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Handling Attrition in Longitudinal Studies:

The Case for Refreshment Samples

Yiting Deng, D. Sunshine Hillygus, Jerome P. Reiter, Yajuan Si and Siyu Zheng

Abstract.  Panel studies typically suffer from attrition, which reduces sam-
ple size and can result in biased inferences. It is impossible to know whether
or not the attrition causes bias from the observed panel data alone. Refresh-
ment samples—new, randomly sampled respondents given the questionnaire
at the same time as a subsequent wave of the panel—offer information that
can be used to diagnose and adjust for bias due to attrition. We review and
bolster the case for the use of refreshment samples in panel studies. We in-
clude examples of both a fully Bayesian approach for analyzing the con-
catenated panel and refreshment data, and a multiple imputation approach
for analyzing only the original panel. For the latter, we document a positive
bias in the usual multiple imputation variance estimator. We present models
appropriate for three waves and two refreshment samples, including nonter-
minal attrition. We illustrate the three-wave analysis using the 2007-2008

Associated Press—Yahoo! News Election Poll.
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1. INTRODUCTION

Many of the the major ongoing government or
government-funded surveys have panel components in-
cluding, for example, in the U.S., the American Na-
tional Election Study (ANES), the General Social Sur-
vey (GSS), the Panel Survey on Income Dynamics
(PSID) and the Current Population Survey (CPS). De-
spite the millions of dollars spent each year to col-
lect high quality data, analyses using panel data are
inevitably threatened by panel attrition (Lynn, 2009),
that is, some respondents in the sample do not par-
ticipate in later waves of the study because they can-
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not be located or refuse participation. For instance, the
multiple-decade PSID, first fielded in 1968, lost nearly
50 percent of the initial sample members by 1989
due to cumulative attrition and mortality. Even with
a much shorter study period, the 2008—2009 ANES
Panel Study, which conducted monthly interviews over
the course of the 2008 election cycle, lost 36 percent
of respondents in less than a year.

At these rates, which are not atypical in large-scale
panel studies, attrition can have serious impacts on
analyses that use only respondents who completed all
waves of the survey. At best, attrition reduces effec-
tive sample size, thereby decreasing analysts’ abilities
to discover longitudinal trends in behavior. At worst,
attrition results in an available sample that is not repre-
sentative of the target population, thereby introducing
potentially substantial biases into statistical inferences.
It is not possible for analysts to determine the degree
to which attrition degrades complete-case analyses by
using only the collected data; external sources of infor-
mation are needed.

One such source is refreshment samples. A refresh-
ment sample includes new, randomly sampled respon-
dents who are given the questionnaire at the same time
as a second or subsequent wave of the panel. Many
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of the large panel studies now routinely include re-
freshment samples. For example, most of the longer
longitudinal studies of the National Center for Educa-
tion Statistics, including the Early Childhood Longi-
tudinal Study and the National Educational Longitu-
dinal Study, freshened their samples at some point in
the study, either adding new panelists or as a separate
cross-section. The National Educational Longitudinal
Study, for instance, followed 21,500 eighth graders in
two-year intervals until 2000 and included refreshment
samples in 1990 and 1992. It is worth noting that by the
final wave of data collection, just 50% of the original
sample remained in the panel. Overlapping or rotating
panel designs offer the equivalent of refreshment sam-
ples. In such designs, the sample is divided into dif-
ferent cohorts with staggered start times such that one
cohort of panelists completes a follow-up interview at
the same time another cohort completes their baseline
interview. So long as each cohort is randomly selected
and administered the same questionnaire, the baseline
interview of the new cohort functions as a refreshment
sample for the old cohort. Examples of such rotating
panel designs include the GSS and the Survey of In-
come and Program Participation.

Refreshment samples provide information that can
be used to assess the effects of panel attrition and
to correct for biases via statistical modeling (Hirano
et al., 1998). However, they are infrequently used by
analysts or data collectors for these tasks. In most
cases, attrition is simply ignored, with the analysis run
only on those respondents who completed all waves
of the study (e.g., Jelici¢, Phelps and Lerner, 2009),
perhaps with the use of post-stratification weights
(Vandecasteele and Debels, 2007). This is done despite
widespread recognition among subject matter experts
about the potential problems of panel attrition (e.g.,
Ahern and Le Brocque, 2005).

In this article, we review and bolster the case for
the use of refreshment samples in panel studies. We
begin in Section 2 by briefly describing existing ap-
proaches for handling attrition that do not involve re-
freshment samples. In Section 3 we present a hypo-
thetical two-wave panel to illustrate how refreshment
samples can be used to remove bias from nonignorable
attrition. In Section 4 we extend current models for
refreshment samples, which are described exclusively
with two-wave settings in the literature, to models for
three waves and two refreshment samples. In doing so,
we discuss modeling nonterminal attrition in these set-
tings, which arises when respondents fail to respond to
one wave but return to the study for a subsequent one.

In Section 5 we illustrate the three-wave analysis using
the 2007-2008 Associated Press—Yahoo! News Elec-
tion Poll (APYN), which is a panel study of the 2008
U.S. Presidential election. Finally, in Section 6 we dis-
cuss some limitations and open research issues in the
use of refreshment samples.

2. PANEL ATTRITION IN LONGITUDINAL STUDIES

Fundamentally, panel attrition is a problem of nonre-
sponse, so it is useful to frame the various approaches
to handling panel attrition based on the assumed miss-
ing data mechanisms (Rubin, 1976; Little and Rubin,
2002). Often researchers ignore panel attrition entirely
and use only the available cases for analysis, for ex-
ample, listwise deletion to create a balanced subpanel
(e.g., Bartels, 1993; Wawro, 2002). Such approaches
assume that the panel attrition is missing completely at
random (MCAR), that is, the missingness is indepen-
dent of observed and unobserved data. We speculate
that this is usually assumed for convenience, as often
listwise deletion analyses are not presented with em-
pirical justification of MCAR assumptions. To the ex-
tent that diagnostic analyses of MCAR assumptions in
panel attrition are conducted, they tend to be reported
and published separately from the substantive research
(e.g., Zabel, 1998; Fitzgerald, Gottschalk and Moffitt,
1998; Bartels, 1999; Clinton, 2001; Kruse et al., 2009),
so that it is not clear if and how the diagnostics influ-
ence statistical model specification.

Considerable research has documented that some in-
dividuals are more likely to drop out than others (e.g.,
Behr, Bellgardt and Rendtel, 2005; Olsen, 2005), mak-
ing listwise deletion a risky analysis strategy. Many
analysts instead assume that the data are missing at ran-
dom (MAR), that is, missingness depends on observed,
but not unobserved, data. One widely used MAR ap-
proach is to adjust survey weights for nonresponse, for
example, by using post-stratification weights provided
by the survey organization (e.g., Henderson, Hillygus
and Tompson, 2010). Re-weighting approaches assume
that dropout occurs randomly within weighting classes
defined by observed variables that are associated with
dropout.

Although re-weighting can reduce bias introduced
by panel attrition, it is not a fail-safe solution. There
is wide variability in the way weights are constructed
and in the variables used. Nonresponse weights are of-
ten created using demographic benchmarks, for exam-
ple, from the CPS, but demographic variables alone
are unlikely to be adequate to correct for attrition
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(Vandecasteele and Debels, 2007). As is the case in
other nonresponse contexts, inflating weights can re-
sult in increased standard errors and introduce instabil-
ities due to particularly large or small weights (Lohr,
1998; Gelman, 2007).

A related MAR approach uses predicted probabil-
ities of nonresponse, obtained by modeling the re-
sponse indicator as a function of observed variables,
as inverse probability weights to enable inference by
generalized estimating equations (e.g., Robins and
Rotnitzky, 1995; Robins, Rotnitzky and Zhao, 1995;
Scharfstein, Rotnitzky and Robins, 1999; Chen, Yi and
Cook, 2010). This potentially offers some robustness
to model misspecification, at least asymptotically for
MAR mechanisms, although inferences can be sen-
sitive to large weights. One also can test whether or
not parameters differ significantly due to attrition for
cases with complete data and cases with incomplete
data (e.g., Diggle, 1989; Chen and Little, 1999; Qu and
Song, 2002; Qu et al., 2011), which can offer insight
into the appropriateness of the assumed MAR mecha-
nism.

An alternative approach to re-weighting is single im-
putation, a method often applied by statistical agen-
cies in general item nonresponse contexts (Kalton and
Kasprzyk, 1986). Single imputation methods replace
each missing value with a plausible guess, so that
the full panel can be analyzed as if their data were
complete. Although there are a wide range of single
imputation methods (hot deck, nearest neighbor, etc.)
that have been applied to missing data problems, the
method most specific to longitudinal studies is the last-
observation-carried-forward approach, in which an in-
dividual’s missing data are imputed to equal his or her
response in previous waves (e.g., Packer et al., 1996).
Research has shown that this approach can introduce
substantial biases in inferences (e.g., see Daniels and
Hogan, 2008).

Given the well-known limitations of single imputa-
tion methods (Little and Rubin, 2002), multiple im-
putation (see Section 3) also has been used to handle
missing data from attrition (e.g., Pasek et al., 2009;
Honaker and King, 2010). As with the majority of
available methods used to correct for panel attrition,
standard approaches to multiple imputation assume an
ignorable missing data mechanism. Unfortunately, it is
often expected that panel attrition is not missing at ran-
dom (NMAR), that is, the missingness depends on un-
observed data. In such cases, the only way to obtain
unbiased estimates of parameters is to model the miss-
ingness. However, it is generally impossible to know

the appropriate model for the missingness mechanism
from the panel sample alone (Kristman, Manno and
Cote, 2005; Basic and Rendtel, 2007; Molenberghs
et al., 2008).

Another approach, absent external data, is to han-
dle the attrition directly in the statistical models used
for longitudinal data analysis (Verbeke and Molen-
berghs, 2000; Diggle et al., 2002; Fitzmaurice, Laird
and Ware, 2004; Hedeker and Gibbons, 2006; Daniels
and Hogan, 2008). Here, unlike with other approaches,
much research has focused on methods for handling
nonignorable panel attrition. Methods include vari-
ants of both selection models (e.g., Hausman and
Wise, 1979; Siddiqui, Flay and Hu, 1996; Kenward,
1998; Scharfstein, Rotnitzky and Robins, 1999; Vella
and Verbeek, 1999; Das, 2004; Wooldridge, 2005;
Semykina and Wooldridge, 2010) and pattern mixture
models (e.g., Little, 1993; Kenward, Molenberghs and
Thijs, 2003; Roy, 2003; Lin, McCulloch and Rosen-
heck, 2004; Roy and Daniels, 2008). These model-
based methods have to make untestable and typically
strong assumptions about the attrition process, again
because there is insufficient information in the original
sample alone to learn the missingness mechanism. It
is therefore prudent for analysts to examine how sen-
sitive results are to different sets of assumptions about
attrition. We note that Rotnitzky, Robins and Scharf-
stein (1998) and Scharfstein, Rotnitzky and Robins
(1999) suggest related sensitivity analyses for estimat-
ing equations with inverse probability weighting.

3. LEVERAGING REFRESHMENT SAMPLES

Refreshment samples are available in many panel
studies, but the way refreshment samples are currently
used with respect to panel attrition varies widely. Ini-
tially, refreshment samples, as the name implies, were
conceived as a way to directly replace units who had
dropped out (Ridder, 1992). The general idea of using
survey or field substitutes to correct for nonresponse
dates to some of the earliest survey methods work
(Kish and Hess, 1959). Research has shown, however,
that respondent substitutes are more likely to resemble
respondents rather than nonrespondents, potentially in-
troducing bias without additional adjustments (Lin and
Schaeffer, 1995; Vehovar, 1999; Rubin and Zanutto,
2001; Dorsett, 2010). Also potentially problematic is
when refreshment respondents are simply added to the
analysis to boost the sample size, while the attrition
process of the original respondents is disregarded (e.g.,
Wissen and Meurs, 1989; Heeringa, 1997; Thompson
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et al., 2006). In recent years, however, it is most com-
mon to see refreshment samples used to diagnose panel
attrition characteristics in an attempt to justify an ig-
norable missingness assumption or as the basis for dis-
cussion about potential bias in the results, without us-
ing them for statistical correction of the bias (e.g., Frick
et al., 2006; Kruse et al., 2009).

Refreshment samples are substantially more power-
ful than suggested by much of their previous use. Re-
freshment samples can be mined for information about
the attrition process, which in turn facilitates adjust-
ment of inferences for the missing data (Hirano et al.,
1998, 2001; Bartels, 1999). For example, the data can
be used to construct inverse probability weights for the
cases in the panel (Hirano et al., 1998; Nevo, 2003),
an approach we do not focus on here. They also offer
information for model-based methods and multiple im-
putation (Hirano et al., 1998), which we now describe
and illustrate in detail.

3.1 Model-Based Approaches

Existing model-based methods for using refreshment
samples (Hirano et al., 1998; Bhattacharya, 2008) are
based on selection models for the attrition process. To
our knowledge, no one has developed pattern mixture
models in the context of refreshment samples, thus, in
what follows we only discuss selection models. To il-
lustrate these approaches, we use the simple example
also presented by Hirano et al. (1998, 2001), which
is illustrated graphically in Figure 1. Consider a two-
wave panel of Np subjects that includes a refreshment
sample of N new subjects during the second wave.
Let Y7 and Y> be binary responses potentially available
in wave 1 and wave 2, respectively. For the original
panel, suppose that we know Y; for all Np subjects

Wave 1 Wave 2

Observe Yo: Wp =1

Observe X, Y,

Y, missing: Wi =0

Observe X, Y,

(refreshment sample)

F1G. 1. Graphical representation of the two-wave model. Here,
X represents variables available on everyone.

and that we know Y> only for Ncp < Np subjects due
to attrition. We also know Y, for the Ny units in the
refreshment sample, but by design we do not know Y|
for those units. Finally, for all i, let W; = 1 if subject
i would provide a value for Y> if they were included in
wave 1, and let Wy; = 0 if subject i would not provide
a value for Y; if they were included in wave 1. We note
that Wy; is observed for all i in the original panel but is
missing for all i in the refreshment sample, since they
were not given the chance to respond in wave 1.

The concatenated data can be conceived as a par-
tially observed, three-way contingency table with eight
cells. We can estimate the joint probabilities in four
of these cells from the observed data, namely, P(Y; =
yv1, Y2 = y2, Wy = 1) for y1, y2 € {0, 1}. We also have
the following three independent constraints involving
the cells not directly observed:

1= Y PMYi=y,Ya=y Wi=1)
V1,2

=Y PY1=y.Y2=y, W =0),
Y1,Y2

PY1=y1,W1=0)

=Y PY1=y1, Y=y, W, =0),
y2

PYr=y))—PYo=y;, Wi =1)

=Y P(Y1=y1,.Y2=y, W =0).
Y1
Here, all quantities on the left-hand side of the equa-
tions are estimable from the observed data. The system
of equations offers seven constraints for eight cells, so
that we must add one constraint to identify all the joint
probabilities.

Hirano et al. (1998, 2001) suggest characterizing the
joint distribution of (Y71, Y2, Wp) via a chain of con-
ditional models, and incorporating the additional con-
straint within the modeling framework. In this context,
they suggested letting

Y1 ~ Ber(my;),

(D _
logit(rr1;) = Bo,
Y2 |Y1; ~ Ber(my;),
() _
logit(ma;) = yo + v1 Y1,
WhilY2i, Y1i ~ Ber(mw,,),
3)

logit(ww,;) = ap + ay, Y1; +ay,Y2;

for all i in the original panel and refreshment sam-
ple, plus requiring that all eight probabilities sum to
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TABLE 1
Summary of simulation study for the two-wave example. Results include the average of the posterior
means across the 500 simulations and the percentage of the 500 simulations in which the 95% central
posterior interval covers the true parameter value. The implied Monte Carlo standard error of the

simulated coverage rates is approximately /(0.95)(0.05)/500 = 1%

HW MAR AN
Parameter True value Mean 95% Cov. Mean 95% Cov. Mean 95% Cov.
Bo 0.3 0.29 96 0.27 87 0.30 97
Bx —-0.4 —0.39 95 —0.39 95 —0.40 96
Y0 0.3 0.44 30 0.54 0 0.30 98
156 —-0.3 —0.35 94 -0.39 70 —0.30 99
124 0.7 0.69 91 0.84 40 0.70 95
Qg —-0.4 —0.46 84 0.25 0 —0.40 97
ax 1 0.96 93 0.84 13 1.00 98
ay, -0.7 — — —0.45 0 -0.70 98
ay, 1.3 0.75 0 — — 1.31 93

one. Hirano et al. (1998) call this an additive nonig-
norable (AN) model. The AN model enforces the ad-
ditional constraint by disallowing the interaction be-
tween (Y1, Y>) in (3). Hirano et al. (1998) prove that
the AN model is likelihood-identified for general dis-
tributions. Fitting AN models is straightforward using
Bayesian MCMC; see Hirano et al. (1998) and Deng
(2012) for exemplary Metropolis-within-Gibbs algo-
rithms. Parameters also can be estimated via equations
of moments (Bhattacharya, 2008).

Special cases of the AN model are informative. By
setting (ay, = 0, oy, # 0), we specify a model for a
MAR missing data mechanism. Setting oy, # 0 im-
plies a NMAR missing data mechanism. In fact, setting
(ay, =0, ay, # 0) results in the nonignorable model
of Hausman and Wise (1979). Hence, the AN model
allows the data to determine whether the missingness
is MAR or NMAR, thereby allowing the analyst to
avoid making an untestable choice between the two
mechanisms. By not forcing oy, = 0, the AN model
permits more complex nonignorable selection mecha-
nisms than the model of Hausman and Wise (1979).
The AN model does require separability of Y1 and Y>
in the selection model; hence, if attrition depends on
the interaction between Y] and Y>, the AN model will
not fully correct for biases due to nonignorable attri-
tion.

As empirical evidence of the potential of refresh-
ment samples, we simulate 500 data sets based on an
extension of the model in (1)—(3) in which we add a
Bernoulli-generated covariate X to each model; that is,
we add Bx X; to the logit predictor in (1), yx X; to the

logit predictor in (2), and ax X; to the logit predictor
in (3). In each we use Np = 10,000 original panel cases
and Ng = 5000 refreshment sample cases. The param-
eter values, which are displayed in Table 1, simulate
a nonignorable missing data mechanism. All values of
(X, Y1, Wp) are observed in the original panel, and all
values of (X, Y») are observed in the refreshment sam-
ple. We estimate three models based on the data: the
Hausman and Wise (1979) model (set ay, = 0 when
fitting the models) which we denote with HW, a MAR
model (set ay, = 0 when fitting the models) and an AN
model. In each data set, we estimate posterior means
and 95% central posterior intervals for each parame-
ter using a Metropolis-within-Gibbs sampler, running
10,000 iterations (50% burn-in). We note that interac-
tions involving X also can be included and identified
in the models, but we do not use them here.

For all models, the estimates of the intercept and co-
efficient in the logistic regression of Y7 on X are rea-
sonable, primarily because X is complete and Y; is
only MCAR in the refreshment sample. As expected,
the MAR model results in biased point estimates and
poorly calibrated intervals for the coefficients of the
models for Y, and W;. The HW model fares somewhat
better, but it still leads to severely biased point esti-
mates and poorly calibrated intervals for yp and ay,.
In contrast, the AN model results in approximately un-
biased point estimates with reasonably well-calibrated
intervals.

We also ran simulation studies in which the data gen-
eration mechanisms satisfied the HW and MAR mod-
els. When (ay, =0, ay, # 0), the HW model performs
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well and the MAR model performs terribly, as ex-
pected. When (ay, # 0, ay, = 0), the MAR model per-
forms well and the HW model performs terribly, also
as expected. The AN model performs well in both sce-
narios, resulting in approximately unbiased point esti-
mates with reasonably well-calibrated intervals.

To illustrate the role of the separability assump-
tion, we repeat the simulation study after including a
nonzero interaction between Y; and Y, in the model
for Wj. Specifically, we generate data according to a
response model,

W logit(mrw,,) = ao + ay, Y1; +ay, Y
+ay, v, Y1i Y2,

setting ay,y, = 1. However, we continue to use the AN
model by forcing ay,y, = 0 when estimating param-
eters. Table 2 summarizes the results of 100 simula-
tion runs, showing substantial biases in all parameters
except (Bo, Bx, ¥x, ax). The estimates of (8, Bx) are
unaffected by using the wrong value for ay,y,, since all
the information about the relationship between X and
Y1 is in the first wave of the panel. The estimates of yx
and ax are similarly unaffected because ay,y, involves
only Y7 (and not X), which is controlled for in the re-
gressions. Table 2 also displays the results when using
(1), (2) and (4) with ay,y, = 1; that is, we set ay,y, at
its true value in the MCMC estimation and estimate all
other parameters. After accounting for separability, we
are able to recover all true parameter values.

TABLE 2
Summary of simulation study for the two-wave example without
separability. The true selection model includes a nonzero
interaction between Y1 and Y, (coefficient ay,y, = 1). We fit the
AN model plus the AN model adding the interaction term set at its
true value. Results include the averages of the posterior means
and posterior standard errors across 100 simulations

AN AN + oy, y,

Parameter True value Mean S.E. Mean S.E.
Bo 0.3 0.30 0.03 0.30 0.03
Bx —-0.4 —0.41 0.04 —-0.41 0.04
Y0 0.3 0.14 0.06 0.30 0.06
%4 —0.3 —0.27 0.06 —0.30 0.05
Yy, 0.7 0.99 0.07 0.70 0.06
o —-0.4 —0.55 0.08 —0.41 0.09
ay 1 0.99 0.08 1.01 0.08
ay, —0.7 —0.35 0.05 —0.70 0.07
ay, 1.3 1.89 0.13 1.31 0.13
ay,y, 1 — — 1 0

Of course, in practice analysts do not know the true
value of ay,y,. Analysts who wrongly set ay,y, =0, or
any other incorrect value, can expect bias patterns like
those in Table 2, with magnitudes determined by how
dissimilar the fixed ay,y, is from the true value. How-
ever, the successful recovery of true parameter values
when setting «y,y, at its correct value suggests an ap-
proach for analyzing the sensitivity of inferences to
the separability assumption. Analysts can posit a set
of plausible values for ay,y,, estimate the models af-
ter fixing ay,y, at each value and evaluate the infer-
ences that result. Alternatively, analysts might search
for values of ay,y, that meaningfully alter substan-
tive conclusions of interest and judge whether or not
such ay,y, seem realistic. Key to this sensitivity anal-
ysis is interpretation of ay,y,. In the context of the
model above, ay,y, has a natural interpretation in terms
of odds ratios; for example, in our simulation, setting
ay,y, = 1 implies that cases with (Y1 =1,Y> = 1)
have exp(2.3) ~ 10 times higher odds of responding at
wave 2 than cases with (Y] =1, Y, = 0). In a sensitiv-
ity analysis, when this is too high to seem realistic, we
might consider models with values like ay,y, = 0.2.
Estimates from the AN model can serve as starting
points to facilitate interpretations.

Although we presented models only for binary data,
Hirano et al. (1998) prove that similar models can
be constructed for other data types, for example, they
present an analysis with a multivariate normal distri-
bution for (Y71, Y>2). Generally speaking, one proceeds
by specifying a joint model for the outcome (uncondi-
tional on W), followed by a selection model for W
that maintains separation of Y7 and Y>.

3.2 Multiple Imputation Approaches

One also can treat estimation with refreshment sam-
ples as a multiple imputation exercise, in which one
creates a modest number of completed data sets to be
analyzed with complete-data methods. In multiple im-
putation, the basic idea is to simulate values for the
missing data repeatedly by sampling from predictive
distributions of the missing values. This creates m > 1
completed data sets that can be analyzed or, as rele-
vant for many statistical agencies, disseminated to the
public. When the imputation models meet certain con-
ditions (Rubin, 1987, Chapter 4), analysts of the m
completed data sets can obtain valid inferences using
complete-data statistical methods and software. Specif-
ically, the analyst computes point and variance esti-
mates of interest with each data set and combines these
estimates using simple formulas developed by Rubin
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(1987). These formulas serve to propagate the uncer-
tainty introduced by missing values through the ana-
lyst’s inferences. Multiple imputation can be used for
both MAR and NMAR missing data, although stan-
dard software routines primarily support MAR impu-
tation schemes. Typical approaches to multiple impu-
tation presume either a joint model for all the data, such
as a multivariate normal or log-linear model (Schafer,
1997), or use approaches based on chained equations
(Van Buuren and Oudshoorn, 1999; Raghunathan et al.,
2001). See Rubin (1996), Barnard and Meng (1999)
and Reiter and Raghunathan (2007) for reviews of mul-
tiple imputation.

Analysts can utilize the refreshment samples when
implementing multiple imputation, thereby realizing
similar benefits as illustrated in Section 3.1. First, the
analyst fits the Bayesian models in (1)—(3) by running
an MCMC algorithm for, say, H iterations. This algo-
rithm cycles between (i) taking draws of the missing
values, that is, Y7 in the panel and (Y7, Wy) in the re-
freshment sample, given parameter values and (ii) tak-
ing draws of the parameters given completed data. Af-
ter convergence of the chain, the analyst collects m of
these completed data sets for use in multiple imputa-
tion. These data sets should be spaced sufficiently so as
to be approximately independent, for example, by thin-
ning the H draws so that the autocorrelations among
parameters are close to zero. For analysts reluctant to
run MCMC algorithms, we suggest multiple imputa-
tion via chained equations with (Y1, Y2, W) each tak-
ing turns as the dependent variable. The conditional
models should disallow interactions (other than those
involving X) to respect separability. This suggestion is
based on our experience with limited simulation stud-
ies, and we encourage further research into its general
validity. For the remainder of this article, we utilize the
fully Bayesian MCMC approach to implement multi-
ple imputation.

Of course, analysts could disregard the refreshment
samples entirely when implementing multiple imputa-
tion. For example, analysts can estimate a MAR mul-
tiple imputation model by forcing ay, = 0 in (3) and
using the original panel only. However, this model is
exactly equivalent to the MAR model used in Table 1
(although those results use both the panel and the re-
freshment sample when estimating the model); hence,
disregarding the refreshment samples can engender the
types of biases and poor coverage rates observed in Ta-
ble 1. On the other hand, using the refreshment samples
allows the data to decide if MAR is appropriate or not
in the manner described in Section 3.1.

In the context of refreshment samples and the ex-
ample in Section 3.1, the analyst has two options for
implementing multiple imputation. The first, which we
call the “P + R” option, is to generate completed data
sets that include all cases for the panel and refresh-
ment samples, for example, impute the missing Y5 in
the original panel and the missing (Y1, W1) in the re-
freshment sample, thereby creating m completed data
sets each with Np + Ny cases. The second, which we
call the “P-only” option, is to generate completed data
sets that include only individuals from the initial panel,
so that Np individuals are disseminated or used for
analysis. The estimation routines may require imput-
ing (Y1, Wp) for the refreshment sample cases, but in
the end only the imputed Y> are added to the observed
data from the original panel for dissemination/analysis.

For the P + R option, the multiply-imputed data sets
are byproducts when MCMC algorithms are used to es-
timate the models. The P 4 R option offers no advan-
tage for analysts who would use the Bayesian model
for inferences, since essentially it just reduces from H
draws to m draws for summarizing posterior distribu-
tions. However, it could be useful for survey-weighted
analyses, particularly when the concatenated file has
weights that have been revised to reflect (as best as
possible) its representativeness. The analyst can apply
the multiple imputation methods of Rubin (1987) to the
concatenated file.

Compared to the P 4- R option, the P-only option of-
fers clearer potential benefits. Some statistical agencies
or data analysts may find it easier to disseminate or
base inferences on only the original panel after using
the refreshment sample for imputing the missing val-
ues due to attrition, since combining the original and
freshened samples complicates interpretation of sam-
pling weights and design-based inference. For exam-
ple, re-weighting the concatenated data can be tricky
with complex designs in the original and refreshment
sample. Alternatively, there may be times when a sta-
tistical agency or other data collector may not want to
share the refreshment data with outsiders, for example,
because doing so would raise concerns over data confi-
dentiality. Some analysts might be reluctant to rely on
the level of imputation in the P 4+ R approach—for the
refreshment sample, all Y1 must be imputed. In con-
trast, the P-only approach only leans on the imputa-
tion models for missing Y». Finally, some analysts sim-
ply may prefer the interpretation of longitudinal anal-
yses based on the original panel, especially in cases of
multiple-wave designs.
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In the P-only approach, the multiple imputation has
a peculiar aspect: the refreshment sample records used
to estimate the imputation models are not used or avail-
able for analyses. When records are used for impu-
tation but not for analysis, Reiter (2008) showed that
Rubin’s (1987) variance estimator tends to have posi-
tive bias. The bias, which can be quite severe, results
from a mismatch in the conditioning used by the ana-
lyst and the imputer. The derivation of Rubin’s (1987)
variance estimator presumes that the analyst conditions
on all records used in the imputation models, not just
the available data.

We now illustrate that this phenomenon also arises
in the two-wave refreshment sample context. To do
so, we briefly review multiple imputation (Rubin,
1987). For [ =1, ..., m, let q(l) and u be, respec-
tively, the estimate of some population quantity Q
and the estimate of the variance of ¢ in completed
data set D). Analysts use g, = i g /m to esti-
mate Q and use T,,, = (1 + 1/m)b,, + u,, to estimate
var(gm), where by, = Y72, (q" — gn)*/(m — 1) and
Um = Yoy u® /m. For large samples, inferences for
Q are obtained from the ¢-distribution, (g, — Q) ~
t,,(0,T,), where the degrees of freedom is v,, =
m — D 4+ up /(1 + l/m)bm)]z. A better degrees
of freedom for small samples is presented by Barnard
and Rubin (1999). Tests of significance for multicom-
ponent null hypotheses are derived by Li et al. (1991),
Li, Raghunathan and Rubin (1991), Meng and Rubin
(1992) and Reiter (2007).

Table 3 summarizes the properties of the P-only mul-
tiple imputation inferences for the AN model under the
simulation design used for Table 1. We set m = 100,
spacing out samples of parameters from the MCMC
so as to have approximately independent draws. Re-
sults are based on 500 draws of observed data sets,
each with new values of missing data. As before, the
multiple imputation results in approximately unbiased
point estimates of the coefficients in the models for Y}

TABLE 3
Bias in multiple imputation variance estimator for P-only method.
Results based on 500 simulations

Parameter o Avg.qx Vargs Avg.T. 95% Cov.
Bo 0.3 0.30 0.0008  0.0008 95.4
Bx —-04 —-0.40 0.0016  0.0016 95.8
Y0 0.3 0.30 0.0018  0.0034 99.2
154 -03 —-0.30 0.0022  0.0031 98.4
Yy 0.7 0.70 0.0031  0.0032 96.4

and for Y». For the coefficients in the regression of Y>,
the averages of T, across the 500 replications tend to
be significantly larger than the actual variances, lead-
ing to conservative confidence interval coverage rates.
Results for the coefficients of Y| are well-calibrated; of
course, Y1 has no missing data in the P-only approach.

We also investigated the two-stage multiple imputa-
tion approach of Reiter (2008). However, this resulted
in some anti-conservative variance estimates, so that it
was not preferred to standard multiple imputation.

3.3 Comparing Model-Based and Multiple
Imputation Approaches

As in other missing data contexts, model-based and
multiple imputation approaches have differential ad-
vantages (Schafer, 1997). For any given model, model-
based inferences tend to be more efficient than multi-
ple imputation inferences based on modest numbers of
completed data sets. On the other hand, multiple im-
putation can be more robust than fully model-based
approaches to poorly fitting models. Multiple imputa-
tion uses the posited model only for completing miss-
ing values, whereas a fully model-based approach re-
lies on the model for the entire inference. For example,
in the P-only approach, a poorly-specified imputation
model affects inference only through the (Np — N¢p)
imputations for Y;. Speaking loosely to offer intuition,
if the model for Y> is only 60% accurate (a poor model
indeed) and (Np — Ncp) represents 30% of Np, infer-
ences based on the multiple imputations will be only
12% inaccurate. In contrast, the full model-based infer-
ence will be 40% inaccurate. Computationally, multi-
ple imputation has some advantages over model-based
approaches, in that analysts can use ad hoc imputation
methods like chained equations (Van Buuren and Oud-
shoorn, 1999; Raghunathan et al., 2001) that do not re-
quire MCMC.

Both the model-based and multiple imputation ap-
proaches, by definition, rely on models for the data.
Models that fail to describe the data could result in
inaccurate inferences, even when the separability as-
sumption in the selection model is reasonable. Thus,
regardless of the approach, it is prudent to check the fit
of the models to the observed data. Unfortunately, the
literature on refreshment samples does not offer guid-
ance on or present examples of such diagnostics.

We suggest that analysts check models with pre-
dictive distributions (Meng, 1994; Gelman, Meng and
Stern, 1996; He et al.,, 2010; Burgette and Reiter,
2010). In particular, the analyst can use the estimated
model to generate new values of Y, for the complete
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cases in the original panel and for the cases in the
refreshment sample. The analyst compares the set of
replicated Y, in each sample with the corresponding
original ¥, on statistics of interest, such as summaries
of marginal distributions and coefficients in regressions
of Y, on observed covariates. When the statistics from
the replicated data and observed data are dissimilar,
the diagnostics indicate that the imputation model does
not generate replicated data that look like the complete
data, suggesting that it may not describe adequately the
relationships involving Y> or generate plausible values
for the missing Y>. When the statistics are similar, the
diagnostics do not offer evidence of imputation model
inadequacy (with respect to those statistics). We rec-
ommend that analysts generate multiple sets of repli-
cated data, so as to ensure interpretations are not overly
specific to particular replications.

These predictive checks can be graphical in nature,
for example, resembling grouped residual plots for lo-
gistic regression models. Alternatively, as summaries
analysts can compute posterior predictive probabili-
ties. Formally, let S be the statistic of interest, such as
a regression coefficient or marginal probability. Sup-
pose the analyst has created T replicated data sets,
{R(l), e, R(T)}, where T is somewhat large (say, T =
500). Let Sp and Sk be the values of S computed
with an observed subsample D, for example, the com-
plete cases in the panel or the refreshment sample, and
RO, respectively, where [ =1, ..., T. For each § we
compute the two-sided posterior predictive probability,

T

ppp = (2/T) * min(z 1(Sp — Sgay > 0),
=1

(5) ,
> I(Sgo —Sp > 0)).

I=1

We note that ppp is small when Sp and Sp¢ consis-
tently deviate from each other in one direction, which
would indicate that the model is systematically dis-
torting the relationship captured by S. For § with
small ppp, it is prudent to examine the distribution of
Sgrw — Sp to evaluate if the difference is practically
important. We consider probabilities in the 0.05 range
(or lower) as suggestive of lack of model fit.

To obtain each RY), analysts simply add a step to
the MCMC that replaces all observed values of Y, us-
ing the parameter values at that iteration, conditional
on observed values of (X, Yy, Wy). This step is used
only to facilitate diagnostic checks; the estimation of
parameters continues to be based on the observed Y>.

When autocorrelations among parameters are high, we
recommend thinning the chain so that parameter draws
are approximately independent before creating the set
of R®). Further, we advise saving the T replicated data
sets, so that they can be used repeatedly with differ-
ent S. We illustrate this process of model checking in
the analysis of the APYN data in Section 5.

4. THREE-WAVE PANELS WITH TWO
REFRESHMENTS

To date, model-based and multiple imputation meth-
ods have been developed and applied in the context
of two-wave panel studies with one refreshment sam-
ple. However, many panels exist for more than two
waves, presenting the opportunity for fielding multi-
ple refreshment samples under different designs. In this
section we describe models for three-wave panels with
two refreshment samples. These can be used as in Sec-
tion 3.1 for model-based inference or as in Section 3.2
to implement multiple imputation. Model identification
depends on (i) whether or not individuals from the orig-
inal panel who did not respond in the second wave, that
is, have Wy; = 0, are given the opportunity to provide
responses in the third wave, and (ii) whether or not
individuals from the first refreshment sample are fol-
lowed in the third wave.

To begin, we extend the example from Figure 1 to the
case with no panel returns and no refreshment follow-
up, as illustrated in Figure 2. Let Y3 be binary re-
sponses potentially available in wave 3. For the original
panel, we know Y3 only for Ncpa» < Ncp subjects due
to third wave attrition. We also know Y3 for the Ng;
units in the second refreshment sample. By design, we
do not know (Y7, Y3) for units in the first refreshment
sample, nor do we know (Y1, Y>) for units in the second
refreshment sample. For all i, let W»; = 1 if subject i
would provide a value for Y3 if they were included in
the second wave of data collection (even if they would
not respond in that wave), and let Wp; = 0 if subject i
would not provide a value for Y3 if they were included
in the second wave. In this design, W»; is missing for
all i in the original panel with Wi; =0 and for all i in
both refreshment samples.

There are 32 cells in the contingency table cross-
tabulated from (Y1, Y», Y3, Wi, W5). However, the ob-
served data offer only sixteen constraints, obtained
from the eight joint probabilities when (W1 =1, W, =
1) and the following dependent equations (which can
be alternatively specified). For all (yy, y2, y3, wi, wa),
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Wave 1

Wave 2

Wave 3

Observe Yo: Wy =1

Observe Y3: W, =1

Y3 missing: W, = 0

Observe X, Y

Y, missing: W; = 0

Observe X, Y,

(refreshment sample)

Observe X, Y3

(refreshment sample)

F1G. 2. Graphical representation of the three-wave panel with monotone nonresponse and no follow-up for subjects in refreshment samples.
Here, X represents variables available on everyone and is displayed for generality; there is no X in the example in Section 4.

where y3, wy, wy € {0, 1}, we have

- ¥

Y1,¥2,¥3, W, W2

P(Y1=y1, Y=,

Y3=y3, Wi=wi, Wo =wy),
PY1=y1,W1=0)
= Y PYi=y.Ya=y,

y2,¥3,W2

Y3 =y3, W1 =0, W =w»),
PYr=y))—PYo=y;, Wi =1)
= Y PYi=y.Y2=y,

Y1,Y3,W2

Y3=y3, Wi =0, W =w»),
PYi=y1, o= Wi=1,W,=0)
=Y P(Y1=y1.Y2=,

V3
Y3=y3, Wi =1, W,=0),
P(Y3=y3)
= ) PMi=y.Yh=y,
yl’yz’wl’w2

Y3 =y3, Wi =wi, Wa =w>).

As before, all quantities on the left-hand side of the
equations are estimable from the observed data. The
first three equations are generalizations of those from
the two-wave model. One can show that the entire set
of equations offers eight independent constraints, so
that we must add sixteen constraints to identify all the
probabilities in the table.

Following the strategy for two-wave models, we
characterize the joint distribution of (Y1, Y2, Y3, W,
W;) via a chain of conditional models. In particular,
for all i in the original panel and refreshment samples,
we supplement the models in (1)—(3) with

Y3i | Yii, Yai, Wii ~ Ber(ms;),
(6) logit(3i) = Bo + P1Y1i
+ BoYoi + B3Y1iYai,
Wai | Y1i, Yai, Wii, Y3 ~ Ber(zwwai),
(7N logit(ww2i) = 80 + 81 Y1 + 82Y2i
+63Y3; + 84Y1; Y2i,

plus requiring that all 32 probabilities sum to one. We
note that the saturated model—which includes all eli-
gible one-way, two-way and three-way interactions—
contains 31 parameters plus the sum-to-one require-
ment, whereas the just-identified model contains 15
parameters plus the sum-to-one requirement; thus, the
needed 16 constraints are obtained by fixing parame-
ters in the saturated model to zero.

The sixteen removed terms from the saturated model
include the interaction Y;Y> from the model for Wy,
all terms involving W; from the model for Y3 and all
terms involving W; or interactions with Y3 from the
model for W5. We never observe W = 0 jointly with
Y3 or Wy, so that the data cannot identify whether or
not the distributions for Y3 or W, depend on W;. We
therefore require that Y3 and W> be conditionally in-
dependent of Wy. With this assumption, the Ncp cases
with W1 =1 and the second refreshment sample can
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identify the interactions of Y1Y> in (6) and (7). Essen-
tially, the Ncp cases with fully observed (Y1, Y>) and
the second refreshment sample considered in isolation
are akin to a two-wave panel sample with (Y, ¥) and
their interaction as the variables from the “first wave”
and Y3 as the variable from the “second wave.” As with
the AN model, in this pseudo-two-wave panel we can
identify the main effect of Y3 in (7) but not interactions
involving Y3.

In some multi-wave panel studies, respondents who
complete the first wave are invited to complete all sub-
sequent waves, even if they failed to complete a pre-
vious one. That is, individuals with observed Wy; =0
can come back in future waves. For example, the 2008
ANES increased incentives to attriters to encourage
them to return in later waves. This scenario is illus-
trated in Figure 3. In such cases, the additional infor-
mation offers the potential to identify additional pa-
rameters from the saturated model. In particular, one
gains the dependent equations,

PY1=y1,Y3=y3, W1 =0,W=1)

=Y P(Y1=y1.Y2=y,
»

Y3=y3, W1 =0,W2=1)

for all (y1, y3). When combined with other equations,
we now have 20 independent constraints. Thus, we can
add four terms to the models in (6) and (7) and maintain
identification. These include two main effects for W,
and two interactions between W and Y7, all of which
are identified since we now observe some W, and Y3
when W, = 0. In contrast, the interaction term Y, Wy is

not identified, because Y> is never observed with Y3 ex-
cept when Wp = 1. Interaction terms involving Y3 also
are not identified. This is intuitively seen by supposing
that no values of Y, from the original panel were miss-
ing, so that effectively the original panel plus the sec-
ond refreshment sample can be viewed as a two-wave
setting in which the AN assumption is required for Y3.

Thus far we have assumed only cross-sectional re-
freshment samples, however, refreshment sample re-
spondents could be followed in subsequent waves.
Once again, the additional information facilitates es-
timation of additional terms in the models. For ex-
ample, consider extending Figure 3 to include incom-
plete follow-up in wave three for units from the first
refreshment sample. Deng (2012) shows that the ob-
served data offer 22 independent constraints, so that
we can add six terms to (6) and (7). As before, these
include two main effects for W and two interactions
for Y{W;. We also can add the two interactions for
Y> Wy. The refreshment sample follow-up offers obser-
vations with Y, and (Y3, W>) jointly observed, which
combined with the other data enables estimation of the
one-way interactions. Alternatively, consider extend-
ing Figure 2 to include the incomplete follow-up in
wave three for units from the first refreshment sam-
ple. Here, Deng (2012) shows that the observed data
offer 20 independent constraints and that one can add
the two main effects for W; and two interactions for
Y, Wi to (6) and (7).

As in the two-wave case (Hirano et al., 1998), we
expect that similar models can be constructed for other
data types. We have done simulation experiments (not
reported here) that support this expectation.

Wave 1

Wave 2

Wave 3

Observe Yp: Wy =1

Observe Y3: W, = 1

Y3 missing: W, = 0

Observe X, Y;

Y, missing: W; = 0

Observe Y3: W, =1

Y3 missing: W, = 0

Observe X, Y,

(refreshment sample)

Observe X, Y3

(refreshment sample)

FI1G. 3. Graphical representation of the three-wave panel with return of wave 2 nonrespondents and no follow-up for subjects in refreshment

samples. Here, X represents variables available on everyone.
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5. ILLUSTRATIVE APPLICATION

To illustrate the use of refreshment samples in prac-
tice, we use data from the 2007-2008 Associated
Press—Yahoo! News Poll (APYN). The APYN is a
one year, eleven-wave survey with three refreshment
samples intended to measure attitudes about the 2008
presidential election and politics. The panel was sam-
pled from the probability-based KnowledgePanel(R)
Internet panel, which recruits panel members via a
probability-based sampling method using known pub-
lished sampling frames that cover 99% of the U.S. pop-
ulation. Sampled noninternet households are provided
a laptop computer or MSN TV unit and free internet
service.

The baseline (wave 1) of the APYN study was col-
lected in November 2007, and the final wave took place
after the November 2008 general election. The base-
line was fielded to a sample of 3548 adult citizens, of
whom 2735 responded, for a 77% cooperation rate. All
baseline respondents were invited to participate in each
follow-up wave; hence, it is possible, for example, to
obtain a baseline respondent’s values in wave ¢ + 1
even if they did not participate in wave ¢. Cooperation
rates in follow-up surveys varied from 69% to 87%,
with rates decreasing towards the end of the panel.
Refreshment samples were collected during follow-up
waves in January, September and October 2008. For
illustration, we use only the data collected in the base-
line, January and October waves, including the cor-
responding refreshment samples. We assume nonre-
sponse to the initial wave and to the refreshment sam-
ples is ignorable and analyze only the available cases.
The resulting data set is akin to Figure 3.

The focus of our application is on campaign inter-
est, one of the strongest predictors of democratic at-
titudes and behaviors (Prior, 2010) and a key measure
for defining likely voters in pre-election polls (Traugott
and Tucker, 1984). Campaign interest also has been
shown to be correlated with panel attrition (Bartels,
1999; Olson and Witt, 2011). For our analysis, we use
an outcome variable derived from answers to the sur-
vey question, “How much thought, if any, have you
given to candidates who may be running for president
in 20087 Table 4 summarizes the distribution of the
answers in the three waves. Following convention (e.g.,
Pew Research Center, 2010), we dichotomize answers
into people most interested in the campaign and all oth-
ers. We let Y;; = 1 if subject i answers “A lot” at time ¢
and Y;; = 0 otherwise, where ¢ € {1, 2, 3} for the base-
line, January and October waves, respectively. We let

TABLE 4
Campaign interest. Percentage choosing each response option
across the panel waves (P1, P2, P3) and refreshment samples (R2,
R3). In P3, 83 nonrespondents from P2 returned to the survey. Five
participants with missing data in P1 were not used in the analysis

P1 P2 P3 R2 R3

“Alot” 29.8 403  65.0 420 722
“Some” 48.6 443 259 433 203
“Not much” 15.3 10.8 5.80 10.2 5.0
“None at all” 6.1 4.4 2.90 3.6 1.9

Available sample size 2730 2316 1715 691 461

X; denote the vector of predictors summarized in Ta-
ble 5.

We assume ignorable nonresponse in the initial wave
and refreshment samples for convenience, as our pri-
mary goal is to illustrate the use and potential benefits
of refreshment samples. Unfortunately, we have little
evidence in the data to support or refute that assump-
tion. We do not have access to X for the nonrespon-
dents in the initial panel or refreshment samples, thus,
we cannot compare them to respondents’ X as a (par-
tial) test of an MCAR assumption. The respondents’
characteristics are reasonably similar across the three
samples—although the respondents in the second re-
freshment sample (R3) tend to be somewhat older than
other samples—which offers some comfort that, with
respect to demographics, these three samples are not
subject to differential nonresponse bias.

As in Section 4, we estimate a series of logistic re-
gressions. Here, we denote the 7 x 1 vectors of coeffi-
cients in front of the X; with 6 and subscripts indicat-
ing the dependent variable, for example, 0y, represents
the coefficients of X in the model for Y. Suppressing
conditioning, the series of models is

exp(Oy, Xi) )
1+6Xp((9le,') ’

exp(Oy, Xi + v Y1i) )

1 +exp(@y, Xi +y Y1)/
exp(Ow, X; + a1 Y1 + a2Y2;)

1 + exp(Ow, Xi + o1 Y1 +062Y2i)>’

Y3; ~ Bern(exp(fy, Xi + 1Y1i + B2 Yo
+ B3Wii + BaY1iYoi + BsY1iWii)
/(1 +exp@y, X; + B1Y1i
+ BaYoi + B3Wii
+ BaY1iYai + BsY1i W1))),

Yii~ Bern(

Yo ~ Bern(

Wi ~ Bern(



250 Y. DENG ET AL.

TABLE 5
Predictors used in all conditional models, denoted as X . Percentage of respondents in each category in initial
panel (P1) and refreshment samples (R2, R3)

Variable Definition P1 R2 R3
AGEl1 = 1 for age 30-44, = 0 otherwise 0.28 0.28 0.21
AGE2 = 1 for age 45-59, = 0 otherwise 0.32 0.31 0.34
AGE3 = 1 for age above 60, = 0 otherwise 0.25 0.28 0.34
MALE = 1 for male, = 0 for female 0.45 0.47 0.43
COLLEGE = 1 for having college degree, = 0 otherwise 0.30 0.33 0.31
BLACK = 1 for African American, = 0 otherwise 0.08 0.07 0.07
INT = 1 for everyone (the intercept)

Wa;i ~ Bern(exp(Ow, X; + 81Y1i + 82Y2; + 83Y3;
+ 84 Wi + 85Y1i Y2 + 86Y1i W1i)
/(1 +exp(Ow, X; + 81 Y1 + 62V
+83Y3; + 84 Wy
+ 85Y1;Y2i + 86Y1; W1i))).

We use noninformative prior distributions on all pa-
rameters. We estimate posterior distributions of the pa-
rameters using a Metropolis-within-Gibbs algorithm,
running the chain for 200,000 iterations and treat-
ing the first 50% as burn-in. MCMC diagnostics sug-
gested that the chain converged. Running the MCMC
for 200,000 iterations took approximately 3 hours on
a standard desktop computer (Intel Core 2 Duo CPU
3.00 GHz, 4 GB RAM). We developed the code in Mat-
lab without making significant efforts to optimize the
code. Of course, running times could be significantly
faster with higher-end machines and smarter coding in
a language like C++4-.

The identification conditions include no interaction
between campaign interest in wave 1 and wave 2 when
predicting attrition in wave 2, and no interaction be-
tween campaign interest in wave 3 (as well as nonre-
sponse in wave 2) and other variables when predicting
attrition in wave 3. These conditions are impossible to
check from the sampled data alone, but we cannot think
of any scientific basis to reject them outright.

Table 6 summarizes the posterior distributions of the
regression coefficients in each of the models. Based on
the model for Wy, attrition in the second wave is rea-
sonably described as missing at random, since the coef-
ficient of Y> in that model is not significantly different
from zero. The model for W, suggests that attrition in
wave 3 is not missing at random. The coefficient for
Y3 indicates that participants who were strongly inter-
ested in the election at wave 3 (holding all else con-

stant) were more likely to drop out. Thus, a panel attri-
tion correction is needed to avoid making biased infer-
ences.

This result contradicts conventional wisdom that
politically-interested respondents are less likely to at-
trite (Bartels, 1999). The discrepancy could result from
differences in the survey design of the APYN study
compared to previous studies with attrition. For exam-
ple, the APYN study consisted of 10-15 minute on-
line interviews, whereas the ANES panel analyzed by
Bartels (1999) and Olson and Witt (2011) consisted of
90-minute, face-to-face interviews. The lengthy ANES
interviews have been linked to significant panel condi-
tioning effects, in which respondents change their at-
titudes and behavior as a result of participation in the
panel (Bartels, 1999). In contrast, Kruse et al. (2009)
finds few panel conditioning effects in the APYN
study. More notably, there was a differential incen-
tive structure in the APYN study. In later waves of
the study, reluctant responders (those who took more
than 7 days to respond in earlier waves) received in-
creased monetary incentives to encourage their partici-
pation. Other panelists and the refreshment sample re-
spondents received a standard incentive. Not surpris-
ingly, the less interested respondents were more likely
to have received the bonus incentives, potentially in-
creasing their retention rate to exceed that of the most
interested respondents. This possibility raises a broader
question about the reasonableness of assuming the ini-
tial nonresponse is ignorable, a point we return to in
Section 6.

In terms of the campaign interest variables, the ob-
served relationships with (Yy, Y, ¥3) are consistent
with previous research (Prior, 2010). Not surprisingly,
the strongest predictor of interest in later waves is in-
terest in previous waves. Older and college-educated
participants are more likely to be interested in the elec-
tion. Like other analyses of the 2008 election (Lawless,
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Posterior means and 95% central intervals for coefficients in regressions. Column headers are the dependent variable in the regressions

Variable Y Y, Y3 Wi Wy
INT —1.60 —-1.77 0.04 1.64 —1.40
(—1.94, —1.28) (—=2.21,-1.32) (—1.26, 1.69) (1.17,2.27) (—-2.17,-0.34)
AGEl1 0.25 0.27 0.03 —0.08 0.28
(—0.12,0.63) (—0.13,0.68) (—0.40,0.47) (—0.52,0.37) (—0.07,0.65)
AGE2 0.75 0.62 0.15 0.24 0.27
(0.40, 1.10) (0.24,1.02) (—0.28,0.57) (—=0.25,0.72) (—0.07,0.64)
AGE3 1.26 0.96 0.88 0.37 0.41
(0.91, 1.63) (0.57,1.37) (0.41,1.34) (—0.14,0.87) (0.04,0.80)
COLLEGE 0.11 0.53 0.57 0.35 0.58
(—0.08,0.31) (0.31,0.76) (0.26,0.86) (0.04,0.69) (0.34,0.84)
MALE —0.05 —0.02 —0.02 0.13 0.08
(—0.23,0.13) (—=0.22,0.18) (—0.29,0.24) (—0.13,0.39) (—0.14,0.29)
BLACK 0.75 —0.02 0.11 —0.54 —0.12
(0.50, 1.00) (—0.39,0.35) (—0.40,0.64) (—0.92, -0.14) (—0.47,0.26)
Yi — 2.49 1.94 0.50 0.88
— (2.24,2.73) (0.05,3.79) (—0.28,1.16) (0.20, 1.60)
Y, — — 2.03 —0.58 0.27
— — (1.61,2.50) (—1.92,0.89) (—0.13,0.66)
W1 — — —0.42 — 247
— — (—1.65,0.69) — (2.07,2.85)
)P0 — — —-0.37 — —0.07
— — (—1.18,0.47) — (—0.62,0.48)
YW — — —0.52 — —0.62
— — (—2.34,1.30) — (—1.18, —0.03)
Y3 — — — — —-1.10
— — — — (—3.04, -0.12)

2009), and in contrast to many previous election cycles,
we do not find a significant gender gap in campaign in-
terest.

We next illustrate the P-only approach with multi-
ple imputation. We used the posterior draws of param-
eters to create m = 500 completed data sets of the orig-
inal panel only. We thinned the chains until autocorre-
lations of the parameters were near zero to obtain the
parameter sets. We then estimated marginal probabil-
ities of (Y, ¥3) and a logistic regression for Y3 using
maximum likelihood on only the 2730 original panel
cases, obtaining inferences via Rubin’s (1987) com-
bining rules. For comparison, we estimated the same
quantities using only the 1632 complete cases, that is,
people who completed all three waves.

The estimated marginal probabilities reflect the re-
sults in Table 6. There is little difference in P(Y> = 1)
in the two analyses: the 95% confidence interval is
(0.38,0.42) in the complete cases and (0.37, 0.46) in
the full panel after multiple imputation. However, there
is a suggestion of attrition bias in P(Y3 = 1). The
95% confidence interval is (0.63, 0.67) in the complete

cases and (0.65,0.76) in the full panel after multiple
imputation. The estimated P(Y3 =1| W, =0) =0.78,
suggesting that nonrespondents in the third wave were
substantially more interested in the campaign than re-
spondents.

Table 7 displays the point estimates and 95% confi-
dence intervals for the regression coefficients for both
analyses. The results from the two analyses are quite
similar except for the intercept, which is smaller af-
ter adjustment for attrition. The relationship between a
college education and political interest is somewhat at-
tenuated after correcting for attrition, although the con-
fidence intervals in the two analyses overlap substan-
tially. Thus, despite an apparent attrition bias affecting
the marginal distribution of political interest in wave 3,
the coefficients for this particular complete-case anal-
ysis appear not to be degraded by panel attrition.

Finally, we conclude the analysis with a diagnos-
tic check of the three-wave model following the ap-
proach outlined in Section 3.3. To do so, we generate
500 independent replications of (Y>, ¥3) for each of the
cells in Figure 3 containing observed responses. We
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TABLE 7
Maximum likelihood estimates and 95% confidence intervals
based for coefficients of predictors of Y3 using m = 500 multiple
imputations and only complete cases at final wave

TABLE 8
Posterior predictive probabilities (ppp) based on 500 replicated
data sets and various observed-data quantities. Results include
probabilities for cells with observed data and coefficients in
regression of Y3 on several predictors estimated with complete
cases in the panel

Variable Multiple imputation Complete cases
INT —0.22 (—0.80,0.37) —0.64 (—0.98, —0.31)
AGE1 —0.03 (—0.40,0.34) 0.01 (—0.36,0.37)
AGE2 0.08 (—0.30,0.46) 0.12 (—0.25,0.49)
AGE3 0.74 (0.31, 1.16) 0.76 (0.36, 1.16)
COLLEGE 0.56 (0.27, 0.86) 0.70 (0.43,0.96)
MALE —0.09 (—0.33,0.14) —0.08 (—0.32,0.16)
BLACK 0.07 (—0.38,0.52) 0.05 (—0.43,0.52)
Y 1.39 (0.87,1.91) 1.45 (0.95,1.94)
Y, 2.00 (1.59,2.40) 2.06 (1.67,2.45)
Y 7 —0.33 (—1.08,0.42) —0.36 (—1.12,0.40)

then compare the estimated probabilities for (Y2, ¥3)
in the replicated data to the corresponding probabilities
in the observed data, computing the value of ppp for
each cell. We also estimate the regression from Table 7
with the replicated data using only the complete cases
in the panel, and compare coefficients from the repli-
cated data to those estimated with the complete cases
in the panel. As shown in Table 8, the imputation mod-
els generate data that are highly compatible with the
observed data in the panel and the refreshment sam-
ples on both the conditional probabilities and regres-
sion coefficients. Thus, from these diagnostic checks
we do not have evidence of lack of model fit.

6. CONCLUDING REMARKS

The APYN analyses, as well as the simulations, il-
lustrate the benefits of refreshment samples for diag-
nosing and adjusting for panel attrition bias. At the
same time, it is important to recognize that the ap-
proach alone does not address other sources of non-
response bias. In particular, we treated nonresponse in
wave 1 and the refreshment samples as ignorable. Al-
though this simplifying assumption is the usual prac-
tice in the attrition correction literature (e.g., Hirano
et al., 1998; Bhattacharya, 2008), it is worth question-
ing whether it is defensible in particular settings. For
example, suppose in the APYN survey that people dis-
interested in the campaign chose not to respond to the
refreshment samples, for example, because people dis-
interested in the campaign were more likely to agree
to take part in a political survey one year out than one
month out from the election. In such a scenario, the
models would impute too many interested participants

Quantity Value of ppp

Probabilities observable in original data
Pr(Y, =0) in the 1st refreshment sample 0.84
Pr(Y3 = 0) in the 2nd refreshment sample 0.40
Pr(Y, =0[W;=1) 0.90
Pr(Y3=0W;=1,W=1) 0.98
Pr(Y3 =0[W; =0,W =1) 0.93
Pr(Y,=0,Y3=0W;=1,W=1) 0.98
Pr(Y,=0,Y3=1W; =1, W =1) 0.87
PI‘(Y2=1,Y3=0|W1:],W2=1) 0.92

Coefficients in regression of Y3 on
INT 0.61
AGE1 0.72
AGE2 0.74
AGE3 0.52
COLLEGE 0.89
MALE 0.76
BLACK 0.90
Y, 0.89
Ys 0.84
Y11 0.89

among the panel attriters, leading to bias. Similar is-
sues can arise with item nonresponse not due to attri-
tion.

We are not aware of any published work in which
nonignorable nonresponse in the initial panel or re-
freshment samples is accounted for in inference. One
potential path forward is to break the nonresponse ad-
justments into multiple stages. For example, in stage
one the analyst imputes plausible values for the non-
respondents in the initial wave and refreshment sam-
ple(s) using selection or pattern mixture models de-
veloped for cross-sectional data (see Little and Rubin,
2002). These form a completed data set except for at-
trition and missingness by design, so that we are back
in the setting that motivated Sections 3 and 4. In stage
two, the analyst estimates the appropriate AN model
with the completed data to perform multiple imputa-
tions for attrition (or to use model-based or survey-
weighted inference). The analyst can investigate the
sensitivity of inferences to multiple assumptions about
the nonignorable missingness mechanisms in the ini-
tial wave and refreshment samples. This approach is
related to two-stage multiple imputation (Shen, 2000;
Rubin, 2003; Siddique, Harel and Crespi, 2012)
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More generally, refreshment samples need to be rep-
resentative of the population of interest to be informa-
tive. In many contexts, this requires closed populations
or, at least, populations with characteristics that do not
change over time in unobservable ways. For example,
the persistence effect in the APYN multiple imputation
analysis (i.e., people interested in earlier waves remain
interested in later waves) would be attenuated if people
who are disinterested in the initial wave and would be
S0 again in a later wave are disproportionately removed
from the population after the first wave. Major popula-
tion composition changes are rare in most short-term
national surveys like the APYN, although this could be
more consequential in panel surveys with a long time
horizon or of specialized populations.

We presented model-based and multiple imputation
approaches to utilizing the information in refreshment
samples. One also could use approaches based on in-
verse probability weighting. We are not aware of any
published research that thoroughly evaluates the merits
of the various approaches in refreshment sample con-
texts. The only comparison that we identified was in
Nevo (2003)—which weights the complete cases of the
panel so that the moments of the weighted data equal
the moments in the refreshment sample—who briefly
mentions towards the end of his article that the results
from the weighting approach and the multiple imputa-
tion in Hirano et al. (1998) are similar. We note that
Nevo (2003) too has to make identification assump-
tions about interaction effects in the selection model.

It is important to emphasize that the combined data
do not provide any information about the interaction
effects that we identify as necessary to exclude from
the models. There is no way around making assump-
tions about these effects. As we demonstrated, when
the assumptions are wrong, the additive nonignorable
models could generate inaccurate results. This limi-
tation plagues model-based, multiple imputation and
re-weighting methods. The advantage of including re-
freshment samples in data collection is that they allow
one to make fewer assumptions about the missing data
mechanism than if only the original panel were avail-
able. It is relatively straightforward to perform sensi-
tivity analyses to this separability assumption in two-
wave settings with modest numbers of outcome vari-
ables; however, these sensitivity analyses are likely to
be cumbersome when many coefficients are set to zero
in the constraints, as is the case with multiple outcome
variables or waves.

In sum, refreshment samples offer valuable informa-
tion that can be used to adjust inferences for nonig-
norable attrition or to create multiple imputations for

secondary analysis. We believe that many longitudinal
data sets could benefit from the use of such samples,
although further practical development is needed, in-
cluding methodology for handling nonignorable unit
and item nonresponse in the initial panel and refresh-
ment samples, flexible modeling strategies for high-
dimensional panel data, efficient methodologies for in-
verse probability weighting and thorough comparisons
of them to model-based and multiple imputation ap-
proaches, and methods for extending to more complex
designs like multiple waves between refreshment sam-
ples. We hope that this article encourages researchers
to work on these issues and data collectors to consider
supplementing their longitudinal panels with refresh-
ment samples.
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