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Selecting a Biased-Coin Design

Anthony C. Atkinson

Abstract. Biased-coin designs are used in clinical trials to allocate treat-
ments with some randomness while maintaining approximately equal allo-
cation. More recent rules are compared with Efron’s [Biometrika 58 (1971)
403-417] biased-coin rule and extended to allow balance over covariates.
The main properties are loss of information, due to imbalance, and selection
bias. Theoretical results, mostly large sample, are assembled and assessed
by small-sample simulations. The properties of the rules fall into three clear
categories. A Bayesian rule is shown to have appealing properties; at the cost

of slight imbalance, bias is virtually eliminated for large samples.
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1. INTRODUCTION

It is now over forty years since Efron (1971) intro-
duced a biased-coin design for the partially random-
ized sequential allocation of one of two treatments. The
intention was to provide approximate balance when-
ever the experiment was stopped while providing ran-
domization to reduce biases. This was achieved by al-
locating the under-represented treatment with a con-
stant probability; Efron preferred p = 2/3. In the case
of equal cumulative allocation to the two treatments,
allocation was made at random. Since that time there
have been many developments, recently reviewed by
Biswas and Bhattacharya (2011) and compared by
Zhao et al. (2012). In the comparison of these designs
the emphasis has tended to be on balance. See, for ex-
ample, Baldi Antognini (2008). One purpose of this re-
view is to stress the importance of looking at both bias
and balance in the assessment of designs.

Efron’s rule and its extensions are used when ei-
ther there are no prognostic factors or they are ignored
by the design. It is now also over thirty years since
Atkinson (1982) introduced a randomized version of
the sequential construction of optimum designs that
can include discrete or continuous prognostic factors
and can be used for a wide variety of error distribu-
tions. (A connection with Efron’s rule was a visit to Im-
perial College in 1981 by Rupert Miller and a discus-
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sion of Efron, 1980.) For normal homoscedastic mod-
els without covariates this randomized rule can provide
a series of alternatives to Efron’s rule with controllable
randomization (Smith, 1984b). Consideration of bias
and loss as functions of the number of trials leads to
the division of the rules, both with and without covari-
ates, into three groups with very different properties.
Balance is measured as an effective loss in the number
of patients due to imbalance. Plots of loss against bias
provide a cogent way to summarise the properties of
designs and to determine whether designs are admissi-
ble. Efron’s original proposal is not.

The paper starts with rules without covariates. Sev-
eral such rules are described in Section 2. Efron’s rule
can be extended by taking values of p other than 2/3.
The distribution of D,,, the difference in the number
of allocations to the two treatments, forms a Markov
chain, the steady-state properties of which were stud-
ied by Efron (1971). Exact distributional results for the
chain are given by Markaryan and Rosenberger (2010).
However, the design can become appreciably unbal-
anced; the rules of Soares and Wu (1983) and of Chen
(1999) limit the maximum value of D,,. In addition to
these rules, Baldi Antognini and Giovagnoli (2004) in-
troduced a family of “adjustable” biased-coin rules that
force balance more strongly as the difference in alloca-
tions increases. Two rather different families of rules,
derived from considerations of the optimum design of
experiments, are also introduced in Section 2. The rules
of Smith (1984a, 1984b) are a generalization of those
of Atkinson (1982) which used randomized versions
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of the sequential construction of optimum designs to
provide allocation rules giving balance over covariates.
(Consideration of rules for covariate balance starts in
Section 7.) The final family of rules are derived from
the Bayesian work of Ball, Smith and Verdinelli (1993)
which explicitly balances inference and randomization.

The criteria for comparison of the rules, loss and se-
lection bias, are introduced in Section 3. It is assumed
that the property of interest is precise estimation of the
treatment difference. Section 4 provides a survey and
comparison of results for the bias and loss of the rules.
Simulation is used to explore the reliability of asymp-
totic results.

For Efron’s biased coin, Section 4.1, the values of
loss from the steady-state distribution of D,, are com-
pared with simulation results, showing good agreement
for p =2/3 and n > 50. In Section 4.2 a simple ap-
proximation is found to the steady-state distribution of
D,, for the adjustable-biased coin of Baldi Antognini
and Giovagnoli (2004). This shows that the design
strongly forces balance and that the loss is small. How-
ever, for odd n, the bias is the highest of those for
the rules considered, a feature that is not obvious from
the original paper. For Smith’s rule, Section 4.4, the
asymptotic results are again compared with the results
of simulation.

The results show very clearly the importance of as-
sessing rules both for odd and even n. This point was
unfortunately overlooked by Zhao et al. (2012), all of
whose extensive simulation results are for even n. In
Section 5 the averages of adjacent values of loss and
bias are used in the comparison of rules. Such averages
remove the effect of the parity of n and confirm the
general principle, for example, Atkinson (2002), that
appreciably random rules have high loss and low bias,
whereas rules that force balance will have low loss but
high bias since forcing balance makes it easier to guess
correctly which treatment will be allocated next.

The admissibility plots, introduced by Atkinson
(2002), are given in Section 6 for the nine rules con-
sidered. These show the very different behaviour of
the three groups of rules. In particular, Efron’s coin
is inadmissible compared with an instance of the rule
of Baldi Antognini and Giovagnoli (2004). The new
Bayesian rule, that initially forces balance, becomes
closer to random allocation as the sample size in-
creases, thus reducing selection bias for larger samples.

These biased-coin rules can be extended to include
covariates through balance over individual strata or by
balance over the variables in a linear model. Section 7

introduces these approaches, together with that of ran-
domized versions of the sequential construction of op-
timum designs for a linear model. The admissibility of
these allocation rules is evaluated in Section 8. There
is much common structure between the admissibility
plots for rules with covariates in Figure 11 and those
for rules without covariates in Figure 10.

The purposes of the paper include the gathering to-
gether in one place of theoretical results on the proper-
ties of the rules, which are compared to small sample
results by simulation. Another purpose is to include the
recent rule of Baldi Antognini and Giovagnoli (2004)
in this framework and to provide some tractable the-
oretical results on the properties of the rule. A differ-
ence between rules without covariates and those with
continuous covariates is their strong dependence on the
parity of n. The paper closes in Section 9 with a discus-
sion of extensions to several treatments and to models
other than homoscedastic regression. We commend the
Bayesian rule of Sections 4.5 and 7. In the absence of
covariates the average loss for this procedure for large
n is equal to the loss of information on one patient,
a small price to pay for the avoidance of selection bias
in an asymptotically efficient rule.

2. RULES WITHOUT COVARIATES

There are two treatments and n patients of whom N;
have received treatment 7; (i = 1, 2). Because treat-
ment allocation involves some randomness, the N; are
random variables. A further important variable is the
difference in the number of allocations of the two treat-
ments D, = Ni — Nj. The probability that patient
n + 1 is assigned to treatment 1 is given by a function
F(ni,ny),Ni=n; (i=1,2).

2.1 Efron’s Biased-Coin Design: Rule E

In Efron’s biased-coin design the allocations depend
on n1 and n; through the difference D,;:

p, x <0,
Fgp(x)=10.5, x=0,
g=1—p, x>0,

for 0.5 < p <1 and x = D,,. Efron (Section 2) favours
p = 2/3, which can easily be implemented using a six-
sided die. For p = 0.5 treatment allocation becomes
random, being decided by tossing a fair coin. There
is no control over balance, but consistent successful
guessing of the next allocation is impossible.

For p =1 the rule becomes that of sequential design
construction and |Dy| is either zero, when allocation



146 A. C. ATKINSON

is at random, or 1, when the under-represented treat-
ment is allocated. This deterministic rule will be called
Rule D and random allocation Rule R. These two rules
are at the extremes of all sensible rules—theoretically
the treatments could be allocated to increase imbal-
ance, but not in a practical context. Allocation with
Rule R does not depend on whether n is even or odd.
But, for Rule D the two values produce allocations with
extreme properties, random or deterministic. The vari-
ation of properties with the parity of »n is a strong fea-
ture of Rule E and, particularly, of the rule in the next
subsection.

2.2 The Adjustable Biased-Coin Design: Rule J

The correction toward balance in Rule E depends
only on the sign of D, but not on its magnitude. The
design may therefore sometimes become appreciably
unbalanced and several rules have been suggested to
reduce the variability of D,. Part of the argument of
this review is that such concerns may be overstated,
given the small effect of appreciable imbalance on the
statistical performance of the design for moderate n.

Baldi Antognini and Giovagnoli (2004) introduced a
rule in which the corrective force increases with | D,,|:

a
al , x<0,
1+ x|
(D Fpa(x)=10.5, x=0,
1
, x>0,
1+ |x|@

for a > 0. Baldi Antognini and Giovagnoli refer to their
rule as ABCD. However, all these letters have been
used by Atkinson (2002). To avoid confusion, in the
present paper the rule is called J for “Adjustable.”

In this rule a difference of one between treatments is
treated as if it were zero and the next treatment is al-
located at random. The corrective force increases with
|x|. The value a = 0 gives Rule R, whereas as a — oo,
the rule tends to Rule D. Baldi Antognini and Gio-
vagnoli (2004) tabulate properties for a from 1 to 4.

2.3 Imbalance Tolerance

In Rule J the distribution of D, has support on
(—n, n), although, as Tables 1-3 of Baldi Antognini
and Giovagnoli (2004) show, for a in the range 1-4,
the distribution is concentrated on a few values of D,
near zero. Two earlier rules were formulated to restrict
the range of values of D,,. In the balanced-coin design
with imbalance tolerance of Chen (1999), the rule is

that of Efron except that there is a reflecting barrier in
the stochastic process for D,, at =b:

1, x =—b,
p, x <0,
F[T(x) = 0.5, X ZO,
g=1—p, x>0,
0, x =b.

The “big stick” design of Soares and Wu (1983) is ob-
tained when p = 1/2. We do not investigate the prop-
erties of these rules, which have an evolution of prop-
erties with n that is similar to that of Rules E and J.
These rules are related to the tractable approximation
to the properties of Rule J given in Table 1.

2.4 Rule P: Permuted Block Design

Deterministic allocation, Rule D, can be thought of
as allocating conceptual blocks of length 2, ensuring
balance whenever n is even. The blocks are “concep-
tual” since they are not like the blocks in a conventional
experiment; they do not correspond to groups of units
with common properties and they are not included in
the analysis. An extension is to allocate larger random-
ized sequences, for example, AABABABB, ensuring
balance when 7 is a multiple of eight, but not other-
wise. Efron (1971) explores some properties of designs
with block sizes up to 32; Rosenberger and Lachin
(2002) in their Figure 6.3 only go up to block size 10.

2.5 Smith: Rule S

Smith (1984b) investigated a family of rules in which

p

2) Fs(ni,ny) = —2

for p > 0. As p — 0 we again obtain random allo-
cation and, as p — 0o, Rule D. Although the alloca-
tion probabilities depend on both n; and n», (2) can be
rewritten to show that the dependence on earlier allo-
cations is only through the ratio D, /n. For the biased-
coin rules described above, dependence is directly on
the difference D,,. The results of Section 4.4 show the
effect of this distinction.

The family of rules was suggested by the designs
of Atkinson (1982) for randomized allocation when
there are covariates over which balance is required, de-
scribed in Section 7. In the absence of covariates the
model contains just two parameters, the mean treat-
ment effects w; and wy. The D-optimum design max-
imizes the determinant of the information matrix for
the two parameters, in this case minimizing the prod-
uct of the variances, leading to a value of one for p.
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Rule A of Section 7 (the D 4-optimum design), mini-
mizing Var({t; — [12), is obtained when p = 2.

It is simple to show that this rule, when p =1, is the
same as the adaptive biased-coin design of Wei (1978),
who suggests the linear rule

Fw(ni,n2) = — Dy/n)/2.

Some of the results of Section 4.4 therefore also apply
to Wei’s rule.

2.6 Bayesian Procedure: Rule B

Both Smith (1984b) and Markaryan and Rosen-
berger (2010) suggest that the rule should be designed
with statistical principles in mind, such as variance of
estimation and bias.

Smith (1984b) in his Section 4 derives an expres-
sion for the mean squared error of prediction when
both variance and selection bias are included. His con-
clusion is that p should tend to zero as n becomes
large. That is, for large n, the rule should become in-
creasingly like random allocation. This behaviour is
achieved by the Bayesian rule of this section.

In his development of methods of comparison of de-
signs with prognostic factors, Atkinson (2002) intro-
duces a Bayesian rule, derived from a general approach
of Ball, Smith and Verdinelli (1993), which balances
randomness and precision of estimation through inclu-
sion of a parameter y . For the allocation of one of two
treatments in the absence of prognostic factors, the rule
is

Fg(ni,n2)
3) |
{1+ ny/(mn) Y

T L+ 2/ (n )} + {1+ ny [ (nn)} Y

O<y <1).Asn— oo with y =1 random alloca-
tion, Rule R is obtained, whereas y — 0 gives Rule D
for small n, that is, sequential construction of the Dy4-
optimum design. In this case randomization is ignored.

The important feature that distinguishes this rule
from the others is its behaviour as a function of #. Ini-
tially, as the results in Section 6 show, when 7 is small
and y is also small, 0.01 in the numerical example, the
rule forces balance, behaving like Rule D. However,
as n increases, (3) shows that the effect of imbalance
on the allocation probability decreases. For large n the
rule indeed behaves increasingly like random alloca-
tion.

3. ASSESSING RULES: BIAS AND LOSS

It is usual to assume that the observations are, at least
approximately, normally distributed with constant vari-
ance o2 and that the treatment difference 1 — po is
the parameter of interest. The effect of imbalance due
to randomization is slightly to increase the variance of
the estimated difference

Var(fi; — fl2) = o>(1/ny + 1/n2)
4)

=no?/(niny).
For the balanced design with n even,
() Var*(l —fr) =4o*/n (n=2m),

where m is an integer and * indicates “for the optimum
design.” Of course, there will always be an imbalance
of one in the optimum design when » is odd (Dy;,;, 41 =
+1), when

(6) Var*(f — fio) =40 /(n—1/n)

The difference between (5) and (6) when n = 11 is less

than 1% and decreases like n~2. The distinction in par-

ity of n will be ignored in variance comparisons.
Burman (1996) suggested rewriting (4) as

402
n—1L,’
where L, is defined to be the “loss,” that is, the effec-
tive number of patients on whom information is lost
due to the imbalance of the design. Then, from (4),
(7) L,=D?/n

for even n. For n odd we could take L,, = (D,% —1)/n.
The value of L, is random, depending on the outcome
of the particular randomization. The expected value of
L,, is written

(8) Ly = (Var Dy)/n,

(n=2m+1).

Var(fty — ft2) =

since, for the designs considered here, ED, = 0.
An important related statistical quantity is the effi-
ciency of the design,

Var*(fiy — 1) n—1L
Var(fL1 — f12) n
These quantities are highly informative about the prop-
erties of all designs considered.

The loss L, depends on the particular sequence of
randomized allocations. Interest here is in the expecta-
tion EL, = £,,, approximated by L, the average over

ngim simulations. For Rule S the expected value of the
loss £, has a constant limit as n — oo (Section 4.4).

9) E,= “=1-L,/n.
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For random allocation, a result that goes back at least to
Cox (1951) is that L, = 1. For the biased-coin Rules E
and J, Var D,, approaches from below a finite limit as
n — oo. The loss therefore decreases with n. Simu-
lation results on the distribution of L, for rules with
covariates are presented by Atkinson (2003).

Statistical power is extremely important in the prac-
tical assessment of designs for clinical trials. Plots like
those in Figure 3.1 of Rosenberger and Lachin (2002),
and the similar plot in Pocock (1983), show how very
large the value of D, has to be to cause a measurable
effect on power. For both forms of behaviour of loss
with increasing n, it follows from (9) that the efficiency
of the design goes to one as n — 0o. Except for very
small trials, the average effect of imbalance on (4) will
be negligible. For a particular randomization, the inter-
pretation of L, as a number of patients on whom infor-
mation is lost leads directly to the calculation of loss in
power due to the imbalance from randomization.

Randomization and balance are in conflict. A nu-
merical measure for randomization is selection bias
(Blackwell and Hodges, 1957) which measures the
ability to guess the next treatment to be allocated. Bias
depends on the design, the guessing strategy and, for
some rules, the value of n. For a particular combination
of strategy and design the expected bias I3, is estimated
from ng;, simulations as

B,, = (number of correct guesses
(10) of allocation to patient n

— number of incorrect guesses)/ngim.

This definition is similar to that of (4.2) of Smith
(1984b). The guessing strategy used in the numerical
comparisons of the next sections is the sensible one
of guessing that the treatment for which the allocation
probability p > 0.5 will be selected.

Atkinson (2002) calculated B, from the binary vari-
ables in (10). It is, however, more efficient, as is done
here, to follow Heritier, Gebski and Pillai (2005) and
average the expectations 2p — 1.

The customary justifications for randomization in
experiments include the avoidance of bias. Amongst
many others, Efron (1971) and Smith (1984b) consider
that selection bias should not be an issue in double-
blind trials with treatment allocation made remotely
from the trial, although it may be if there are lo-
cal attempts toward institutional balance (Lagakos and
Pocock, 1984). However, a trial without randomization
appears to lack objectivity. Accordingly, they study the

effect of biased-coin designs on freedom from acciden-
tal bias due to omitted factors, including time trends
and, in the case of Smith (1984b), correlated errors
and outliers. The conclusion of Smith (1984b) is that
biased-coin designs that are not as random as Rule R
provide good protection against several sources of bias
and that selection bias is a good measure of the proper-
ties of the design.

There are several related measures of selection bias.
For example, Efron (1971) and Markaryan and Rosen-
berger (2010) use excess selection bias, that is, the ex-
pected number of correct guesses in excess of those
expected when allocation is at random. A slight advan-
tage of B, is that the values lie between 0 and 1. How-
ever, one measure is a linear function of the other, so
that the ranking of rules is not changed by the choice
of measure.

Smith (1984b) in his equation 4.2 defined the se-
lection bias B,, but found the average bias over all
allocations up to n. Average bias was also used by
Baldi Antognini and Giovagnoli (2004) and by Zhao
et al. (2012), who, however, calculate the mean num-
ber of correct guesses. In the present paper the measure
used is B,,, which refers solely to guesses of the nth al-
location. An advantage of this measure is that it reveals
whether there is a strong dependence of the bias on the
parity of n. A book length discussion of forms of selec-
tion bias is due to Berger (2005). Proschan, Brittain and
Kammerman (2012) briefly discuss some situations in
which blinding is impossible and selection bias may
seriously distort inferences.

4. ANALYTICAL AND NUMERICAL RESULTS ON
BIAS AND LOSS

Analytical results for bias and loss are available for
some rules. They are summarized by allocation rule in
the following section. For Rules E and J the distribu-
tion of the values of D, forms a Markov chain. The
analytical results come from the steady-state distribu-
tion of D,,. The value of BB,, depends on the distribution
of D,_1, whereas that of £, requires the distribution
of D,. For Rule S the results are asymptotic and do not
depend on the parity of n. Simulation is used to check
the properties of the rules for finite n and to show some
properties of Rule B.

There are also related results on the distribution of
the number of patients N; allocated to each treatment.
For Rules E and J the limiting Markov chain for the dis-
tribution of D,, leads to the result that n~1/2D,, goes to
0 in probability, so that N; goes to one half. For Rule S
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the proportions have an asymptotically normal distri-
bution depending on the value of p in (2). The details
are in Section 4.4.

4.1 Efron’s Biased Coin: Rule E

If D,,_1 =0, allocation to patient n is at random and
the bias is zero. For all other values the bias, condi-
tional on the value of D,,_1, is 2p — 1. The steady-state
probabilities that D, = 0 are given by Efron (1971) and
by Markaryan and Rosenberger (2010) who both write
r=p/q = p/(1 — p). Then, for integer m,

) r—1 2p—1
lim P(Djy, =0)= = )
n— 00 r p

with P (D31 =0) =0.

(11)
When 7 is even, that is, n = 2m, it follows from (11)
that
By =2p —1.
When n is odd, P(D2, #0) = (1 — p)/p and
Bom—1=Q2p— 11— p)/p.
For the original coin with p =2/3,
(12) By,(2/3)=1/3 and By,-1(2/3)=1/6.

The right-hand panel of Figure 1 shows average sim-
ulated values B, for Rule E(2/3), that is, Efron’s coin.
Although the two values in (12) are calculated from the
steady-state distribution of D, the figure shows that

Loss
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0.6 0.8

loss

0.4

0.2

T T T T T
0 50 100 150 200

number of patients

FI1G. 1.
tions.

the bias immediately settles down to oscillate between
these two values.

For random allocation p = 0.5 and B5,(0.5) = 0,
whether n is odd or even. As p increases, By, — 1,
whereas B5,,—1 has a maximum at the famous number
(«/5 —1)/2 =0.6180 before declining to zero.

Equation (8) shows that the loss £, = (Var D,,)/n.
Expressions for Var D,, from the steady-state distribu-
tion are given by Markaryan and Rosenberger (2010),
from which expressions for £, follow.

These values of £, again depend on whether n is
even or odd:

_Ar(rt 4+ 1)
(13) Lom = m,
8r2
A9 Lo ={ s 1]/

Re-expressions as functions of p do not provide any
insight.

The left-hand panel of Figure 1 shows the average
values of loss, L,, for p =2/3. Unlike the plot of bias
in the right-hand panel, this plot shows only a small ef-
fect of the parity of n. As is to be expected, the loss is
larger for odd n. Since the rule becomes random allo-
cations as p approaches 0.5 and sequential balancing,
Rule D, as p approaches one, it is to be expected that
the ratio of loss for odd to even n increases with p:
for p = 0.55 the ratio is 1.0002; for Efron’s coin with
p =2/3 it has only risen slightly to 1.0250, becoming
1.1333 when p =0.75.

Bias
o |
[e0)
2 |
© |
o
(/2]
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o]
<
s
o |
o
o
=
T T T T T
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number of patients

Efron’s coin with p = 2/3—Rule E(2/3). Left-hand panel, average loss Ly, right-hand panel, average bias By,. 100,000 simula-
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FIG. 2. Rule E(2/3). Convergence of L, to the steady-state value
given by (7) or (8): ratio nLy, / Dso. Reading down, p =3/4,2/3
and 0.55. 100,000 simulations.

Perhaps of greater importance is the approach of the
loss to the value in (8) when the steady-state variance
is used. Table 2 of Markaryan and Rosenberger (2010)
gives exact values of the variance of D,, for n both even
and odd for a range of values of p. Convergence to the
asymptotic value is faster for larger values of p. For
small n and p near 0.5 the exact variance is appreciably
smaller than that at the steady-state.

To illustrate the effect on loss, let the steady-state
variance be denoted Var Do,. Then the loss should de-
crease as 1/n and the ratio nL,/Ds should tend to-
ward one. Figure 2 illustrates this for three values of p.
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For p = 0.55 the ratio has only reached 0.85 when
n = 200. However, for p = 2/3, values around one are
reached around n = 50. For p = 3/4 the values are
above 0.9 for n > 8. The steady-state values of loss
given in (7) and (14) provide useful guidance for all
coins except those with very low values of p, which
are unlikely to be used in practice, or with small values
of n.

These results about bias and loss indicate that the
properties of Efron’s biased-coin are well understood,
both asymptotically and for smaller samples. In the-
ory, exact results for £, can be obtained from the an-
alytical expressions for the distribution of D, given
in Markaryan and Rosenberger (2010). However, the
authors warn in their Section 3 that care is needed
in the numerical calculation of the summations they
present, since these involve factorials of large numbers
and powers of numbers less than one. As here, simula-
tion may sometimes be an easier way to obtain an idea
of the properties of a rule for a variety of parameter
values.

4.2 The Adjustable Biased-Coin: Rule J

Figure 3 shows the average values of loss L, and
bias B, for Rule J with parameter a = 3. These plots
are similar in structure to those for Rule E in Figure 1,
although the values of loss are lower for Rule J and
show a greater effect of the parity of n. The surprise,
however, is the more extreme values of bias, which are

Bias
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number of patients

FIG. 3. Adjustable biased-coin with a = 3—Rule J(3). Left-hand panel, average loss Ly, right-hand panel, average bias By,. 100,000 sim-

ulations.
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not to be expected from the presentation of Baldi An-
tognini and Giovagnoli (2004).

There are some theoretical results for the balance,
bias and power of Rule J. Baldi Antognini and Gio-
vagnoli (2004) provide asymptotic comparisons of se-
lection bias with Rule E and show that their rule has
smaller bias than E(2/3) for any value of a. The power
comparisons of Baldi Antognini (2008) are for a more
general family of rules than J. One result (Corollary
3) is that for any sample size a rule with F(—1) >
p is uniformly more powerful that E(p). The rule
studied here, (1), does not meet this condition. The
rate of decrease of the loss associated with Rule J is
shown by Baldi Antognini and Zagoraiou (2011) to
be 1/n.

The adjustable biased-coin (1) combines avoidance
of excessive imbalance with greater randomness than
Efron’s rule in the centre of the distribution of D,,.
For D, = —1,0 or 1 the probability of moving to
Dyy1 =D, +1or D, —1is 0.5; values of D,, = £2
are therefore frequent. However, except for small a,
absolute values greater than or equal to four rarely
occur—see the numerical calculations in Tables 1-3
of Baldi Antognini and Giovagnoli (2004). We there-
fore use as an approximation a truncated Markov chain
for D,,. For example, for a = 2, the equilibrium prob-
ability that |D,| > 4 is less than 0.013 for n even
and less than 0.001 for n odd. To obtain a tractable
approximation to the equilibrium probabilities of this
rule, and so to calculate approximate values of the bias
and loss, we examine the approximation of the rule
by the truncated Markov chain on the values —3 to 3.
This truncated rule is a hybrid between those of Soares
and Wu (1983) and of Chen (1999) introduced in Sec-
tion 2.3.

The stationary distribution of D, for this approxi-
mation is displayed in Table 1 where p =2%/(1 + 2¢).
Given the stationary distribution, it is straightforward
to calculate the loss and bias. The loss for a difference
of D, is D2 /n. The biases for the central values of D,,,

TABLE 1
Stationary distribution of the approximation to Rule J;

p=24/(1+29)

D, -3 -2 -1 0 1 2 3

l—p P )i I—p
nodd 5y ? Trp 2 Trp ? 2(0+p)
n even 0 20Fp) 0 T+p 0 T+p) 0

TABLE 2
Rule J. Approximate values of L, and B, (n = 199 and 200) from
the approximation (15). Bracketed values below are averages By,
and Ly, from 100,000 simulations

a L9 Lo Bigg B0

1 0.0131 0.0120 0.2000 0.2000
(0.0172) (0.0177) (0.2369) (0.1382)

2 0.0095 0.0111 0.3333 0.1006
(0.0100) (0.0120) (0.3408) (0.1006)

3 0.0074 0.0106 0.4118 0.0588
(0.0075) (0.0107) (0.4152) (0.0579)

4 0.0062 0.0103 0.4545 0.0303
(0.0062) (0.0103) (0.4545) (0.0303)

that is, 0 and +1, are zero, since the allocation is at ran-
dom. For | D,,| = 2 there is a probability of p of allocat-
ing the underrepresented treatment and the conditional
biasis 2p — 1. For | D,,| = 3 the underrepresented treat-
ment is always allocated and the bias is one. Taking ex-
pectations over the stationary distributions for odd and
even n leads to

9-1Tp 2p—1
neven: L, =—"—, e ,
n(l+ p) 1+p
= 4 1
nodd: L,=———, n:—p.
n(l+ p) l+p

As for Rule E, for this approximation the expected loss
decreases with n, but the bias is independent of n, in
line with the plots of Figure 3.

Table 2 gives a comparison of the values of £,, and
B, from the approximation (15) with, in brackets, the
average values from 100,000 simulations for n = 199
and 200. The table shows how good the approxima-
tion is, both for bias and loss, when a is as small as 2,
that is, p = 4/5. For this and higher values of a, the
value of p is sufficiently large that the distribution of
D,, is indeed concentrated in the range —3 to 3. Bet-
ter approximations for both small a and small n can be
found by putting the reflecting barriers of the Markov
process further out than +3.

There are three substantive points in these results.
The first is the extremely small values of loss, even
when a = 1. For these values of n an arbitrarily stopped
trial will be very close to balance. The second is that,
although the values of loss depend on the parity of n,
the values are so small that the inferential effect is neg-
ligible. The third is the extremely high value of bias
when 7 is even. As p — 1 the approximations in (15)
show that the bias tends to 0.5 for n even, whilst going
to zero for n odd. This behaviour raises the question of
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how to compare rules which have such different prop-
erties for odd and even n.

4.3 Rule P: Permuted Block Design

As an example of a permuted block design let n =
8. A typical design allocates treatments in the or-
der AABABABB. The underrepresented treatment is
guessed with random guessing for the first allocation.
Then B; = 0. Thereafter, B,, will be one when the
underrepresented treatment is allocated and —1 when
the overrepresented treatment is allocated. If the length
of the block is known, the last guess will always be
correct, as balance is attained. For example, guessing
the underrepresented treatment in AABABABB gives
B, =—1and Bg = 1.

Figure 4 shows loss and bias for the rule with block
size 8. Loss quickly decreases with n; since there is
balance when each block is completed, Lg, = 0. Be-
cause the allocation is deterministic, the fine detail of
the plot shows repetition of the same eight-allocation
pattern of loss, decreasing as 1/n. The right-hand panel
shows bias up to n = 16, that is, two cycles of guessing
in ignorance of the structure.

Figure 1 of Efron (1971) compares a measure of se-
lection bias for several biased-coin Rules E with per-
muted blocks of size 2m. For m = 9 the bias is sim-
ilar to that of E(2/3). As m increases, the rule be-
comes more like random allocation, that is, Rule E with
p — 0.5. Figure 6.3 of Rosenberger and Lachin (2002)

compares bias over n for values of m from 1 (deter-
ministic allocation) to 5. These comparisons are over
all possible permutations of the 2m allocations, rather
than for a specific permutation, like that of Figure 4
that would be used in a particular trial. Bailey and Nel-
son (2003) advocate restricted randomization, in which
permutations with an “obvious” pattern are not consid-
ered. Those that become too unbalanced could also be
excluded.

The ability to guess correctly depends on what is
known about the structure of the design. If it were
known that this structure of eight treatments were to
be repeated, then B,, would be one for all n > 8. Ran-
domly relabeling treatments A and B, using several
permutations or changing the block size are all ways
in which the value of B,, could be kept small, although
at some administrative cost.

4.4 Smith’s Rule: Rule S

Figure 5 shows the values of average loss and aver-
age bias for 100,000 simulations of Smith’s rule with
o =5. Apart from the few initial values of n, the val-
ues of loss in the left-hand panel are virtually constant,
whereas the average bias decreases with n. As it does
s0, the effect of the parity of n disappears. This is very
different behaviour from that for the two-biased coin
Rules J and E in which bias is constant with n, although
depending on parity, whilst loss decreases as 1/n.

The properties of the biased-coin designs in the ear-
lier sections were found from the Markov chain formed
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by the values of D,. This structure is not available
for Rule S and asymptotic arguments are used instead.
From equation (4.1) of Smith (1984b),

(16) Lp=1/(1+2p).

The asymptotic distribution of L, follows from Smith
(1984a) who shows the convergence in distribution of
n~12D, — N{0,1/(1 + 2p)}. From (8) the asymp-
totic distribution of loss is therefore

L, ~X3/(1+2p),

where X7 ~ x?.

The asymptotic distribution of D,, also provides the
asymptotic distribution of »;, the number of patients
receiving treatment i. Since Var(N;) = Var(D,)/4,
asymptotically,

(17)  n VAN~ NT1/2,1/{4(1+2p)}].

For random allocation (p = 0) the variance is 1/4.
In his (4.3) Smith further uses the asymptotic nor-
mality of D, to show that, as n — oo,

By = p\2/{nw(1 +2p)).

Figure 6 explores the relationship between the av-
erage values of loss and bias plotted in Figure 5 and
the asymptotic values given above. The left-hand panel
shows the ratio of the two estimates of expected loss,
L, and £, Initially there is a slight effect of the par-
ity of n on the ratio, but, from n = 15, the ratio de-
creases from less than 1.2 toward one as n increases.

(18)
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Smith’s rule with p = 5—Rule S(5). Left-hand panel, average loss Ly, right-hand panel, average bias By,. 100,000 simulations.

The plot of the ratio for bias, B, /B, in the right-hand
panel, shows the much stronger effect of odd and even
n which was also apparent in Figure 5, but is ignored
in the asymptotic expression (18). The ratio is cen-
tered on one with the effect of parity steadily decreas-
ing.

The indication of Figure 5 is that the asymptotic re-
sults for Rule S provide a good guide to the behaviour
of this rule, even for small values of 7.

4.5 Bayes: Rule B

Unlike the other rules of this section, there are no
theoretical results for the loss and bias of Rule B,
except that it moves from deterministic allocation,
Rule D, to random allocation as n increases. The rate
of transition from one form of allocation to the other
depends on the value of the parameter y .

The final plot of bias and loss for a single rule with-
out covariates is in Figure 7 for the Bayes rule with
y = 0.01. These plots are unlike any we have so far
seen. The left-hand panel shows that the loss starts
close to zero and then gradually increases with n. Ini-
tially, the balancing effect of the design is such that the
loss depends on the parity of n. The bias, in the right-
hand panel, starts by alternating between zero and one,
as it does for deterministic allocation. As n increases
the bias decreases, as the rule becomes increasingly
like random allocation.
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5. ADJACENT AVERAGES

A striking feature of Figures 1 and 3 is the strong
dependence of the bias on whether n is even or odd,
although this is not a feature of all rules. In the next
section we compare several of the rules of Section 4
for various parameter values. Table 3 extends the sim-
ulation results of Table 2 to these nine rules.

In the table the rules are arranged in order of decreas-
ing bias. The first four columns are the average losses

Loss
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and biases from 100,000 simulations when n = 199
and 200. As the figures for individual rules have shown,
the values of bias are more sensitive to the parity of n
than are the values of loss. The strongest difference in
bias between n odd and n even is for deterministic al-
location, Rule D, when the theoretical value of the bias
is one or zero depending on whether 7 is even or odd.
We have already seen in Section 2.1 that the ex-
pected values of bias for Efron’s rule, E(2/3), are 1/6
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FIG.7. Bayes rule with y = 0.01—Rule B(0.01). Left-hand panel, average loss Ly, right-hand panel, average bias B,. 100,000 simulations.
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Average values of loss, Ly, and bias, By, (n = 199 and 200), and adjacent averages of these values, [:200 and 5200, for nine rules arranged

according to adjacent average bias. 100,000 simulations

Rule Lig9 L2go Bi9y Bapo Lago Brpo

D 0.0050 0.0000 0.0022 1.0000 0.0025 0.5011
E(2/3) 0.0228 0.0221 0.1707 0.3371 0.0224 0.2549
J(3) 0.0075 0.0107 0.4152 0.0579 0.0091 0.2366
E(0.55) 0.2139 0.2127 0.0848 0.1041 0.2133 0.0944
S(5) 0.0916 0.0916 0.0861 0.0874 0.0916 0.0868
S(2) 0.2001 0.2002 0.0491 0.0518 0.2002 0.0505
B(0.01) 0.2764 0.2773 0.0279 0.0313 0.2769 0.0296
B(0.1) 0.6972 0.6982 0.0050 0.0032 0.6917 0.0041
R 1.0010 1.0007 0.0022 0.0025 1.0008 0.0024

and 1/3. For the adjustable biased-coin J(3), the results
of Table 2 are that the two values of bias are 0.4118
and 0.0588. As p decreases toward 0.5 in Efron’s rule,
the allocation becomes more random and the differ-
ence in properties for odd and even n decreases. When
p = 0.55 the expected value of bias for n = 199 and
200 are 0.0818 and 0.1. The remaining rules in the ta-
ble all have values of bias less than 0.1.

Trials are equally likely to stop with n odd or even.
Therefore, in order to compare rules, we use adjacent
averages and write

(19) Lyp=(Ly_1+Lyn)/2,

with a similar definition for E,,. These averages remove
the effect of oscillation between the two values, partic-
ularly of bias, and allow an insightful comparison of
rules.

For the rules with continuous covariates compared in
Section 8 the maximum value of B3, is one. But, with-
out covariates, the most extreme adjacent values of bias
are zero and one, so that, with adjacent averaging, the
maximum value of Eén is 0.5. The rules in Table 3 are
arranged in decreasing order of Bpgo. The largest the-
oretical value is 0.5 for Rule D. The only other rules
with appreciable averages for adjacent bias are E(2/3)
and J(3) with values around 0.25; for all other rules the
values are less than 0.1.

It is a general principle in the comparison of these
rules that acceptable rules with high bias have low loss
and conversely. Atkinson (2002) provides examples for
allocation rules with covariates. And, indeed, in Table 3
the values of Zgoo increase from a theoretical value of 0
for Rule D to 1 for Rule R. The only exceptions are the
two Efron rules; E(2/3) has higher loss and higher bias,
at n = 200, than J(3). Similarly, E(0.55) has higher loss

and bias than either of the Rules S. These results, how-
ever, only provide a snapshot of the behaviour of the
rules at n = 200. We now look at plots of the adjacent
averages of bias and loss over a range of values of .

Figure 8 shows plots of adjacent averages of bias and
loss for the rules in which loss decreases as 1/n and the
bias is constant, that is, Rules J and E. Also included
are random and deterministic allocation, which are the
special cases of Rule E as p — 0.5 and one. The val-
ues of L, in the left-hand panel form a series of values
of loss decreasing steadily with n. Likewise, the right-
hand panel shows a series of virtually constant values
for L,. The only surprise is that Rule J(3) has lower
loss and lower bias than E(2/3). The argument of the
next section is that Rule E(2/3) is therefore inadmis-
sible. Otherwise, the order of the rules is reversed be-
tween the panels for loss and bias.

The plots of L, for Rule S in the left-hand panel
of Figure 9 are virtually constant, whereas those for
Rule B increase with n. As n increases, Rule B(0.1)
becomes increasingly like random allocation at a faster
rate than does the rule with y = 0.01. The plots for
B, in the right-hand panel are in the reverse order by
the time n is around 100; as the loss for Rule B in-
creases, the bias decreases faster than 1/ as allocation
becomes increasingly random.

6. ADMISSIBILITY

A good rule should have low loss and low bias for
all n. In order to compare loss and bias, Atkinson
(2002) suggested plotting loss against bias as a func-
tion of n, thus combining in one plot the two panels
of plots like Figure 9. The shape that this curve takes
will depend upon the individual rule; from the curves
in Figures 8 and 9 it is clear that there will be three gen-
eral forms of trajectory. A good rule will be in the lower
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left-hand corner of the plot. But usually, for any partic-
ular #n, a rule with lower loss than another will have
higher bias. A rule for which both values are higher is
said to be inadmissible.

The left-hand panel of Figure 10 is the admissibility
plot for the nine rules considered in this paper. Rules R
and D plot virtually as points at (0, 1) and (0.5, 0),
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respectively. Both are admissible since O is the min-
imum possible value of bias or loss. The other rules
in Figure 8, which have constant bias, plot as vertical
lines. The symbols on the lines correspond to values
of n with A denoting n = 200. For E(0.55) the bias is
around 0.09 while the loss decreases steadily with n.
For Rules J(3) and E(2/3) the bias is higher but the
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FIG. 9. Simulated values of adjacent averages of loss and smoothed bias for four rules. Left-hand panel, L,,. Reading down: B, Bayes rule
with y = 0.1; B, Bayes rule with y = 0.01; S, Smith’s rule with p =2 and Smith’s rule with p = 5. Right-hand panel, B;,. Same notation,

reading up. 100,000 simulations.
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loss is lower for specific n. Rule E(0.55) is therefore
admissible when compared with these two rules. How-
ever, the comparison of Rules J(3) and E(2/3) in the
right-hand panel of the figure shows that E(2/3) is not
admissible. For any n over the range 10 to 200 it is pos-
sible to achieve lower loss and bias by using Rule J(3).

The Rules S in Figure 9 have virtually constant loss
and so plot as almost horizontal lines; S(5) plots below
S(2) as it has lower loss, but it lies to the right of the
curve for S(2) for any particular n. As n increases the
bias decreases and the curves tend toward the left-hand
axis. The curves for Rule B form a third family. These
start close to Rule D, but the bias decreases as the loss
increases. For n = 10 they have the smallest loss for
all rules except D and, for n = 200 the lowest bias for
all rules except R. For smaller values of y than these,
the emphasis in Rule B is increasingly on balancing
the design and a series of curves is obtained which lie
below those plotted. However, for any »n, the points are
to the right of those for larger y so that all these rules
are admissible.

The right-hand panel of Figure 10 shows that E(2/3)
is not admissible compared to J(3) over all values of n
considered. The comparison of results in Table 3 indi-
cated that, for n = 200, Rule E(0.55) had higher bias
and loss than Rules S. But the left-hand panel of the
figure shows that, for n less than 50, the bias of S(2) is
greater than that of E(0.55). Further, the indication is
that, for n slightly greater than 200, E(0.55) has lower

loss than S(5). In addition, for almost all » in the figure,
S(2) has higher bias than E(0.55). Neither rule domi-
nates the other over all considered values of .

Superficially, Figure 10 appears similar to several of
the figures in Zhao et al. (2012) where a measure of
bias is plotted against maximum absolute imbalance,
that is, the maximum of | D, | in each simulation. How-
ever, the plots are for fixed even n for a series of param-
eter values. Information on the dependence on »n is not
clear. As Figure 3 for Rule J shows, very different con-
clusions can be reached about the properties of a rule if
only odd or even values of n are considered. Section 3
emphasizes the statistical basis of the criteria, selection
bias and loss, used here. Use of the maximum of | D, |
favours rules in which the values of D,, are bounded
and, indeed, the rule of Soares and Wu (1983), which
is random over a restricted range, performs best in the
comparisons of Zhao et al. (2012); the rule of Baldi An-
tognini and Giovagnoli (2004) is not included in their
comparisons.

7. DESIGNS WITH COVARIATES

When measurements of some covariates are avail-
able before treatment allocation, the randomization of
patients should allow for the covariates. Rosenberger
and Sverdlov (2008) present a survey of the approaches
of statisticians and clinical trialists to the handling of
covariates in the design of clinical trials. Their numer-
ical examples are for binomial responses, which are
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naturally heteroscedastic. They stress, and illustrate by
example, that under such conditions, balance over co-
variates does not lead to the most efficient designs. In
contrast, the next sections of this paper continue the
study of rules for normal responses with constant vari-
ance. Under these conditions balance of covariates over
treatments reduces dependence on the correctness of
the assumed form of the relationship between response
and covariates. Even if the covariates are to be adjusted
for in the analysis, balance ensures estimates of effects
with lower variance (Baldi Antognini and Zagoraiou,
2011). Comments on designs for heteroscedastic mod-
els and generalized linear models are given briefly in
Section 9.

Comparisons of the loss, bias and admissibility of
several rules with covariates and normally distributed
errors are given by Atkinson (2002) and in Chapter 6
of Atkinson and Biswas (2014). However, these com-
parisons do not include Rule J. Accordingly, the focus
here is on extensions of this rule to include covariates.

Rule M: Minimization—Pocock and Simon. We start
with two deterministic rules which do not model the
dependence of the response on the covariates. The min-
imization rule of Pocock and Simon (1975) depends on
calculating the total effect on all measures of marginal
imbalance when treatment j* is allocated. If there
are m covariates x, there will be m measures to be
summed. The individual measures count the number
of observations in each category of the covariate. Con-
tinuous covariates therefore have to be categorized.

Let the total effect on imbalance be C(j ). The al-
locations are ranked so that

C([1]) = C(12)).

In this deterministic allocation treatment [1] is allo-
cated, with random allocation if both treatments have
the same value of C(jT).

The calculations are exemplified by Senn, Anisimov
and Fedorov (2010) and Atkinson (2002) as well as
by Pocock and Simon (1975). In the simulations of
Section 8 standard normal covariates are dichotomized
at 0.

Rule C: Balanced covariates. There are m covari-
ates, either discrete or discretized, with covariate i hav-
ing /; levels. The total number of cells or strata is
M =TT/, ;. Suppose that the covariate vector x, for
patient n falls in cell ¢. The new allocation depends
solely on previous allocations in that cell. Balance is
most effectively forced by using deterministic alloca-
tion independently within each of the M cells. If there
are any ties, random allocation is used.

Randomized versions of Rules M and C. Rule ME.
Randomization can be introduced into Rule M by allo-
cation of the treatments with probabilities given by the
biased-coin of Efron applied to the ordered values of
the C(j™);

e ([11xn41) =2/3,

again with random allocation if there is a tie.

Rule CE. Once the covariate cell ¢ has been identified
in Rule C, the allocation within that cell is determinis-
tic. Rule CE is a randomized version of Rule C, using
Rule E for allocation within each cell.

Rule CJ. Baldi Antognini and Zagoraiou (2011) sug-
gest the rule in which the adjustable biased-coin with-
out covariates, Rule J, is applied to the numbers of
times each treatment has been allocated in cell ¢. They
provide an expression for loss and show that, for dis-
crete covariates, L, — 0, a result which also applies to
the nonrandomized Rule C. They further discuss condi-
tions under which marginal balance does not guarantee
global balance over all strata.

The other approach is to use measures from the op-
timum design of experiments to determine the “under-
represented” treatment. In an extension of the model
of Section 3 it is assumed that the observations y; will
be analysed using a regression model. Now patient i
presents with a vector of covariates x;. The response is
modelled using a vector of ¢ — 1 explanatory variables
Z;, to allow for any necessary interactions, quadratic
terms and so on of the x; which may be expected to be
important. The parameter of interest is still the treat-
ment difference i — wo, with a vector ¥ of regres-
sion parameters not of importance, although balance is
wanted over these variables. Together with the mean
response fo there are then g nuisance parameters. The
model for all n observations, in matrix form, is

(20) BY =aA + 180+ Z¢ =aA + Ff = Go,

where A = (1 — u2)/2 and a is the n x 1 vector of
allocations with elements +1 and —1, depending on
whether treatment 1 or treatment 2 is allocated. The
constant term and covariates are included in the n x ¢
matrix F. The value of ¢g is important in determining
the loss for some rules.

In sequential treatment allocation the covariates and
allocations are known for the first n patients, giving
a matrix G, of allocations and explanatory variables
in (20). Let patient n + 1 have a vector z,11 of ex-
planatory variables. If treatment j is allocated, the
vector of allocation and explanatory variables for the
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(n + 1)st patient is g; ,+1, j = 1, 2. Results in the se-
quential construction of optimum experimental designs
(Atkinson, 1982, Smith, 1984b, Section 10) show that
the variance of the estimate A after n + 1 observations
is minimized by the choice of that treatment for which
the derivative function

. -1
T T -
- fj,n—i—l(Fn F”)

is a maximum. See Atkinson, Donev and Tobias
(2007), Section 10.3, with s = 1.

The loss from randomization is assessed from
Var(A). Let b = FTa, a “balance” vector which is
identically zero when all covariates are balanced across
all treatments. Then

@1 1
fj,n-H

2 o2

22 A)= = ,
22) varA) = R FT e, T n L,

giving an explicit expression for calculation of L. The
loss is minimized for the balanced design when the es-
timate of A is independent of the estimates of the nui-
sance parameters. For a careful discussion of the bal-
ance induced by allocation rules see Baldi Antognini
and Zagoraiou (2011).

Asymptotic results on the distribution of L, are
available for Rule S. Burman (1996) shows, following
Smith (1984b), Section 10, that

(23) Ly, ~X;/(1+2p),

where Xg ~ x(f. Thus, for random allocation (p =
0), Loo = ¢q, the number of nuisance parameters. For
Atkinson’s original proposal of D 4-optimality (p = 2),
Loo = q/5. For deterministic allocation (p — 00), the
design will ultimately be balanced (given reasonable
regularity conditions on the explanatory variables) and
Lo = 0. Simulation results on the distribution of L,
for other rules are presented by Atkinson (2003).

The two extreme rules are random allocation and de-
terministic design construction. In the completely ran-
domized rule allocation is made independently of any
history so that the probability of allocating treatment i
is g (j) = 1/2. For this rule Boo =0 and Lo =g.

In deterministic allocation the treatment with the
larger value of d(j, n, z,+1) (21) is always allocated,
that is, wp([1]) = 1, where [1] is the treatment with
the larger value of d(-). The allocation can always be
guessed so that B, = 1 and L, = 0. All other rules
have intermediate values of these two properties.

Rule A: Atkinson’s rule. The remaining rules make
direct use of the derivative function (21). With covari-
ates, Atkinson’s original suggestion, which is the gen-
eralization of Smith’s Rule S (2) with p =2, is

d(j,n,zp4+1)

24 wa(jlx = .
(24) A Xn+1) Ao zee))

Rule B: Bayesian rule. Likewise, the extension of the
Bayesian procedure of Section 2.6 leads to the rule

(1 4+d(j,n, zas1)}Y
Ll +d(s,n, zpp )Y

The presence of the parameter y is a reminder that (25)
defines a family of rules.

Rule E: Generalized Efron biased-coin. Let [1] again
be the treatment with the higher value of d(j, n, z,+1),
the analogue of the underrepresented treatment in Sec-
tion 2.1. The probability of allocating this treatment
is p.

Rule J: An extension of ABCD to a model with co-
variates. To develop an analogue to Rule J of Sec-
tion 2.2 requires a relationship between the difference
Dy, in (1) and the values of the d(j, n, z,+1) in (21).

In the absence of covariates,

(26) d(l,n) =ny/(nny),

(25) wp(jlxn+1) =

with the complementary expression for d(2,n). It is
then straightforward that

2—n{d(1,n) +d2,n)}
d(1,n) —d(2, n)

For models with covariates we calculate Dy (z,+1)
from (27) as a function of the d(j, n, z,+1) and sub-
stitute for x in (1). This provides a family of rules de-
pending on the parameter a.

The difference of derivatives in the denominator
of (27) did not cause numerical problems in the sim-
ulations of Section 8. With discrete covariates exact
balance is possible when, from (26), it follows that
d(1,n,zy,41) =d@2,n,zy,41) = 1/n. The probability
of assigning either treatment is then one half. With
continuous random covariates exact balance is impos-
sible. Close to balance, d(1,n,z,4+1) = 1/n + ¢ and
d2,n,zp4+1) =1/n—¢e (¢ 20),so that D, (zy+1) =0.
The probability of assigning either treatment is close to
one half.

27) Dy, =

8. ADMISSIBILITY WITH NORMAL COVARIATES

The comparisons of these rules are again based on
100,000 simulations, now with four standard normal
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covariates (¢ = 5), dichotomized about their means for
rules that require discretized variables. The regression
model (20) is used in the analysis of data from all rules.
Simulation results for a few rules when the covariates
are binary are given by Senn, Anisimov and Fedorov
(2010) and Atkinson (2012). The discussion here is
mainly in terms of admissibility; the two panels of Fig-
ure 11 are to be compared with those of Figure 10. Ad-
ditionally, values of loss and bias for n = 50 and 200
are given in Table 4.

TABLE 4 ~
Normal covariates, g = 5. Average values of loss and bias, Bp and
Ly, for the twelve rules of Figure 11 from 100,000 simulations for

n =50 and 200

Rule Lsg L3go Bs B0

M 1.7559 1.5275 0.8512 0.8534
ME 2.8892 2.0141 0.2799 0.2724
C 2.1346 1.6193 0.5035 0.4996
CE 3.5343 2.4683 0.2199 0.2464
CJ(3) 3.4106 1.9977 0.1983 0.2321
A 1.0985 1.0194 0.2318 0.1114
J(2) 0.8845 0.2182 0.7628 0.7644
J(1) 1.2544 0.3210 0.5985 0.5967
J(0.5) 2.0214 0.5856 0.4127 0.4204
J(0.25) 3.0118 1.2165 0.2444 0.2706
E 1.7309 0.5229 0.3293 0.3352
B 0.6555 1.4183 0.3196 0.0660

The left-hand panel of Figure 11 provides a com-
parison of the more traditional rules. The discussion
is from the right-hand side of the panel, which corre-
sponds to reading down in the table.

The unrandomized version of minimization, Rule M,
has a bias of around 0.85 and a loss of 1.5275 when
n = 200. Most of the change in the properties of this
rule, and of the adjacently plotted Rule A, has hap-
pened before n = 15, the first symbol in the plot. It is
clear that Rule A has lower loss and lower bias than un-
randomized minimization, which is inadmissible. The
other nonrandomized Rule C follows a rather different
trajectory. Initially, all cells are empty and allocation is
at random so the bias is small. However, withg — 1 =4
the values of the differences D, rapidly become zero or
one and the bias tends to 0.5. For most # in the range
15-200, Rule A has lower loss and bias than Rule C.

The randomized versions of these two rules have
a similar structure of loss and bias with n, but with
slightly higher loss and appreciably lower bias. For
Rule ME, with p =2/3, bias is constant at a little less
than 0.3, whereas Rule CE has a bias that tends to 0.25.
Rule CJ, with a = 3, is similar in behaviour to CE ini-
tially with higher loss when n is small. But, by the time
n =25, CJ has both lower loss and lower bias than CE,
which is thus inadmissible, paralleling the result in the
right-hand panel of Figure 10.

The rule with lowest loss in the left-hand panel of the
figure, except for small n, is Rule A. The other rules
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have a loss which slowly decreases to zero. However,
the balance in these rules is over discretized values, so
balance is achieved more slowly than for determinis-
tic allocation (Rule D) which is based on the actual
values of the covariates. The comparisons of Rules M,
ME and D in Atkinson (2012) show how much faster
the loss of Rule M goes to zero for Bernoulli explana-
tory variables. Results in Atkinson (2002) indicate that,
apart from the doubling of loss, most rules behave sim-
ilarly when ¢ =5 and 10.

The properties of the new Rule J of Section 7 are
shown in the right-hand panel of Figure 11 and in the
lower part of Table 4. The right-hand curve is fora =2
and the left-hand curve for a = 0.25. All rules have a
loss that decreases steadily with n and a bias that is
virtually constant once n = 15. Rule E with p =2/3
is similar to Rule J with a = 0.5, but with smaller bias
and a loss which is also smaller, although the values
have become increasingly close as n becomes larger.
Rules J and E both provide a wide range of rules with
constant bias and decreasing loss, as their parameters
are varied. Rule B, also shown on the plot for y = 0.01,
behaves very differently, but similarly to its behaviour
without covariates in Figure 10.

9. EXTENSIONS AND CONCLUSIONS

The effect of randomization is slightly to reduce the
effective sample size by the loss and thus slightly to
reduce power. Shao, Yu and Zhong (2010) argue that,
if covariates are used in randomization, they should,
as here, be included in the analysis. In discussing
their power comparisons they conclude (Section 5) that
Rule E leads to a slightly more powerful test than that
from simple randomization, a conclusion in line with
the difference in loss between the two rules. Hu and
Rosenberger (2006), Chapter 6, discuss the effect of
the randomness of loss on the distribution of power.

The majority of the randomization methods de-
scribed in this paper were developed for the compar-
ison of two treatments and this continues to be a major
topic of research, for example, Heritier, Gebski and
Pillai (2005), Gwise, Hu and Hu (2008) and Lin and
Su (2012). It is, however, straightforward to extend
Efron’s rule to ¢ treatments. In the absence of covari-
ates, the treatments are ordered from most allocated to
least allocated. The probabilities of allocation should
increase with this order. If there are no ties, the se-
quence of allocation probabilities

200+ 1— )

(28) e (1) = — TEST)

reduces to Rule E of Section 2.1 when t = 2. Ties af-
fect this rule by causing the probabilities to be aver-
aged over the sets of tied treatments. With covariates
the treatment with the highest value of d(j,n, z,+1)
should have the highest probability of allocation.
Ordering the treatments according to the values of
d(j,n, zy+1) from smallest to largest and applying (28)
leads to the appropriate generalization of Rule E in
Section 7. Rule A with or without covariates extends
straightforwardly to any number of treatments and is
given in this form in Section 7.

Smith (1984b) in his Section 9 formulates an alloca-
tion procedure for ¢ treatments. Let D, ; be the dif-
ference between the number of patients allocated to
treatment i and the equal allocation target number n/t.
Then he shows that, asymptotically,

(29)  VarD,; =n(t —1)/{r*(1+2p))}.

Atkinson and Biswas (2005b) extend Rule A to
unequal allocation targets for two treatments by use
of a vector of target weights p which occur both
in the information matrix for (20) and as weights
pj in (24). The details for Rule B are in Atkinson
and Biswas (2005a) with multi-treatment designs in
Atkinson (2004). In all cases the assumption is of ad-
ditive errors of constant variance.

Gwise, Hu and Hu (2008) apply D- and D 4-optimum
designs to two-treatment heteroscedastic models with-
out covariates; Gwise, Zhou and Hu (2011) extend the
D-optimum calculations to several models, again with-
out covariates. Both papers give expressions for the
asymptotically normal distribution of n~!/2N;. For ho-
moscedastic models these results follow from the vari-
ance of D, ; in (29) and the relationship of this vari-
ance to that of N;. Then, in an extension of (17) to ¢
treatments,

(30) n7'2N; ~ N1/t (t — D/{2 (1 +2p)}]-

See Remark 3 of Gwise, Zhou and Hu (2011) for some
numbers. These papers do not consider models with
covariates. However, the general results of Baldi An-
tognini and Zagoraiou (2011) on the structure of the
information matrix suggest that the distribution of the
N; is asymptotically independent of the presence of
covariates. Thus, (30) can be expected to hold for ho-
moscedastic models, independently of the value of g.
This assertion is supported by the unpublished simula-
tion results of O. Sverdlov.

A great advantage of rules such as A and B that
are derived from optimum experimental design is
that they can readily be applied to a wide variety of
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models. Rosenberger and Sverdlov (2008) compare
the binomial version of Rule A with balanced and
unbalanced allocation rules, including those with an
ethical component to reduce the number of patients re-
ceiving the inferior treatment. Unlike the earlier com-
parisons of Begg and Kalish (1984), which were ham-
pered by computational inadequacies, Rosenberger and
Sverdlov (2008) used a full covariate adjusted response
adaptive (CARA) scheme in which the parameter esti-
mates of the nonlinear models, which appear in the
design criterion, were updated before each allocation.
Because choice of treatment allocation depends on pre-
vious responses through the parameter estimates, the
observations are no longer independent. A theory of
inference for CARA designs is developed by Zhang
et al. (2007). In their survey of adaptive randomiza-
tion, Rosenberger, Sverdlov and Hu (2012) are opti-
mistic that standard inferential methods may be used
for inference in these trials, provided sample sizes are
large enough. Simulation studies can provide this reas-
surance.

One main purpose of this paper is to emphasize the
importance of using a measure of selection bias, as
well as loss (or some other measure of balance), in
the comparison of biased-coin designs. Unfortunately,
there is a marked tendency in the literature to compare
rules by focusing on balance or loss. For example, the
claim by McEntegart for the superiority of minimiza-
tion over Rule A is based solely on loss, ignoring ran-
domization. Senn, Anisimov and Fedorov (2010) argue
that the comparison suggested by McEntegart (2003)
is therefore potentially misleading. However, their in-
vestigation of rules when the covariates are binary
likewise excludes any measure of bias. Similarly, the
power comparisons of Baldi Antognini (2008), which
prove the excellent properties for power of Rule J with-
out covariates, do not consider bias. Most recently, Hu
and Hu (2012) introduce a rule with weighted balance
over strata and covariates. However, interest is solely in
analysis of the Markov chain of the D,,; selection bias
is not considered. It is, however, self-evident that, if se-
lection bias is not an issue, deterministic construction
of optimum designs, Rule D, will provide the lowest
loss out of all myopic rules considering one treatment
allocation at a time.

There remains the choice of randomizing rule. Smith
(1984b), Section 4, recommends that the design should
become increasingly random as n — oo, a property of
Rule B. The rule starts by forcing balance, which will
be important if the trial stops when #n is small. The rate
at which the allocation becomes more random depends

on the parameter y; Figure 8 of Atkinson (2002) shows
admissibility curves for Rule B for six values of y.

Of course, as the design becomes more random, loss
increases and so it might be suspected that the effi-
ciency (9) would decrease. However, for Rule B, L,
increases up to the limit ¢ and is divided by n in (9).
Figure 4 of Atkinson (2002) shows how the efficiency
increases to one with n, at a rate depending on the
value of y. For the results in Table 4 for Rule B
with y = 0.01, Lago = 1.4183, so that the efficiency is
99.29%. With an average bias at this point of 0.0660,
the rule virtually has the bias of random allocation. Of
course, an adjustable randomization rule is administra-
tively more complicated than one with a constant prob-
ability, although hardly more so than any other rule that
takes account of the covariates of each patient and cer-
tainly less so than a response adaptive rule. Sverdlov
and Rosenberger (2013) are hopeful that developments
in computing and information science will enable rou-
tine use of randomization rules more complicated than
Rule B.

ACKNOWLEDGEMENTS

I am grateful to the referees for their positive com-
ments which led to the extension of this paper to rules
including covariates. I have also enjoyed and profited
from conversations with Dr O. (Alex) Sverdlov.

REFERENCES

ATKINSON, A. C. (1982). Optimum biased coin designs for se-
quential clinical trials with prognostic factors. Biometrika 69
61-67. MR0655670

ATKINSON, A. C. (2002). The comparison of designs for sequen-
tial clinical trials with covariate information. J. Roy. Statist. Soc.
Ser. A 165 349-373. MR1904822

ATKINSON, A. C. (2003). The distribution of loss in two-treatment
biased-coin designs. Biostatistics 4 179-193.

ATKINSON, A. C. (2004). Adaptive biased-coin designs for clini-
cal trials with several treatments. Discuss. Math. Probab. Stat.
24 85-108. MR2118925

ATKINSON, A. C. (2012). Bias and loss: The two sides of a biased
coin. Stat. Med. 31 3494-3503. MR3041826

ATKINSON, A. C. and BISWAS, A. (2005a). Bayesian adaptive
biased-coin designs for clinical trials with normal responses.
Biometrics 61 118-125. MR2135851

ATKINSON, A. C. and BISwAS, A. (2005b). Adaptive biased-coin
designs for skewing the allocation proportion in clinical trials
with normal responses. Stat. Med. 24 2477-2492. MR2112377

ATKINSON, A. C. and BISWAS, A. (2014). Randomised Response-
Adaptive Designs in Clinical Trials. Chapman & Hall/CRC
Press, Boca Raton.

ATKINSON, A. C., DONEV, A. N. and ToBIAS, R. D. (2007).
Optimum Experimental Designs, with SAS. Oxford Statistical
Science Series 34. Oxford Univ. Press, Oxford. MR2323647


http://www.ams.org/mathscinet-getitem?mr=0655670
http://www.ams.org/mathscinet-getitem?mr=1904822
http://www.ams.org/mathscinet-getitem?mr=2118925
http://www.ams.org/mathscinet-getitem?mr=3041826
http://www.ams.org/mathscinet-getitem?mr=2135851
http://www.ams.org/mathscinet-getitem?mr=2112377
http://www.ams.org/mathscinet-getitem?mr=2323647

SELECTING A BIASED-COIN DESIGN 163

BAILEY, R. A. and NELSON, P. R. (2003). Hadamard randomiza-
tion: A valid restriction of random permuted blocks. Biom. J. 45
554-560. MR1998135

BALDI ANTOGNINI, A. (2008). A theoretical analysis of the power
of biased coin designs. J. Statist. Plann. Inference 138 1792—
1798. MR2400479

BALDI ANTOGNINI, A. and GIOVAGNOLI, A. (2004). A new
“biased coin design” for the sequential allocation of two
treatments. J. R. Stat. Soc. Ser. C Appl. Stat. 53 651-664.
MR2087777

BALDI ANTOGNINI, A. and ZAGORAIOU, M. (2011). The
covariate-adaptive biased coin design for balancing clinical tri-
als in the presence of prognostic factors. Biometrika 98 519—
535. MR2836404

BALL, F. G., SMITH, A. F. M. and VERDINELLI, 1. (1993). Bi-
ased coin designs with a Bayesian bias. J. Statist. Plann. Infer-
ence 34 403-421. MR1210443

BEGG, C. B. and KALISH, L. A. (1984). Treatment allocation for
nonlinear models in clinical trials: The logistic model. Biomet-
rics 40 409-420.

BERGER, V. W. (2005). Selection Bias and Covariate Imbalances
in Clinical Trials. Wiley, New York.

BiswaAs, A. and BHATTACHARYA, R. (2011). Treatment adaptive
allocations in randomized clinical trials: An overview. In Hand-
book of Adaptive Designs in Pharmaceutical and Clinical De-
velopment (A. Pong and S.-C. Chow, eds.) 17:1-17:19. Chap-
man & Hall/CRC Press, Boca Raton, FL.

BLACKWELL, D. and HODGES, J. L. JR. (1957). Design for
the control of selection bias. Ann. Math. Statist. 28 449-460.
MRO0088849

BURMAN, C. F. (1996). On Sequential Treatment Allocations in
Clinical Trials. Dept. Mathematics, Goteborg.

CHEN, Y.-P. (1999). Biased coin design with imbalance tolerance.
Comm. Statist. Stochastic Models 15 953-975. MR1721241
Cox, D. R. (1951). Some systematic experimental designs.

Biometrika 38 312-323. MR0046013

EFRON, B. (1971). Forcing a sequential experiment to be balanced.
Biometrika 58 403—417. MR0312660

EFRON, B. (1980). Randomizing and balancing a complicated se-
quential experiment. In Biostatistics Casebook (R. J. Miller,
B. Efron, B. W. Brown and L. E. Moses, eds.) 19-30. Wiley,
New York.

GWISE, T. E., HU, J. and Hu, F. (2008). Optimal biased coins for
two-arm clinical trials. Stat. Interface 1 125-135. MR2425350

GWISE, T. E., ZHOU, J. and HU, F. (2011). An optimal response
adaptive biased coin design with k heteroscedastic treatments.
J. Statist. Plann. Inference 141 235-242. MR2719490

HERITIER, S., GEBSKI, V. and PILLAI, A. (2005). Dynamic bal-
ancing randomization in controlled clinical trials. Stat. Med. 24
3729-3741. MR2221964

Hu, Y. and Hu, F. (2012). Asymptotic properties of covariate-
adaptive randomization. Ann. Statist. 40 1794-1815.
MR3015044

Hu, F. and ROSENBERGER, W. F. (2006). The Theory of
Response-Adaptive Randomization in Clinical Trials. Wiley,
Hoboken, NJ. MR2245329

LAGAKOS, S. W. and Pocock, S. J. (1984). Randomization and
stratification in cancer clinical trials: An international survey.
In Cancer Clinical Trials: Methods and Practice (M. E. Buyse,
M. J. Staquet and R. J. Sylvester, eds.). Oxford Univ. Press, Ox-
ford.

LIN, Y. and Su, Z. (2012). Balancing continuous and categorical
baseline covariates in sequential clinical trials using the area be-
tween empirical cumulative distribution functions. Stat. Med. 31
1961-1971. MR2956029

MARKARYAN, T. and ROSENBERGER, W. F. (2010). Exact prop-
erties of Efron’s biased coin randomization procedure. Ann.
Statist. 38 1546-1567. MR2662351

MCENTEGART, D. (2003). The pursuit of balance using stratified
and dynamic randomization techniques: An overview. Drug In-

Sformation Journal 37 293-308.

Pocock, S. J. (1983). Clinical Trials. Wiley, New York.

Pocock, S. J. and SIMON, R. (1975). Sequential treatment as-
signment with balancing for prognostic factors in the controlled
clinical trial. Biometrics 31 103-115.

PROSCHAN, M., BRITTAIN, E. and KAMMERMAN, L. (2012).
Letter to the editor. Biometrics 68 990-991.

ROSENBERGER, W. F. and LACHIN, J. M. (2002). Randomiza-
tion in Clinical Trials: Theory and Practice. Wiley, New York.
MR1914364

ROSENBERGER, W. F. and SVERDLOV, O. (2008). Handling co-
variates in the design of clinical trials. Statist. Sci. 23 404—419.
MR2483911

ROSENBERGER, W. F., SVERDLOV, O. and Hu, F. (2012). Adap-
tive randomization for clinical trials. J. Biopharm. Statist. 22
719-736. MR2931067

SENN, S., ANISIMOV, V. V. and FEDOROV, V. V. (2010). Com-
parisons of minimization and Atkinson’s algorithm. Stat. Med.
29 721-730. MR2752037

SHAO, J., YU, X. and ZHONG, B. (2010). A theory for testing
hypotheses under covariate-adaptive randomization. Biometrika
97 347-360. MR2650743

SMITH, R. L. (1984a). Properties of biased coin designs in sequen-
tial clinical trials. Ann. Statist. 12 1018-1034. MR0751289

SMITH, R. L. (1984b). Sequential treatment allocation using bi-
ased coin designs. J. R. Stat. Soc. Ser. B Stat. Methodol. 46 519—
543. MR0790636

SOARES, J. F. and Wu, C. F. J. (1983). Some restricted random-
ization rules in sequential designs. Comm. Statist. Theory Meth-
ods 12 2017-2034. MR0714209

SVERDLOV, O. and ROSENBERGER, W. F. (2013). Randomization
in clinical trials: Can we eliminate bias? Clinical Trial Perspec-
tive 3 37-47.

WEL, L. J. (1978). The adaptive biased coin design for sequential
experiments. Ann. Statist. 6 92—100. MR0471205

ZHANG, L.-X., HU, F., CHEUNG, S. H. and CHAN, W. S. (2007).
Asymptotic properties of covariate-adjusted response-adaptive
designs. Ann. Statist. 35 1166-1182. MR2341702

ZHAO, W., WENG, Y., WU, Q. and PALESCH, Y. (2012). Quanti-
tative comparison of randomization designs in sequential clini-
cal trials based on treatment balance and allocation randomness.
Pharm. Stat. 11 39-48.


http://www.ams.org/mathscinet-getitem?mr=1998135
http://www.ams.org/mathscinet-getitem?mr=2400479
http://www.ams.org/mathscinet-getitem?mr=2087777
http://www.ams.org/mathscinet-getitem?mr=2836404
http://www.ams.org/mathscinet-getitem?mr=1210443
http://www.ams.org/mathscinet-getitem?mr=0088849
http://www.ams.org/mathscinet-getitem?mr=1721241
http://www.ams.org/mathscinet-getitem?mr=0046013
http://www.ams.org/mathscinet-getitem?mr=0312660
http://www.ams.org/mathscinet-getitem?mr=2425350
http://www.ams.org/mathscinet-getitem?mr=2719490
http://www.ams.org/mathscinet-getitem?mr=2221964
http://www.ams.org/mathscinet-getitem?mr=3015044
http://www.ams.org/mathscinet-getitem?mr=2245329
http://www.ams.org/mathscinet-getitem?mr=2956029
http://www.ams.org/mathscinet-getitem?mr=2662351
http://www.ams.org/mathscinet-getitem?mr=1914364
http://www.ams.org/mathscinet-getitem?mr=2483911
http://www.ams.org/mathscinet-getitem?mr=2931067
http://www.ams.org/mathscinet-getitem?mr=2752037
http://www.ams.org/mathscinet-getitem?mr=2650743
http://www.ams.org/mathscinet-getitem?mr=0751289
http://www.ams.org/mathscinet-getitem?mr=0790636
http://www.ams.org/mathscinet-getitem?mr=0714209
http://www.ams.org/mathscinet-getitem?mr=0471205
http://www.ams.org/mathscinet-getitem?mr=2341702

	Introduction
	Rules without Covariates
	Efron's Biased-Coin Design: Rule E
	The Adjustable Biased-Coin Design: Rule J
	Imbalance Tolerance
	Rule P: Permuted Block Design
	Smith: Rule S
	Bayesian Procedure: Rule B

	Assessing Rules: Bias and Loss
	Analytical and Numerical Results on Bias and Loss
	Efron's Biased Coin: Rule E
	The Adjustable Biased-Coin: Rule J
	Rule P: Permuted Block Design
	Smith's Rule: Rule S
	Bayes: Rule B

	Adjacent Averages
	Admissibility
	Designs with Covariates
	Admissibility with Normal Covariates
	Extensions and Conclusions
	Acknowledgements
	References

