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Selection of KL Neighbourhood in Robust
Bayesian Inference
Natalia A. Bochkina

The authors propose an attractive and coherent ap-
proach to robust inference in Bayesian statistics where
potential joint misspecification in the likelihood and in
the priors is reflected in misspecification of the poste-
rior distribution and studied in its consequences in the
decision problem of interest. I have a couple of com-
ments, a short one (the first section) and a long one
(the rest of the discussion).

1. DIRECTION OF ABSOLUTE CONTINUITY

Using one of the two possible Kullback–Leibler
neighbourhoods determines whether the neighbour-
hood consists of the models that are absolutely continu-
ous with respect to πI , or whether πI is absolutely con-
tinuous with respect to them; in the first case, with the
choice KL(π‖πI ) mostly considered in the paper, the
distributions in the KL neighbourhood of πI must be
absolutely continuous with respect to πI . In fact, this
is a consequence of the implicit assumption used in the
proof of Theorem 4.2 which is the absolute continuity
of one measure with respect to the other. Although it is
not stated explicitly, it follows from the proof that the
choice of the type of the continuity (of π with respect
to πI or of πI with respect to π ) results in the cor-
responding type of the KL divergence. An interesting
question is whether there exists a unique divergence
guaranteeing coherence if the assumption of absolute
continuity of one measure with respect to the other is
relaxed.

2. CHOICE OF THE SIZE OF THE KL
NEIGHBOURHOOD

The second issue I would like to discuss is the choice
of the size of the KL neighbourhood, C, of the distribu-
tion πI (θ) over which the robustness of the decision is
investigated. Due to duality, this problem is equivalent
to the selection of λa in the least favourable distribution
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π sup(θ) [or in the corresponding “most favourable”
distribution π inf(θ)].

My main emphasis will be on the problem of mis-
specified likelihood f (y | θ) with the loss Ly(θ) =
− logf (y | θ), as discussed in Section 4.1.3, although
some methods apply to more general problems as
considered by Watson and Holmes, with the least
favourable distribution given by

π sup(θ) ∝ π(θ)
[
f (y | θ)

]1−λa ,

which is related to likelihood tempering. For a mis-
specified likelihood, this is a common way to com-
pensate for model misspecification and to increase ef-
ficiency of inference about θ . The authors propose a
way to choose λa in the context of the DP approach
to study the distribution of the loss which is equivalent
to the choice of the total mass of the DP, by post-hoc
diagnostic plots (Sections 4.3.2 and 5). I will discuss
alternative ways of choosing λa .

There are two principally different cases of misspec-
ified likelihood considered in the literature: the most
natural situation when the true likelihood is unknown,
and the less common case when the “true” paramet-
ric family is too complex to fit so a simplified model
is used instead. These two cases are discussed below.
For brevity, I will refer to the considered misspecified
likelihood simply as likelihood.

2.1 True Likelihood Is Unknown

2.1.1 Assumptions. Calibration of inference about θ

in the case of unknown true likelihood is widely con-
sidered in the literature, both frequentist and Bayesian
(e.g., Royall and Tsou, 2003, Müller, 2013). The main
aim for model calibration in such case is to achieve fre-
quentist optimality, for example, efficiency of parame-
ter estimation.

Generally, in asymptotic framework for n iid obser-
vations, an inference under model misspecification is
about the following value of the unknown model pa-
rameter:

θ0 = arg min
θ

lim
n→∞ KL

(
P n

true‖P n
θ

)
.
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A nonasymptotic and non-i.i.d. version can be found
in Panov and Spokoiny (2015). Generally, θ0 may be
different from the “true” value of the parameter θtrue
of the correctly specified model Ptrue. One of the main
assumptions of the calibration methods is that the infer-
ence about θ0 is meaningful. This assumption is satis-
fied, for instance, for models with a location parameter
θ and a symmetric distribution with θ0 = θtrue. There-
fore, the main issue is adjustment of variability that
characterises uncertainty of inference on θ under the
misspecified model where the variability is often un-
derestimated, leading to overconfident decisions.

In addition, an implicit assumption in these papers
is regularity of both true and misspecified models,
namely that ∇θ logf (y | θ0) has zero expected value
and finite variance.

2.1.2 One dimensional parameter. For one-dimen-
sional parameter θ , the problem of calibrating a reg-
ular likelihood (mostly from the frequentist perspec-
tive) was considered by Royall and Tsou (2003) who
showed that the inference based on the likelihood tem-
pered by the temperature H/V with

H = −EPtrue∇2
θ logf (y | θ0) = EPtrue∇2

θ Ly(θ0),
(1)

V = EPtrue

[∇θ logf (y | θ0)
]2 = EPtrue

[∇θLy(θ0)
]2

is asymptotically efficient. In the case of i.i.d.
observations, unknown H and V can be consistently
estimated by Ĥ = n−1 ∑

i ∇2
θ Lyi

(θ̂ ) and V̂ =
n−1 ∑

i[∇θLyi
(θ̂ )]2 where θ̂ is a consistent estimate

of θ0, for example, the quasi-MLE. The authors also
suggest that thus adjusted likelihood should be used as
the likelihood in Bayesian inference.

In the notation of the discussed paper, this corre-
sponds to the choice λa = 1 − H/V . Often, H/V < 1,
that is, the misspecified model contains less infor-
mation than the correct model, and hence the corre-
sponding posterior distribution corresponds to the least
favourable prior. One interesting question is whether
there exist cases with H/V > 1 which would corre-
spond to the maximin distribution π inf(θ).

2.1.3 Multivariate parameter. Tempering of the
misspecified likelihood in the case of multivariate θ

for composite likelihoods was considered by Ribatet,
Cooley and Davison (2012) who referred to it as the
magnitude adjustment. A more precise calibrating pro-
cedure of the unknown likelihood parametrised by a
multivariate θ was considered, for example, by Müller
(2013) for regular models where the distribution of

a sufficient statistic for θ , the quasi-MLE, is asymp-
totically Gaussian and effectively is used as the “ad-
justed” likelihood. The proposed adjustment method is
the linear change of variables πadj(θ | y) = πI (Aθ | y)

where in the case of (asymptotically) noninformative
prior, A is such that the variance of the adjusted pos-
terior is equal to the sandwich covariance matrix. This
corresponds to the smallest frequentist risk and is the
variance of the quasi-MLE, that is, AT HA = V where
matrices H and V are defined by (1). In case of an in-
formative prior, denoting B = ∇2 logπ(θ0), the matrix
A should satisfy AT [H + B]A = V + B . In practice,
H (or H + B) can be estimated by the posterior co-
variance matrix, B can be estimated by ∇2 logπ(θ̂)

where θ̂ is a consistent estimator of θ0, for example,
the posterior mean, and for i.i.d. observations V can be
estimated by n−1 ∑

i[∇Lyi
(θ̂ )]2.

The corresponding magnitude adjustment for tem-
pered likelihood is 1 − λa = ‖HV −1‖ for the asymp-
totically noninformative prior, and 1 − λa = ‖(H +
B)(V +B)−1‖ for tempered posterior with an informa-
tive prior which can be estimated as suggested above.
Asymptotically, this can also be viewed as the ap-
proach proposed in the discussed paper with a = θ̂ and
La(θ) = ‖θ − θ̂‖2

Q = (θ − θ̂ )T Q(θ − θ̂ ) with Q = H

or Q = H + B , respectively. A different Q would re-
sult in a different value of λa . An interesting question,
which also applies to some examples below, is whether
it is possible to apply or to extend the discussed ap-
proach to accommodate the more precise adjustment
of the misspecified posterior.

Viele (2007) proposed a method to fit a posterior dis-
tribution of KL divergence KL(Ptrue‖Pθ) given a sam-
ple from Ptrue which can be applied as an alternative
way of selecting the upper bound on the KL neigh-
bourhood size, C [and hence on λ(C)], for instance
by taking C as 95% percentile of the posterior distri-
bution of the KL distance. This method is developed
for a Dirichlet process prior for P . Hence, it should be
possible to adjust the approach of Watson & Holmes to
calibrating πI (θ) based on the DP prior (Section 4.3).

2.1.4 PAC-Bayesian approach and theoretical
bound on λa . In the absence of the likelihood,
the maximin distribution π inf(θ) corresponds to
PAC-Bayesian estimation and Gibbs posteriors (Sec-
tion 4.2.2). The robust perspective given in the dis-
cussed paper gives an insight into this approach which
corresponds to the most optimistic posterior distribu-
tion, with the smallest possible value of the posterior
loss in the given neighbourhood of the posterior. The
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discussed approach would naturally suggest using also
the corresponding least favourable distribution; how-
ever, in many cases it may not be proper. A value of λa

can be chosen by adapting the model calibration ap-
proaches discussed above applied to exp(−La(θ)) as
the misspecified likelihood.

For some PAC-Bayesian estimators, conditions on
λa are available that result in optimal inference, from
the frequentist perspective, about the unknown param-
eter with respect to the loss function La(θ). For in-
stance, for sparse high dimensional linear regression
and �2 loss, theoretical upper bounds on λa under gen-
eral conditions on the true likelihood can be derived
from Dalalyan and Tsybakov (2012).

2.2 Known True Model

The less common case is when the true model is
known, for instance, in approximate computation, with
the typical case being composite likelihood models.
Ribatet, Cooley and Davison (2012) proposed the mag-
nitude adjustment which corresponds to tempering of
the posterior with 1 − λa = ‖�true�

−1
miss‖ where �miss

and �true are posterior precision matrices of the ap-
proximate and the true posterior respectively. Stoehr
and Friel (2015) proposed an affine adjustment so that
the first two moments of the posterior based on the ap-
proximate model match the corresponding moments of
the true posterior distribution.

The calibration methods above are based on local
asymptotic normality of the posterior distribution. Sim-
ilar calibration is possible for posteriors concentrating
around θ̂ in a different way. A typical example is an
asymptotically exponential or gamma posterior distri-
bution:

πI (θ) =
p∏

j=1

v
αj−1
j exp

{
−

p∑
j=1

κjvj + OP (1)

}
I (vj

(2)
≥ 0 for j = 1, . . . , p),

where v = θ − θ0 − 	y , usually κj =
−EPtrue∇θj

logf (y | θ0) and αj > 0 are determined by
the prior. For instance, for a locally asymptotically ex-
ponential (LAE) likelihood for parameter θ , for ex-
ample, for a likelihood with a jump at θ , and a lo-
cally constant prior, the posterior has form (2) with
all αj = 1 and random 	y (Chernozhukov and Hong,
2004). This also holds when θ0 is a sharp maximum of
E logf (Yi | θ) which is usually attained on the bound-
ary of the parameter set. For instance, this happens
for a truncated Gaussian likelihood when the “true”
value of the parameter is outside of the truncation, or

when the observations are independent Poisson(Aiθ)

random variables such that Aiθ0 = 0 for some i; in this
case, the posterior is of the form (2) with 	y ≡ 0 and
αj > 0 can be arbitrary (Bochkina and Green, 2014).
If the posterior corresponding to the true likelihood is
of the form (2) with p = 1 and κ1 = κ∗, the misspeci-
fied likelihood should be tempered by 1 − λa = κ∗/κ0
which for a known true likelihood and one-dimensional
θ can be estimated by κ̂∗/κ0 = ∇θ logftrue(y|θ̂ )

∇θ logf (y|θ̂ )
with θ̂

being a consistent estimator of θ0, for example, the
quasi-MLE. For a LAE likelihood, the random bias 	y

is assumed to be the same or to have the same distribu-
tion as under the correctly specified model. A similar
adjustment is possible in a multivariate case.

A related problem is calibration of a known de-
sirable prior, πI (θ), to fit prior expert information
of the form Eπg(θ) = 0 where the expectation is
taken with respect to a prior. Choi (2016) proposes
to find a prior that satisfies such constraints and
which is closest to the desirable prior in KL dis-
tance. The function g can depend on the likelihood
family (but not on the observed data). This optimisa-
tion problem is dual to the problem considered in the
discussed paper, with the unconstrained Lagrangian
dual of the similar form π = arg infπ [KL(π‖πI ) +
ηg(θ)], where g(θ) = La(θ) − EπLa(θ), with the
optimal prior π(θ) ∝ πI (θ) exp(λT∗ g(θ)) and λ∗ =
arg minλEπI

exp{λT g(θ)}. The author proposes the
following estimator of λ∗ based on N Monte Carlo
draws from πI :

λ̂ = arg min
λ

N−1
N∑

j=1

exp
{
λT g(θj )

}
.

I think that the authors have brought to discussion
an interesting topic of robustness that is not routinely
addressed by Bayesian statisticians in this form; it is
more general that the usual checks to the sensitivity
of the prior by simulations, usually over a (relatively)
small number of possible alternative scenarios. I hope
this will motivate further methodological development
and routine reports of sensitivity of the decision mak-
ing to model misspecification in practice.
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