pair of segments to merge in each step k. The dissimi-
larity index between two groups is defined as

DI(k−1)
j = DI

(
G(k−1)

j ,G(k−1)
j+1

)
(18)

= |Ȳ (k−1)
j − Ȳ

(k−1)
j+1 |√

|G(k−1)
j |−1 + |G(k−1)

j+1 |−1
,

where Ȳ
(k−1)
j = 1

|G(k−1)
j |

∑
m∈G(k−1)

j

Ym, and |G(k−1)
j | is

the cardinality (i.e., size) of the set G(k−1)
j . Thus, for

i = argminj DI(k−1)
j , G(k−1)

i and G(k−1)
i+1 are merged at

step k. In other words, at each step, BWD merges two
consecutive groups with the minimal dissimilarity in-
dex. In fact, (18) is essentially the log likelihood ratio
test statistic for

H0 : G(k−1)
j and G(k−1)

j+1 have the same mean,

versus(19)

H1 : G(k−1)
j and G(k−1)

j+1 have different mean.

3.2.3 Summary. The pros and cons of forward and
backward stepwise procedures are analogous to those
in model selection. In practice, there is little harm in us-
ing both and then comparing results. The BS algorithm
takes O(n) operations for each step, and O(logn)

steps in the worst scenario. So the total complexity is
O(n logn). The CBS optimizes over all pairs of points
so the complexity is increased by an order of magni-
tude. In general, BS and CBS are easy to implement,
and the early stopping rule can be applied to accelerate
the procedures (Venkatraman and Olshen, 2007). BWD
is also easy to implement and of complexity O(n logn)

(Shin, Wu and Hao, 2014).

3.3 �1-Penalization

We discussed in Section 2.2.2 that detecting change
points is essentially a regression problem with sparsity.
Therefore, it is not surprising that there have been at-
tempts to use the methods from penalized regression
to the detection of change points. Huang et al. (2005),
Harchaoui and Lévy-Leduc (2010) studied the follow-
ing optimization problem:

minimize‖Y − θ‖2

(20)

subject to
n−1∑
j=1

|θj − θj+1| ≤ s.

Through reparametrization βj = θj+1 − θj , the above
optimization problem is equivalent to

minimize‖Y − Xβ‖2 subject to
n−1∑
j=1

|βj | ≤ s,(21)
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which gives the LASSO solution for regression model
(4). (20) and (21) are usually solved through their dual
forms

minimize‖Y − θ‖2 + λ

n−1∑
j=1

|θj − θj+1|

or ‖Y − Xβ‖2 + λ

n−1∑
j=1

|βj |,

where λ
∑n−1

j=1 |θj − θj+1| is called the total variation

penalty, λ
∑n−1

j=1 |βj | is called �1 penalty or LASSO
penalty.

Furthermore, Tibshirani and Wang (2008) applied
the fused LASSO (Tibshirani et al., 2005) for change-
point detection. In particular, they estimated θ through
the following constrained optimization:

minimize‖Y − θ‖2

(22)
subject to ‖θ‖�1 ≤ s1,

∑
j

|θj − θj+1| ≤ s2,

or equivalently,

minimize‖Y − Xβ‖2

subject to
n∑

j=1

∣∣∣∣∣
j−1∑
k=0

βk

∣∣∣∣∣ ≤ s1,

n−1∑
j=1

|βj | ≤ s2.

The difference between (20) and (22) lies in whether θ
is also assumed to be sparse. In the context of detect-
ing chromosome copy number variations, it is reason-
able to assume that θ is sparse because of the discrete
nature of the copy numbers. From the methodological
and computational perspectives, the solution for (22)
can be obtained by simply thresholding the solution of
(20) (Friedman et al., 2007). Hence, there is little loss
of generality by focusing on (20) and (21).

For the �1 penalization methods, standard regression
solvers such as the LARS (Efron et al., 2004) and coor-
dinate decent algorithm (Friedman et al., 2007) can be
used to solve optimization problem (21). The complex-
ity of some related change-point detection algorithms
can achieve O(Kmaxn logn), where Kmax is an upper
bound for the number of change points (Harchaoui and
Lévy-Leduc, 2010).

It is crucial to determine the values of tuning pa-
rameters in these procedures. Some tuning parameter
selection methods have been used in the literature. In
particular, Huang et al. (2005) proposed to choose s

empirically. They examined the solutions of (20) for
an increasing sequence of s. As more change points are

added into the model with larger values of s, they chose
to stop increasing s when the resulted mean difference
at the new change point is not big enough. Tibshirani
and Wang (2008) estimated s1 and s2 for (22) based
on heavily and moderately smoothed versions of Y,
respectively. Harchaoui and Lévy-Leduc (2010) gave
an asymptotic order of the tuning parameter λ in the
dual optimization problem. Friedman et al. (2007) rec-
ommended cross-validation to select tuning parameters
for the fused LASSO. As stated in Rinaldo (2009), it is
an important open problem to find the optimal values
for the parameters.

3.4 Screening and Ranking Algorithm

A Screening and Ranking algorithm (SaRa) has been
studied in Niu and Zhang (2012), Hao, Niu and Zhang
(2013) to detect change points. For the normal mean
model (2), they considered the locally defined statistic
at each position h ≤ j ≤ n − h,

Dh(j) =
( j+h∑

k=j+1

Yk −
j∑

k=j−h+1

Yk

)/
h,

where h is a fixed bandwidth. Essentially, Dh(j) is the
likelihood ratio test statistic for the local testing prob-
lem (8). Hence, the sequence {Dh(·)} roughly mea-
sures the relative likelihood for each position to be
a change point. The SaRa proceeds as follows. First,
it calculates Dh(·) and finds all local maximizers of
|Dh(·)|. Here, j is a local maximizer if |Dh(j)| ≥
|Dh(k)| for all k ∈ (j − h, j + h). Second, the SaRa
estimator is obtained by applying a thresholding rule
|Dh(·)| > λ to all local maximizers. Consequently, the
estimated change point locations are a set of ordered
positions

Jh,λ = {
τ̂κ : τ̂κ is a local maximizer of

∣∣Dh(·)
∣∣,

and
∣∣Dh(τ̂κ)

∣∣ > λ
}
.

Let Ĵ = |Jh,λ|. We let τ̂ = (τ̂1, . . . , τ̂Ĵ
)� denote the

SaRa estimator.
In fact, the SaRa procedure can be described as a

modified version of binary segmentation. At the first
step, |Dh(·)| is calculated and its global maximizer di-
vides the sequence into two segments. Then in each
segment, we can repeat the same procedure until the
maximum of |Dh(·)| is below some threshold for each
segment. Therefore, the difference between the SaRa
and BS is the use of a local or global likelihood ra-
tio test statistic as the basis of optimization. The SaRa
has several advantages. First, the test statistic does not
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have to be recalculated every step. Second, one does
not have to conduct the SaRa stagewisely, and a uni-
fied threshold can be applied simultaneously. More-
over, with the framework of the SaRa, it is possible
to solve change-point problem as a multiple testing
one (8).

The computational complexity of the SaRa is only at
O(n) because the sequence Dh(·) can be calculated by
a recursive formula (Niu and Zhang, 2012).

3.5 SMUCE

Frick, Munk and Sieling (2014) introduced a new
change-point detection tool called simultaneous mul-
tiscale change-point estimator (SMUCE). It estimates
the mean vector θ by solving an optimization problem

minimize
∣∣J (θ)

∣∣ subject to Tn(Y, θ) ≤ q,(23)

where |J (θ)| is the number of change points along
piecewise constant vector θ , Tn(Y, θ) is a multiscale
statistic defined below and q is a threshold. For a
fixed θ ,

Tn(Y, θ) = max
1≤i≤j≤n;θi=θi+1=···=θj

[√
2T

j
i (Y, θi)

(24)

−
√

2 log
en

j − i + 1

]
,

where T
j
i (Y, θi) is a local log-likelihood ratio test

statistic for testing H0 : θ = θi versus H0 : θ �= θi on
the interval [i, j ]. In the context of normal mean MCM,

T
j
i (Y, θi) = j − i + 1

2

(
Ȳ

j
i − θi

)2
,

where Ȳ
j
i = 1

j−i+1
∑j

�=i Y�. Note that T
j
i is defined

only on the interval [i, j ] where θ is constant and it
reflects the local discrepancy of the model θ and the
data. That is, Tn(Y, θ) is an aggregation of local statis-
tics T

j
i . Nevertheless, (23) is a global optimization

problem. Frick, Munk and Sieling (2014) employs dy-
namic programming technique to solve SMUCE. The
general complexity is O(n2), and may be reduced un-
der certain conditions. In a recent work, Pein, Sieling
and Munk (2015) further extended SMUCE to the het-
erogeneous case.

4. CONSISTENCY, CONVERGENCE RATE AND
SIMULTANEOUS INFERENCE

In this section, we discuss theoretical results on
change-point analysis. Recall that for normal mean
MCM (2), we define L = min0≤κ≤J {τκ+1 − τκ}, δ =

min1≤i<n{|θi − θi+1|}/σ , and S = δ2L which repre-
sents the overall signal strength. For asymptotic the-
ory, we typically assume that all model parameters and
these important quantities depends on n and study the
asymptotic behavior of an estimator τ̂ as n → ∞.

4.1 Simple Cases

Models (11) and (15) are the two simplest and best
understood change-point models. We start with the sin-
gle change-point model (11), studied in, for example,
Hinkley (1970), Csörgő and Horváth (1997). If H1 is
true, and the change-point location τ and mean jump
at the change point δ = |θτ+1 − θτ |/σ satisfy either of
the following two conditions:

0 <
τ

n
→ t < 1, δ → 0,

(25)
with limn→∞ nδ2

log logn
= ∞;

τ

n
→ 0, δ → 0,

(26)
with limn→∞ τδ2

log logn
= ∞,

then the maximum likelihood estimator τ̂ = ĵ in (14)
satisfies

δ2|τ̂ − τ | = OP (1).(27)

For a less challenging setting δ → c > 0, it implies

|τ̂ − τ | = OP (1).(28)

It was regarded as a result of inconsistency in Hinkley
(1970) because there is no way to recover exact
change-point location with an overwhelming probabil-
ity. But at the same time, it was interpreted as a consis-
tency result in the literature since it indicates∣∣∣∣ τ̂n − τ

n

∣∣∣∣ = OP

(
1

n

)
.(29)

That is, if we embed the sequence into the unit interval,
the change-point location τ

n
can be estimated consis-

tently with the convergence rate 1
n

. This is an optimal
result and the conditions (25) and (26) cannot be re-
laxed further (Csörgő and Horváth, 1997).

Arias-Castro, Donoho and Huo (2005) studied the
epidemic change-point model (15) and concluded that
no method can detect the mean shift reliably when
δ2(r − l) < 2 logn. Moreover, they proposed a near-
optimal procedure which can efficiently and reliably
detect the mean shift segment if δ2(r − l) is slightly
above 2 logn. Their work suggests that 2 logn be the
optimal detection threshold for (15) and offers a bench-
mark for the necessary conditions to solve the general
change-point problem.
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4.2 General Cases

For general cases, the consistency result includes
two parts, on the number J ∗ and location τ∗ of change
points. That is,

lim
n→∞P

(
Ĵ = J ∗) = 1,(30)

δ2∥∥τ̂ − τ ∗∥∥∞ = OP (1).(31)

Such results have been obtained by Yao (1988), Yao
and Au (1989) for the exhaustive search method un-
der an asymptotic setting that J ∗ and δ are fixed, and
τ ∗/n → t as n → ∞, where t = (t1, . . . , tJ ∗)� with
0 < t1 < · · · < tJ < 1 is a constant vector. This asymp-
totic framework corresponds to category S1 listed in
Table 1 of Section 2.4.

Using regression approach and the LASSO tech-
niques, Rinaldo (2009), Qian and Jia (2012) obtained
consistency result P(τ̂ = τ ∗) → 1. However, a strong
condition δ2 	 logn is typically required in most of
the related theory with an exception of Harchaoui and
Lévy-Leduc (2010). We listed this framework as cate-
gory S2 in Table 1. The result is less useful because it
relies only on big mean changes and not on the distance
between the change points.

We should note that a naive approach can also
achieve the consistency.

PROPOSITION 1. Let zj = Yj+1 − Yj for j =
1, . . . , n − 1. Consider a naive estimator τ̂ naive(c) that
is the vector of ordered elements in set {j : |zj | >

c,1 ≤ j ≤ n − 1}. With δ = minj∈τ∗ |θj+1 − θj |/σ >

4
√

logn, we have P(τ̂ naive(c) = τ∗) → 1 for c =
2σ

√
logn.

PROOF. Consider two events A = {|zj | > c for all
j ∈ τ ∗} and B = {|zj | < c for all j /∈ τ ∗}. It is suffi-
cient to show P(A∩B) → 1 as n → ∞. By definition,
we have zj ∼ N (θj+1 − θj ,2σ 2) for all 1 ≤ j ≤ n− 1.
Define z̃j = (zj − (θj+1 − θj ))/(

√
2σ) ∼ N (0,1).

Then

P
(

max
1≤j≤n−1

{
z̃2
j

}
< 2 logn

)
→ 1, n → ∞,

which implies P(A∩ B) → 1, provided c = 2σ
√

logn

and δ > 4
√

logn. It is easy to see that the result holds
for δ > 2(

√
logn + √

logJ ∗) if the number of change
points J ∗ � n. �

Following the work reviewed in Section 4.1, there
is a series of results that relax the conditions such
as S = δ2L > C logn or S 	 logn. In particular,
Harchaoui and Lévy-Leduc (2010) studied �1 penal-
ization approach and showed consistency result with

a rate slightly slower than OP (logn/δ2) for change-
point locations, under the condition δ2L 	 logn. Hao,
Niu and Zhang (2013) obtained optimal OP (1/δ2)

convergence with condition δ2L > 32 logn for the
SaRa. Fryzlewicz (2014) proposed WBS which re-
quires δ2L 	 C logn for sufficiently large C to achieve
convergence rate OP (logn/δ2). SMUCE also requires
δ2L 	 logn (Frick, Munk and Sieling, 2014). In spite
of these results, the optimal condition to achieve con-
sistency remains to be an open issue.

We presented above sufficient conditions for differ-
ent methods to obtain consistency result. However, the
necessary conditions are rarely discussed in the litera-
ture. Loosely speaking, S ≥ 2 logn appears necessary
as we discussed in Section 4.1. Nonetheless, finding
necessary conditions to assure consistency is an impor-
tant line of inquiry.

4.3 Simultaneous Inference

Hinkley (1970), Worsley (1986), Siegmund (1988)
studied confidence interval construction for single
change point models. For MCM, it is natural to ask
how to:

1. construct simultaneous confidence intervals for
change-point locations and

2. assign significance simultaneously for all de-
tected change points.

These two questions are distinct but related. The first
one concerns with assessing the accuracy and uncer-
tainty of a point estimator for change-point location.
When the signal strength is relatively weak, it may not
be practical to recover and construct confidence inter-
vals for all change points. However, it is desirable to as-
sign significance level for each detected change point,
which will help to identify as many change points as
possible while controlling for false positives.

As far as we know, not much work has been done on
these important topics until very recently. Frick, Munk
and Sieling (2014) proposed SMUCE to construct con-
fidence intervals for multiple change points as well as
the stepwise mean function. In addition, the familywise
error rate (FWER) for estimated change points can be
controlled through a tuning parameter. Hao, Niu and
Zhang (2013) discussed the second question and es-
tablished a framework to control FDR via the SaRa.
In particular, they considered the multiple testing for-
mulation introduced in Section 2.2.3. A key point is
that, for each change point detected by the SaRa that
is a false positive, the distribution of p value for the
local test (8) can be obtained. Hence, the significance
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levels of all detected change points can be assigned
by a simple transformation of the local test statistic.
Moreover, the detected change-point locations are well
separated so the FDR can be assessed easily by stan-
dard Benjamini–Hochberg procedure (Benjamini and
Hochberg, 1995).

For any error control procedure, one important and
subtle point is to define “true positive” for a detected
change-point location. In a standard multiple testing
framework without a sequential structure among the
tests, it is straightforward to define a true positive.
However, this is overly restrictive for change-point
problems. Recall that in (6)–(8) H1(j) is true when j is
a change point. In the classical results such as the one
presented in (28), the detected change point location is
not expected to be exactly the same as the true one with
overwhelming probability. That is, it is very likely that
H0(j) is rejected when the position j is close to a true
change point. Obviously, it is reasonable to treat it as
true positive if H0(j) is the only rejected null hypoth-
esis in a small neighborhood of a true change-point lo-
cation τ . This strategy was used in Hao, Niu and Zhang
(2013). In particular, they treated an estimate τ̂ as re-
vealing a true change point τ if they are close enough,
say, |τ̂ − τ | < h, where h is the same window size as
in (8).

Except SaRa and SMUCE, the methods for MCM
have not been well understood theoretically, and it re-
mains to establish an inferential framework for those
methods.

5. AGGREGATING LOCAL INFORMATION

For some of aforementioned algorithms includ-
ing exhaustive search, dynamic programming, �1-
penalization, BS and CBS, all the data are involved
directly and simultaneously in an optimization proce-
dure or the initial step of a sequential test procedure.
We may call them global methods, which have been
playing a dominant role in change-point analysis. On
the other hand, a variety of local methods have been
developed recently. Those local methods share a com-
mon strategy, that is, to first gather and then aggregate
local information. Among the methods reviewed in this
paper, we may consider the SaRa, WBS and BWD as
examples of local methods. In addition, SMUCE also
shares a similar spirit.

Change-point inference is often stated in a hypoth-
esis testing framework of the form (5). Exhaustive
search aims to solve (5) directly by searching for the
strongest evidence against the null hypothesis over

all possible location combinations. Forward stepwise
methods BS and CBS solve testing problems of types
(11) and (15) recursively. In contrast, local methods
start from various localized versions of (11). For ex-
ample, the SaRa focuses on a sequence of local tests
(8), and makes decision based on local maxima of the
test statistic sequence and a global thresholding rule;
WBS considers test (17) defined on a random inter-
val [s, e], and then combines the test statistics over a
set of random intervals; BWD considers a sequence of
local test problems (19) at each step, and retain a sin-
gle null hypothesis by comparing local test statistics.
We see that the SaRa, WBS and BWD focus first tests
on small local segments then make decisions based on
an aggregation of the local test statistics. Note that
for BS and CBS, the alternative hypothesis is never
truly correct except the very last step. Therefore, the
signal brought by each change point may be weak-
ened by other change points, leading to reduced power.
To elaborate, consider a sequence of Gaussian random
variables of length n = 1000 with mean θi = 1 when
500 < i ≤ 510 and 0 otherwise. That is, the mean
jumps up 1 at position 500 and drops down 1 at po-
sition 510. Without the second change point at 510
(i.e., θi = 1 for all i > 500), the statistic −2 log
500
as defined in (13) would be X2 for X ∼ N (

√
250,1).

With the change point at 510, −2 log
500 = X2 for
X ∼ N (1/

√
10,1), which takes a much smaller value.

The negative log likelihood ratios at other positions be-
have similarly as −2 log
500. Therefore, when BS is
applied, the test statistic (12) may not be significant as
the signals brought by the two change points are neu-
tralized. Thus, aggregating local tests should avoid sig-
nal cancellation caused by multiple change points. As
illustrated in Section 2.3, a good method may mimic
the oracle to perform single change-point test on small
segments, each of which has at most one change point.
To this end, WBS draws a set of random segments in
each step and hopes that some of these segments are
close to the ones in the oracle division; SaRa checks a
small neighborhood of each position; BWD builds up
segments adaptively from the data beginning with sin-
gle point segments. SMUCE estimates change points
by solving a global optimization problem. Neverthe-
less, the employed multiscale statistic (24) can be con-
sidered as an aggregation of local statistics.

In spite of these recent developments, researchers are
still looking for better methods to aggregate local in-
formation, especially, when little information on the
distances among change points is available. One dif-
ficulty is how to determine a local neighborhood when
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calculating a local statistic. Intuitively, it may involve
two or more change points if too large neighborhood
is used. On the other hand, it may reduce the power if
a small neighborhood is used. Moreover, it may not be
straightforward to compare and aggregate local statis-
tics if they are calculated based on neighborhoods hav-
ing different sizes.

6. CONCLUDING REMARKS

In spite of recent rapid developments on this topic,
there are many interesting and open research directions
to explore such as optimal detection and simultane-
ous inference for multiple change points. In contrast
to classical approaches which solve global optimiza-
tion to estimate change points, there are emerging new
methods which decompose MCM into a set of local
problems, and then gather and aggregate local infor-
mation to solve MCM. There are several advantages
to this strategy. First, the local information is usually
summarized by a single statistic for each local prob-
lem. A typical approach to aggregating these statistics
is to find (local or global) extreme values. Therefore,
the computation is less expensive as no complex opti-
mization is involved. Second, these local statistics to-
gether bring more information than a point estimator
so inference is possible. For example, in the SaRa, lo-
cal maxima are extracted to represent the likelihood for
the presence of change points, and the local statistics
around local maxima are ignored but potentially use-
ful for inference. So far, besides recent works (Hao,
Niu and Zhang, 2013, Frick, Munk and Sieling, 2014),
a solid framework for inference on multiple change
points based on local methods is lacking. It is impor-
tant to find the best way to gather and aggregate the
local information.

Without prior knowledge, a change point may be lo-
cated anywhere along the sequence. It is well known
that there is no optimal test for (1) because of the inde-
terminacy of the change-point location (Sen and Sri-
vastava, 1975). We may have one procedure that is
more powerful when the change point is in the middle
and the other one more powerful when it is close to the
boundary. As illustrated in Section 2.3, we may con-
sider the circular model to make the change-point prob-
lem symmetric. The symmetry comes from the finite
group action Zn to the change-point locations, where
Zn is a cyclic group of order n. Under this new for-
mulation, we may study equivariant change-point de-
tection procedures. Among the aforementioned algo-
rithms, CBS is designed to solve the circular model,

while exhaustive search, SMUCE, SaRa and BWD are
able to solve the circular model after slight modifica-
tions. Studying theoretical properties of equivariance
procedures for the symmetric model remains an open
topic.

It seems that two striking features of MCM, that is,
locality and symmetry, have not been emphasized in
the literature. We hope that this paper can stimulate
more research on these aspects.
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