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Variational Inference for Generalized Linear
Mixed Models Using Partially Noncentered
Parametrizations
Linda S. L. Tan and David J. Nott

Abstract. The effects of different parametrizations on the convergence of
Bayesian computational algorithms for hierarchical models are well ex-
plored. Techniques such as centering, noncentering and partial noncentering
can be used to accelerate convergence in MCMC and EM algorithms but
are still not well studied for variational Bayes (VB) methods. As a fast de-
terministic approach to posterior approximation, VB is attracting increasing
interest due to its suitability for large high-dimensional data. Use of different
parametrizations for VB has not only computational but also statistical im-
plications, as different parametrizations are associated with different factor-
ized posterior approximations. We examine the use of partially noncentered
parametrizations in VB for generalized linear mixed models (GLMMs). Our
paper makes four contributions. First, we show how to implement an algo-
rithm called nonconjugate variational message passing for GLMMs. Second,
we show that the partially noncentered parametrization can adapt to the quan-
tity of information in the data and determine a parametrization close to opti-
mal. Third, we show that partial noncentering can accelerate convergence and
produce more accurate posterior approximations than centering or noncenter-
ing. Finally, we demonstrate how the variational lower bound, produced as
part of the computation, can be useful for model selection.

Key words and phrases: Variational Bayes, hierarchical centering, varia-
tional message passing, nonconjugate models, longitudinal data analysis.

1. INTRODUCTION

The convergence of Markov chain Monte Carlo
(MCMC) algorithms depends greatly on the choice of
parametrization and simple reparametrizations can of-
ten give improved convergence. Here we investigate
the use of centered, noncentered and partially non-
centered parametrizations of hierarchical models in
the context of variational Bayes (VB) (Attias, 1999).
As a fast deterministic approach to approximation of
the posterior distribution in Bayesian inference, VB
is attracting increasing interest due to its suitability

Linda S. L. Tan is a Ph.D. student and David J. Nott is
Associate Professor, Department of Statistics and Applied
Probability, National University of Singapore, Singapore
117546, Singapore (e-mail:
g0900760@nus.edu.sg; standj@nus.edu.sg).

for large high-dimensional data (see, e.g., Braun and
McAuliffe, 2010; Hoffman et al., 2012). VB methods
approximate the intractable posterior by a factorized
distribution which can be represented by a directed
graph and optimization of the factorized variational
posterior can be decomposed into local computations
that involve only neighboring nodes. Variational mes-
sage passing (Winn and Bishop, 2005) is an algo-
rithmic implementation of VB that can be applied
to a general class of conjugate-exponential models
(Attias, 2000; Ghahramani and Beal, 2001). Knowles
and Minka (2011) proposed an algorithm called a non-
conjugate variational message passing to extend varia-
tional message passing to nonconjugate models.

We examine the use of partially noncentered param-
etrization in VB for generalized linear mixed mod-
els (GLMMs). Our paper makes four contributions.
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First, we show how to implement nonconjugate varia-
tional message passing for GLMMs. Second, we show
that the partially noncentered parametrization is able
to adapt to the quantity of information in the data so
that it is not necessary to make a choice in advance be-
tween centering and noncentering with the data decid-
ing the optimal parametrization. Third, we show that in
addition to accelerating convergence, partial noncen-
tering is a good strategy statistically for VB in terms of
producing more accurate approximations to the poste-
rior than either centering or noncentering. Finally, we
demonstrate how the variational lower bound, which is
produced as part of the computation, can be useful for
model selection.

GLMMs extend generalized linear models by the in-
clusion of random effects to account for correlation of
observations in grouped data and are of wide applica-
bility. Estimation of GLMMs using maximum likeli-
hood is challenging, as the integral over random effects
is intractable. Methods involving numerical quadra-
ture or MCMC to approximate these integrals are
computationally intensive. Various approximate meth-
ods such as penalized quasi-likelihood (Breslow and
Clayton, 1993), Laplace approximation and its exten-
sion (Raudenbush, Yang and Yosef, 2000) and Gaus-
sian variational approximation (Ormerod and Wand,
2012) have been developed. Fong, Rue and Wake-
field (2010) considered a Bayesian approach using in-
tegrated nested Laplace approximations. We show how
to fit GLMMs using nonconjugate variational message
passing, focusing on Poisson and logistic mixed mod-
els and their applications in longitudinal data analysis.

The literature on parametrization of hierarchical
models including partial noncentering techniques for
accelerating MCMC algorithms is inspired by ear-
lier similar work for the expectation maximization
(EM) algorithm (see Meng and van Dyk, 1997, 1999;
Liu and Wu, 1999). Gelfand, Sahu and Carlin (1995,
1996) proposed hierarchical centering for normal lin-
ear mixed models and GLMMs to improve the slow
mixing in MCMC algorithms due to high correla-
tions between model parameters. Papaspiliopoulos,
Roberts and Sköld (2003, 2007) demonstrated that
centering and noncentering play complementary roles
in boosting MCMC efficiency and neither are uni-
formly effective. They considered the partially non-
centered parametrization which is data dependent
and lies on the continuum between the centered and
noncentered parametrizations. Extending this idea,
Christensen, Roberts and Sköld (2006) devised re-
parametrization techniques to improve performance for

Hastings-within Gibbs algorithms for spatial GLMMs.
Yu and Meng (2011) introduced a strategy for boosting
MCMC efficiency via interweaving the centered and
noncentered parametrizations to reduce dependence
between draws. Parameter-expanded VB methods were
proposed by Qi and Jaakkola (2006) to reduce coupling
in updates and speed up VB.

The idea of partial noncentering is to introduce a
tuning parameter via reparametrization of the model
and then seek its optimal value for fastest convergence.
For the normal hierarchical model, Papaspiliopoulos,
Roberts and Sköld (2003) showed that the partially
noncentered parametrization has convergence proper-
ties superior to that of the centered and noncentered
parametrizations for the Gibbs sampler. As the rate of
convergence of an algorithm based on VB is equal to
that of the corresponding Gibbs sampler when the tar-
get distribution is Gaussian (Tan and Nott, 2013), par-
tial noncentering will similarly outperform centering
and noncentering in the context of VB for the normal
hierarchical model. This provides motivation to con-
sider partial noncentering in the VB context. We illus-
trate this idea with the following example.

1.1 Motivating Example: Linear Mixed Model

Consider the linear mixed model

yi = Xiβ + Xiui + εi,
(1)

εi ∼ N
(
0, σ 2I

)
, i = 1, . . . , n,

where yi is a vector of length ni , β is a vector of length
r of fixed effects, Xi is a ni × r matrix of covariates
and ui is a vector of length r of random effects inde-
pendently distributed as N(0,D). For simplicity, we
specify a constant prior on β and assume σ 2 and D are
known. Let

αi = β + ui and α̃i = αi − Wiβ, i = 1, . . . , n,

where Wi is an r × r tuning matrix to be specified.
Wi = 0 corresponds to the centered and Wi = I to the
noncentered parametrization. For each i = 1, . . . , n,

yi = XiWiβ + Xiα̃i + εi

and

α̃i ∼ N
(
(I − Wi)β,D

)
.

This is the partially noncentered parametrization and
the set of unknown parameters is θ = {β, α̃}, where
α̃ = [α̃T

1 , . . . , α̃T
n ]T . Let y = [y1, . . . , yn]T denote the

observed data. Of interest is the posterior distribution
of θ , p(θ |y).
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Initialize μ
q

α̃i
and �

q

α̃i
for i = 1, . . . , n.

Cycle:
�

q
β ← [∑n

i=1{(I − Wi)
T D−1(I − Wi) + 1

σ 2 WT
i XT

i XiWi}]−1

μ
q
β ← �

q
β

∑n
i=1[ 1

σ 2 WT
i XT

i yi + {D−1(I − Wi) − 1
σ 2 XT

i XiWi}T μ
q

α̃i
]

For i = 1, . . . , n,
�

q

α̃i
← (D−1 + 1

σ 2 XT
i Xi)

−1

μ
q

α̃i
← �

q

α̃i
[ 1
σ 2 XT

i yi + {D−1(I − Wi) − 1
σ 2 XT

i XiWi}μq
β]

until convergence.

ALGORITHM 1. Iterative scheme for obtaining variational parameters in linear mixed model.

Suppose p(θ |y) is not analytically tractable. In the
variational approach, we approximate p(θ |y) by a q(θ)

for which inference is more tractable and q(θ) is cho-
sen to minimize the Kullback–Leibler divergence be-
tween q(θ) and p(θ |y) given by∫

q(θ) log
q(θ)

p(θ |y)
dθ =

∫
q(θ) log

q(θ)

p(y, θ)
dθ

+ logp(y),

where p(y) is the marginal likelihood p(y) = ∫
p(y|

θ)p(θ)dθ . Since the Kullback–Leibler divergence is
nonnegative,

logp(y) ≥
∫

log
p(y, θ)

q(θ)
q(θ)dθ

= Eq

{
logp(y, θ)

} − Eq

{
logq(θ)

}
(2)

= L,

where L is a lower bound on the log marginal like-
lihood. Maximization of L is equivalent to mini-
mization of the Kullback–Leibler divergence between
q(θ) and p(θ |y). In VB, q(θ) is assumed to be of
a factorized form, say, q(θ) = ∏m

i=1 qi(θi) for some
partition {θ1, . . . , θm} of θ . Maximization of L over
each of q1, . . . , qm lead to optimal densities satisfying
qi(θi) ∝ exp{E−θi

logp(y, θ)}, i = 1, . . . ,m, where
E−θi

denotes expectation with respect to the density∏
j �=i qj (θj ). See Ormerod and Wand (2010) for an ex-

planation of variational approximation methods very
accessible to statisticians.

If we apply VB to (1) and approximate the poste-
rior p(θ |y) with q(θ) = q(β)q(α̃), the optimal den-
sities can be derived to be q(β) = N(μ

q
β,�

q
β) and

q(α̃) = ∏n
i=1 q(α̃i), where q(α̃i) = N(μ

q

α̃i
,�

q

α̃i
). The

expressions for the variational parameters μ
q
β , �

q
β and

μ
q

α̃i
, �

q

α̃i
, i = 1, . . . ,m, are, however, dependent on

each other and can be computed by an iterative scheme
such as that given in Algorithm 1.

Observe that Algorithm 1 converges in one iteration
if D−1(I − Wi) = 1

σ 2 XT
i XiWi for each i, that is, if

Wi =
(

1

σ 2 XT
i Xi + D−1

)−1

D−1

(3)
for i = 1, . . . , n.

For this specification of the tuning parameters, partial
noncentering gives more rapid convergence than cen-
tering or noncentering. Moreover, it can be shown that
the true posteriors are recovered in this partially non-
centered parametrization so that a better fit is achieved
than in the centered or noncentered parametrizations.
This example suggests that with careful tuning of Wi ,
i = 1, . . . , n, the partially noncentered parametrization
can potentially outperform the centered and noncen-
tered parametrizations in the VB context.

The rest of the paper is organized as follows. Sec-
tion 2 specifies the GLMM and priors used. Section 3
describes the partially noncentered parametrization for
GLMMs. Section 4 describes the nonconjugate varia-
tional message passing algorithm for fitting GLMMs.
Section 5 discusses briefly the use of the variational
lower bound for model selection and Section 6 consid-
ers examples including real and simulated data. Sec-
tion 7 concludes.

2. THE GENERALIZED LINEAR MIXED MODEL

Consider clustered data where yij denotes the j th
response from cluster i, i = 1, . . . , n, j = 1, . . . , ni .
Conditional on the r-dimensional random effects ui

drawn independently from N(0,D), yij is indepen-
dently distributed from some exponential family dis-
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tribution with density

f (yij |ui) = exp
{
yij ζij − b(ζij )

a(φ)
+ c(yij , φ)

}
,(4)

where ζij is the canonical parameter, φ is the disper-
sion parameter, and a(·), b(·) and c(·) are functions
specific to the family. The conditional mean of yij ,
μij = E(yij |ui), is assumed to depend on the fixed and
random effects through the linear predictor,

ηij = XR
ij

T
βR + XG

ij

T
βG + XR

ij

T
ui

with g(μij ) = ηij for some known link function, g(·).
Here, XR

ij and Xij = [XR
ij

T
,XG

ij

T ]T are r × 1 and

p × 1 vectors of covariates and β = [βRT
,βGT ]T is

a p × 1 vector of fixed effects. We considered the
above breakdown (see Zhao et al., 2006) for the lin-
ear predictor to allow for centering. For the ith clus-
ter, let yi = [yi1, . . . , yini

]T , XR
i = [XR

i1, . . . ,X
R
ini

]T ,

XG
i = [XG

i1, . . . ,X
G
ini

]T , Xi = [Xi1, . . . ,Xini
]T and

ηi = [ηi1, . . . , ηini
]T . Let 1ni

denote the ni × 1 col-
umn vector with all entries equal to 1. We assume that
the first column of XR

i is 1ni
if XR

i is not a zero matrix.
For Bayesian inference, we specify prior distributions
on the fixed effects β and random effects covariance
matrix D. In this paper, we focus on responses from
the Bernoulli and Poisson families and the dispersion
parameter is one in these cases, so we do not consider
a prior for φ. We assume a diffuse prior, N(0,�β), for
β and an independent inverse Wishart prior, IW(ν, S),
for D. Following the suggestion by Kass and Natarajan
(2006), we set ν = r and let the scale matrix S be de-
termined from first-stage data variability. In particular,
S = rR̂, where

R̂ = c

(
1

n

n∑
i=1

XR
i

T
Mi(β̂)XR

i

)−1

,(5)

Mi(β̂) denotes the ni × ni diagonal generalized linear
model weight matrix with diagonal elements [φv(μ̂ij ) ·
g′(μ̂ij )

2]−1, v(·) is the variance function based on
f (·) in (4) and g(·) is the link function. Here, μ̂ij =
g−1(XT

ij β̂ + XR
ij

T
ûi), where ûi is set as 0 for all i and

β̂ is an estimate of the regression coefficients from the
generalized linear model obtained by pooling all data
and setting ui = 0 for all i. The value of c is an inflation
factor representing the amount by which within-cluster
variability should be increased in determining R̂. We
used c = 1 in all examples.

3. A PARTIALLY NONCENTERED
PARAMETRIZATION FOR THE GENERALIZED

LINEAR MIXED MODEL

We introduce the following partially noncentered
parametrization for the GLMM. For each i = 1, . . . , n,
the linear predictor is ηi = XR

i βR + XG
i βG + XR

i ui .
Let

XG
i βG = X

G1
i βG1 + X

G2
i βG2

= 1ni
x

G1
i

T
βG1 + X

G2
i βG2,

where βG1 is a vector of length g1 consisting of all
parameters corresponding to subject specific covariates
(i.e., the rows of X

G1
i are all the same and equal to the

vector x
G1
i say). Recall that the first column of XR

i is
1ni

if XR
i is not a zero matrix. We have

ηi = XR
i

(
Ciβ

RG1 + ui

) + X
G2
i βG2,

where

Ci =
⎡
⎣ x

G1
i

T

Ir

0

⎤
⎦ and βRG1 =

[
βR

βG1

]
.

Let αi = Ciβ
RG1 + ui and α̃i = αi − WiCiβ

RG1 ,
where Wi is an r × r matrix to be specified. The
proportion of Ciβ

RG1 subtracted from each αi is al-
lowed to vary with i as in Papaspiliopoulos, Roberts
and Sköld (2003) to reflect the varying informativity of
each response yi about the underlying αi . Wi = 0 cor-
responds to the centered and Wi = I to the noncentered
parametrization. Finally,

ηi = XR
i

(
α̃i + WiCiβ

RG1
) + X

G2
i βG2

(6)
= Viβ + XR

i α̃i,

where Vi = [XR
i WiCi X

G2
i ] and α̃i ∼ N((I − Wi) ·

Ciβ
RG1,D). We refer to (6) as the partially noncen-

tered parametrization. Let α̃ = [α̃T
1 , . . . , α̃T

n ]T and θ =
{β,D, α̃} denote the set of unknown parameters in the
GLMM. The joint distribution of p(y, θ) is

p(y, θ) =
{

n∏
i=1

p(yi |β, α̃i)p(α̃i |β,D)

}

(7)
· p(β|�β)p(D|ν,S).

Figure 1 shows the factor graph for p(y, θ) where there
is a node (circle) for every variable, which is shaded in
the case of observed variables, and a node (filled rect-
angle) for each factor in the joint distribution. Con-
stants or hyperparameters are denoted with smaller
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FIG. 1. Factor graph for p(y, θ) in (7). Filled rectangles de-
note factors and circles denote variables (shaded for observed vari-
ables). Smaller filled circles denote constants or hyperparameters.
The box represents a plate which contains variables and factors to
be replicated. Number of repetitions is indicated in the lower right
corner.

filled circles. Each factor node is connected by undi-
rected links to all of the variable nodes on which that
factor depends (see Bishop, 2006). Next, we consider
specification of the tuning parameter Wi , referring to
the linear mixed model example in Section 1.1 which
is a special case of the GLMM in (4) with an identity
link.

3.1 Specification of Tuning Parameter

It is interesting to note that for the linear mixed
model in (1), the expression for Wi leading to optimal
performance in VB and the Gibbs sampling algorithm
is exactly the same (see Papaspiliopoulos, Roberts and
Sköld, 2003). Gelfand, Sahu and Carlin (1995) also
observed the importance of Wi in assessing conver-
gence properties of the centered parametrization. They
showed that |Wi | < 1 for all i and |Wi | is close to zero
(centering is more efficient) when the generalized vari-
ance |D| is large. On the other hand, |Wi | is close to 1
(noncentering works better) when the error variance is
large. Outside the Gaussian context, Papaspiliopoulos,
Roberts and Sköld (2003) considered partial noncen-
tering for the spatial GLMM and specified the tuning
parameters by using a quadratic expansion of the log-
likelihood to obtain an indication of the information
present in yi . Observe that Wi in (3) can be expressed
as

Wi = (
If + D−1)−1

D−1,(8)

if � = logp(yi |β,αi) denotes the log-likelihood and

If = − ∂2�

∂αi ∂αT
i

. We use (8) to extend partially non-

centered parametrizations to GLMMs and consider the
specification of Wi for responses from the Bernoulli
and Poisson families in particular.

Recall that the linear predictor ηi can be expressed
as XR

i αi + X
G2
i βG2 . For Poisson responses with the

log link function, we allow for an offset logEij so that
logμij = logEij + ηij . Let Ei = [Ei1, . . . ,Eini

]T . We
have

� = yT
i (logEi + ηi) − ET

i exp(ηi)

− 1T
ni

log(yi !) and(9)

If =
ni∑

j=1

Eij exp(ηij )X
R
ijX

R
ij

T ≈
ni∑

j=1

yijX
R
ijX

R
ij

T
,

if we approximate the conditional mean μij with the
response. For Bernoulli responses with the logit link
function, we have

� = yT
i ηi − 1T

ni
log

{
1ni

+ exp(ηi)
}

and
(10)

If =
ni∑

j=1

exp(ηij )

{1 + exp(ηij )}2 XR
ijX

R
ij

T
.

The specification of Wi depends on the random effects
covariance D and, for Bernoulli responses, on the lin-
ear predictor ηi as well. In Algorithm 3, we initialize
Wi by considering ηi = Xiβ + XR

i ui and using esti-
mates of D, β and ui from penalized quasi-likelihood.
Subsequently, we can either keep Wi as fixed or up-
date them by replacing D with Sq

νq−r−1 , assuming the
variational posterior of D is IW(νq, Sq) and ηi with
Viμ

q
β + XR

i μ
q

α̃i
, where μ

q
β and μ

q

α̃i
are the variational

posterior means of β and α̃i , respectively. This can be
done at the beginning of each iteration after new esti-
mates of μ

q
β , μ

q

α̃i
, νq and Sq are obtained (see Algo-

rithm 3 step 1).

4. VARIATIONAL INFERENCE FOR GLMMS

In this section we present the nonconjugate varia-
tional message passing algorithm recently developed
in machine learning by Knowles and Minka (2011)
for fitting GLMMs. Recall that in VB, the posterior
distribution p(θ |y) is approximated by a q(θ) which
is assumed to be of a factorized form, say, q(θ) =∏m

i=1 qi(θi) for some partition {θ1, . . . , θm} of θ . For
conjugate-exponential models, the optimal densities qi

will have the same form as the prior so that it suffices
to update the parameters of qi , such as in Algorithm 1.
Variational message passing (Winn and Bishop, 2005)
is an algorithm which allows VB to be applied to
conjugate-exponential models without having to derive
application-specific updates. In the case of GLMMs
where the responses are from the Bernoulli or Poisson
families, the factor p(yi |β, α̃i) of p(y, θ) in (7) is non-
conjugate with respect to the prior distributions over
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β and α̃i for each i = 1, . . . , n. Therefore, if we apply
VB and assume, say, q(θ) = q(β)q(D)

∏n
i=1 q(α̃i), the

optimal densities for q(β) and q(α̃i) will not belong to
recognizable density families.

4.1 Nonconjugate Variational Message Passing

In nonconjugate variational message passing, be-
sides assuming that q(θ) must factorize into∏m

i=1 qi(θi) for some partition {θ1, . . . , θm} of θ , we
impose another restriction that each qi must belong to
some exponential family. In this way, we only have to
find the parameters of each qi that maximizes the lower
bound L. Suppose each qi can be written in the form

qi(θi) = exp
{
λT

i t (θi) − h(λi)
}
,

where λi is the vector of natural parameters and t (·) are
the sufficient statistics. We wish to maximize L with
respect to the variational parameters λ1, . . . , λm which
are also natural parameters of q1(θ1), . . . , qm(θm), re-
spectively. In the following, we show that nonconju-
gate variational message passing can be interpreted as
a fixed-point iteration where updates are obtained from
the condition that the gradient of L with respect to each
λi is zero when L is maximized.

From (2), the gradient of L with respect to λi is

∂L
∂λi

= ∂

∂λi

Eq

{
logp(y, θ)

} − ∂

∂λi

Eq

{
logq(θ)

}
.(11)

Let us consider the first term in (11). Suppose p(y,

θ) = ∏
a fa(y, θ). We have

Eq

{
logp(y, θ)

} = ∑
a

Sa,

where

Sa = Eq

{
logfa(y, θ)

}
.

Note that each Sa is a function of the natural parame-
ters λ1, . . . , λm. Since we have assumed that θi is inde-
pendent of all θj where j �= i in the variational approx-
imation q , the only terms in

∑
a Sa which depend on λi

are the factors fa connected to θi in the factor graph of
p(y, θ). Therefore,

∂

∂λi

Eq

{
logp(y, θ)

} = ∑
a∈N(θi)

∂Sa

∂λi

,(12)

where the summation is over all factors in N(θi), the
neighborhood of θi in the factor graph. For the second
term in (11), we have

Eq

{
logq(θ)

} =
m∑

l=1

Eq

{
logql(θl)

}
,

where the only term in the sum that depends on λi is
the ith term. Hence,

∂

∂λi

Eq

{
logq(θ)

} = ∂

∂λi

{
λT

i

∂h(λi)

∂λi

− h(λi)

}
(13)

= V(λi)λi,

where we have used the fact that Eq{t (θi)} = ∂h(λi)
∂λi

and V(λi) = ∂2h(λi)

∂λi ∂λT
i

denotes the variance–covariance

matrix of t (θi). Note that V(λi) is symmetric positive
semi-definite. Putting (12) and (13) together, the gradi-
ent of the lower bound is

∂L
∂λi

= ∑
a∈N(θi)

∂Sa

∂λi

− V(λi)λi

and is zero when λi = V(λi)
−1 ∑

a∈N(θi)
∂Sa

∂λi
, provided

V(λi) is invertible. This condition is used to obtain up-
dates to λi in nonconjugate variational message pass-
ing (Algorithm 2).

The updates can be simplified when the factor fa

is conjugate to qi(θi), that is, fa has the same func-
tional form as qi(θi) with respect to θi . Let θ−i =
(θ1, . . . , θi−1, θi+1, . . . , θm). Suppose

fa(y, θ) = exp
{
ga(y, θ−i)

T t (θi) − ha(y, θ−i)
}
.

Then ∂Sa

∂λi
= V(λi)Eq{ga(y, θ−i)}, where Eq{ga(y,

θ−i )} does not depend on λi . When every factor in
the neighborhood of θi is conjugate to qi(θi), the
gradient of the lower bound can be simplified to
V(λi)[∑a∈N(θi)

Eq{ga(y, θ−i)} − λi] and the updates
in nonconjugate variational message passing reduce to

λi ← ∑
a∈N(θi)

Eq

{
ga(y, θ−i)

}
.(14)

These are precisely the updates in variational mes-
sage passing. Nonconjugate variational message pass-
ing thus reduces to variational message passing for
conjugate factors (see also Knowles and Minka, 2011).
Unlike variational message passing, however, the

Initialize λi for i = 1, . . . ,m.
Cycle:

For i = 1, . . . ,m,
λi ← V(λi)

−1 ∑
a∈N(θi)

∂Sa

∂λi

until convergence.

ALGORITHM 2. Nonconjugate variational message passing.
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Kullback–Leibler divergence is not guaranteed to de-
crease at each step and sometimes convergence prob-
lems may be encountered. Knowles and Minka (2011)
suggested using damping to fix convergence problems.
We did not encounter any convergence problems in the
examples considered in this paper.

4.2 Updates for Multivariate Gaussian Variational
Distribution

Suppose qi is Gaussian. While the updates in Algo-
rithm 2 are expressed in terms of the natural param-
eters λi , it might be more convenient to express ∂Sa

∂λi

in terms of the mean and covariance of qi . Knowles
and Minka (2011) have considered the univariate case
and Wand (2013) derived fully simplified updates for
the multivariate case. However, as Wand (2013) is in
preparation, we give enough details of the update so
that the derivation can be understood. Magnus and
Neudecker (1988) is a good reference for the matrix
differential calculus techniques used in the derivation.

Suppose qi(θi) = N(μ
q
θi
,�

q
θi
) where θi is a vector of

length d . For a d × d square matrix A, vec(A) denotes
the d2 × 1 vector obtained by stacking the columns of
A under each other, from left to right in order, and
vech(A) denotes the 1

2d(d + 1) × 1 vector obtained
from vec(A) by eliminating all supradiagonal elements
of A. We can write qi(θi) as

exp
{
λT

i

[
vech

(
θiθ

T
i

)
θi

]
− h(λi)

}

where

λi =
[−1

2DT
d vec

(
�

q
θi

−1)
�

q
θi

−1
μ

q
θi

]

and h(λi) = 1
2μ

q
θi

T
�

q
θi

−1
μ

q
θi

+ 1
2 log|�q

θi
|+ d

2 log(2π).

The matrix Dd is a unique d2 × 1
2d(d + 1) matrix

that transforms vech(A) into vec(A) if A is sym-
metric, that is, Dd vech(A) = vec(A). Let D+

d denote
the Moore–Penrose inverse of Dd . If we let λi1 =
−1

2DT
d vec(�q

θi

−1
) and λi2 = �

q
θi

−1
μ

q
θi

, ∂Sa

∂λi
can be ex-

pressed as⎡
⎢⎢⎣

∂Sa

∂λi1
∂Sa

∂λi2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

∂ vec(�q
θi
)

∂λi1

∂μ
q
θi

∂λi1

∂ vec(�q
θi
)

∂λi2

∂μ
q
θi

∂λi2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

∂Sa

∂ vec(�q
θi
)

∂Sa

∂μ
q
θi

⎤
⎥⎥⎥⎦

= U(λi)

⎡
⎢⎢⎢⎣

∂Sa

∂ vec(�q
θi
)

∂Sa

∂μ
q
θi

⎤
⎥⎥⎥⎦ ,

where

U(λi) =
[

2D+
d

(
�

q
θi

⊗ �
q
θi

)
2D+

d

(
μ

q
θi

⊗ �
q
θi

)
0 �

q
θi

]

and ⊗ denotes the Kronecker product. Moreover,

V(λi) = ∂2h(λi)

∂λi ∂λT
i

can be derived to be

⎡
⎢⎢⎢⎢⎢⎣

2D+
d

(
μ

q
θi
μ

q
θi

T ⊗ �
q
θi

+ �
q
θi

⊗ μ
q
θi
μ

q
θi

T
2D+

d

(
μ

q
θi

⊗ �
q
θi

)
+ �

q
θi

⊗ �
q
θi

)
D+

d

T{
2D+

d

(
μ

q
θi

⊗ �
q
θi

)}T
�

q
θi

⎤
⎥⎥⎥⎥⎥⎦ .

The update for λi can be computed as

λi ← V(λi)
−1U(λi)

∑
a∈N(θi)

⎡
⎢⎢⎢⎣

∂Sa

∂ vec(�q
θi
)

∂Sa

∂μ
q
θi

⎤
⎥⎥⎥⎦

and

V(λi)
−1U(λi) =

[
DT

d 0

−2
(
μ

q
θi

T ⊗ I
)
D+

d

T
DT

d I

]
.

Wand (2013) showed that the updates simplify to

�
q
θi

← −1

2

[
vec−1

( ∑
a∈N(θi)

∂Sa

∂ vec(�q
θi
)

)]−1

and

(15)

μ
q
θi

← μ
q
θi

+ �
q
θi

∑
a∈N(θi)

∂Sa

∂μ
q
θi

.

A more detailed version of the argument will be given
in the forthcoming manuscript of Wand (2013).

4.3 Nonconjugate Variational Message Passing
Algorithm for Generalized Linear Mixed Models

For the GLMM, we consider a variational approxi-
mation of the form

q(θ) = q(β)q(D)

n∏
i=1

q(α̃i),(16)

where q(β) is N(μ
q
β,�

q
β), q(D) is IW(νq, Sq), and

q(α̃i) is N(μ
q

α̃i
,�

q

α̃i
), all belonging to the exponential

family. Here, we approximate the posterior distribu-
tions of β and α̃i by Gaussian distributions which are
often reasonable and supported by the asymptotic nor-
mality of the posterior. Our results also indicate that
Gaussian approximation performs reasonably well as
an approximation to the posterior in finite samples. See
Gelman et al. (2004) for further discussion and coun-
terexamples. The posterior distribution for D is ap-
proximated by an inverse Wishart which can be shown
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Initialize μ
q
β , �

q
β , Sq and μ

q

α̃i
, �

q

α̃i
, Wi for i = 1, . . . , n and set νq = n + ν.

Cycle:
1. Update Wi and hence Vi for i = 1, . . . , n. (Optional)
2. �

q
β ← (�−1

β + νq ∑n
i=1 W̃T

i Sq−1W̃i + ∑n
i=1

∑ni

j=1 FijVijV
T
ij )−1

μ
q
β ← μ

q
β + �

q
β{−�−1

β μ
q
β + νq ∑n

i=1 W̃T
i Sq−1(μ

q

α̃i
− W̃iμ

q
β) + ∑n

i=1 V T
i (yi − Gi)}

3. For i = 1, . . . , n,

�
q

α̃i
← (νqSq−1 + ∑ni

j=1 FijX
R
ijX

R
ij

T
)−1

μ
q

α̃i
← μ

q

α̃i
+ �

q

α̃i
{−νqSq−1(μ

q

α̃i
− W̃iμ

q
β) + XR

i

T
(yi − Gi)}

4. Sq ← S + ∑n
i=1{(μq

α̃i
− W̃iμ

q
β)(μ

q

α̃i
− W̃iμ

q
β)T + �

q

α̃i
+ W̃i�

q
βW̃T

i }
until the absolute relative change in the lower bound L is negligible.

ALGORITHM 3. Nonconjugate variational message passing for fitting GLMMs.

to be the optimal density under only the VB assump-
tion q(θ) = q(β)q(D)q(α̃). The nonconjugate varia-
tional message passing algorithm for GLMMs is out-
lined in Algorithm 3.

In Algorithm 3, for each i = 1, . . . , n, j = 1, . . . , ni ,
W̃i = [(I −Wi)Ci 0r×(p−r−g1)], κij is the j th compo-
nent of κi = exp{Viμ

q
β + XR

i μ
q

α̃i
+ 1

2 diag(Vi�
q
βVi

T +
XR

i �
q

α̃i
XR

i

T
)}, μij is the j th component of μi =

Viμ
q
β + XR

i μ
q

α̃i
, σij is the j th component of σi =√

diag(Vi�
q
βV T

i + XR
i �

q

α̃i
XR

i

T
) and B(r)(μ,σ ) =∫ ∞

−∞ b(r)(σx + μ) 1√
2π

e−x2
dx where b(x) = log(1 +

ex) and b(r)(x) denotes the r th derivative of b(·) with
respect to x. If μ and σ are vectors, say,

μ =
⎡
⎣ 1

2
3

⎤
⎦ and σ =

⎡
⎣ 4

5
6

⎤
⎦ ,

then

B(r)(μ,σ ) =
⎡
⎣B(r)(1,4)

B(r)(2,5)

B(r)(3,6)

⎤
⎦ .

In addition,

Fij =
{

Eijκij , if Poisson,

B(2)(μij , σij ), if logistic,

and

Gi =
{

Ei 
 κi, if Poisson,
B(1)(μi, σi), if logistic,

where a 
 b denotes the element-wise product of two
vectors, a and b.

The updates in Algorithm 3 can be obtained from
the formulae in (14) and (15). Consider the param-
eters νq and Sq of q(D). The factors connected to
D are p(D|ν,S) and p(α̃i |β,D), i = 1, . . . , n, which
are all conjugate factors. Therefore, updates for q(D)

can be obtained from (14) or by setting q(D) ∝
exp{E−D logp(y, θ)} as in VB. The shape parameter
νq can be shown to be deterministic: νq = n+ν and the
update for Sq is given in step 4 of Algorithm 3. The up-
dates of the parameters of q(β) and q(α̃i), i = 1, . . . , n,
have to be computed using (15), as p(yi |β, α̃i) con-
nected to β and α̃i is a nonconjugate factor. The fac-
tors connected to β are p(β|�β), p(α̃i |β,D) and
p(yi |β, α̃i), i = 1, . . . , n (see Figure 1). Let Sβ =
Eq{logp(β|�β)}, Sα̃i

= Eq{logp(α̃i |β,D)} and Syi
=

Eq{logp(yi |β, α̃i)}, i = 1, . . . , n, where Eq denotes
expectation with respect to q . We have

∑
a∈N(β)

∂Sa

∂ vec(�q
β)

= ∂Sβ

∂ vec(�q
β)

+
n∑

i=1

∂Sα̃i

∂ vec(�q
β)

+
n∑

i=1

∂Syi

∂ vec(�q
β)

,

∑
a∈N(β)

∂Sa

∂μ
q
β

= ∂Sβ

∂μ
q
β

+
n∑

i=1

∂Sα̃i

∂μ
q
β

+
n∑

i=1

∂Syi

∂μ
q
β

,

and the simplified updates for �
q
β and μ

q
β are given

in step 2 of Algorithm 3. The factors connected to α̃i

are p(α̃i |β,D) and p(yi |β, α̃i) for i = 1, . . . , n (see
Figure 1). Hence,

∑
a∈N(α̃i )

∂Sa

∂ vec(�q

α̃i
)

= ∂Sα̃i

∂ vec(�q

α̃i
)

+ ∂Syi

∂ vec(�q

α̃i
)
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and

∑
a∈N(α̃i )

∂Sa

∂μ
q

α̃i

= ∂Sα̃i

∂μ
q

α̃i

+ ∂Syi

∂μ
q

α̃i

.

The simplified updates for �
q

α̃i
and μ

q

α̃i
are given in

step 3 of Algorithm 3. See Appendix A for the eval-
uation of Sβ , Sα̃i

and Syi
. All gradients can be com-

puted using vector differential calculus (see Magnus
and Neudecker, 1988).

For responses from the Poisson family, Syi
can be

evaluated in closed form. However, Syi
cannot be eval-

uated analytically for Bernoulli responses. Knowles
and Minka (2011) discussed several alternatives in han-
dling this integral. One could construct a bound on
log(1 + ex) such as the “quadratic” bound (Jaakkola
and Jordan, 2000) or the “tilted” bound (Saul and Jor-
dan, 1998). We observed a negative bias in the esti-
mates for the random effects variances when using the
“tilted bound” in Algorithm 3. This negative bias de-
creases as the cluster size increases (see also Rijmen
and Vomlel, 2008). Hence, we use quadrature to com-
pute the expectation and gradients. Following Ormerod
and Wand (2012), we reduce all high-dimensional in-
tegrals to univariate ones and evaluate these efficiently
using adaptive Gauss–Hermite quadrature (Liu and
Pierce, 1994). The details are given in Appendix B.

While the updates in Algorithm 1 can be simpli-
fied if Wi = I (noncentered) or 0 (centered) and are
more complex in the partially noncentered case, the
reduction in efficiency is minimal. Moreover, with a
good initialization, it is feasible to keep Wi as fixed
throughout the course of running Algorithm 3 so that
no additional computation time is used in updating Wi .
We use the fit from penalized quasi-likelihood imple-
mented via the function glmmPQL() in the R package
MASS (Venables and Ripley, 2002) to initialize Algo-
rithm 3. In our experiments, the lower bound computed
at the end of each cycle of updates is usually on an in-
creasing trend although there might be some instabil-
ity at the beginning. In cases where the algorithm does
not converge, we found that changing the initialization
can help to alleviate the situation. Although the lower
bound is not guaranteed to increase at the end of each
cycle, we continue to use it as a means of monitor-
ing convergence and Algorithm 3 is terminated when
the absolute relative change in the lower bound is less
than 10−6. The lower bounds for the logistic and Pois-
son GLMMs are presented in Appendix A.

5. MODEL SELECTION BASED ON VARIATIONAL
LOWER BOUND

At the point of convergence of Algorithm 3, the
lower bound on the log marginal likelihood, logp(y),
is maximized. This variational lower bound is often
tight and can be useful for model selection. Bayesian
model selection is traditionally based on computa-
tion of Bayes factor in which marginal likelihood
plays an important role. Suppose there are k candi-
date models, M1, . . . ,Mk . Let p(Mj) and p(y|Mj)

denote the prior probability and marginal likelihood of
model Mj , respectively. To compare any two models,
say, Mi and Mj , consider the posterior odds in favor of
model Mi :

p(Mi |y)

p(Mj |y)
= p(Mi)p(y|Mi)

p(Mj)p(y|Mj)
.

The ratio of the marginal likelihoods, p(y|Mi)
p(y|Mj)

, is the
Bayes factor and can be considered as the strength of
evidence provided by the data in favor of model Mi

over Mj . Therefore, model comparison can be per-
formed using marginal likelihoods once a prior has
been specified on the models. See O’Hagan and Forster
(2004) for a review of Bayes factors and alternative
methods for Bayesian model choice. In Section 6.4,
we demonstrate how the variational lower bound, a by-
product of Algorithm 3, can be used in place of the
log marginal likelihood to obtain approximate pos-
terior model probabilities, assuming all models con-
sidered are equally probable. Formerly, Corduneanu
and Bishop (2001) verified through experiments and
comparisons with cross-validation that the variational
lower bound is a good score for model selection in
Gaussian mixture models.

We note that standard model selection criteria such
as AIC or BIC are difficult to apply to GLMMs,
as it is not straightforward to determine the degrees
of freedom of a GLMM. Yu and Yau (2012) devel-
oped a conditional Akaike information criterion for
GLMMs which takes into account estimation uncer-
tainty in variance component parameters. Overstall
and Forster (2010) considered a default strategy for
Bayesian model selection addressing issues of prior
specification and computation. See also Cai and Dun-
son (2008) for a review of variable selection methods
for GLMMs.

6. EXAMPLES

We investigate the performance of Algorithm 3 using
different parametrizations by considering a simulation
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study and some real data sets. When using partial non-
centering, we can either initialize the tuning parame-
ters, Wi for i = 1, . . . , n, and keep them as fixed or
update them at the beginning of each cycle (see Algo-
rithm 3, step 1). Such updates are particularly useful
when a good initialization is lacking. We present re-
sults for both cases. There might not be significant im-
provement in updating Wi in the examples below, as
the initialization using penalized quasi-likelihood is al-
ready good.

We assessed the performance of Algorithm 3 us-
ing different parametrizations by using MCMC as a
“gold standard.” Fitting via MCMC was performed
in WinBUGS (Lunn et al., 2000) through R by us-
ing R2WinBUGS (Sturtz, Ligges and Gelman, 2005)
as an interface. WinBUGS automatically implements
a Markov chain simulation for the posterior distribu-
tion after the user specifies a model and starting val-
ues (see, e.g., Gelman et al., 2004). We used the cen-
tered parametrization when specifying the model in
WinBUGS, as this produced better mixing than the
noncentered parametrization for most of the examples
considered (see Brown and Zhou, 2010). The MCMC
algorithm was initialized similarly using the fit from
penalized quasi-likelihood. In each case, three chains
were run simultaneously to assess convergence, each
with 50,000 iterations, and the first 5000 iterations
were discarded in each chain as burn-in. A thinning
factor of 10 was applied to reduce dependence between
draws. The posterior means and standard deviations re-
ported were based on the remaining 13,500 iterations.
The computation times reported for MCMC are the
times taken for updating in WinBUGS. We used the
same priors for MCMC and Algorithm 3. For the fixed
effects, we used a N(0,1000I ) prior. All code was
written in the R language and run on a dual processor
Windows PC 3.30 GHz workstation.

6.1 Simulated Data

In this simulation study we consider the Poisson ran-
dom intercept model

yij |ui ∼ Poisson
(
exp(β0 + β1xij + ui)

)
and the logistic random intercept model

yij |ui ∼ Bernoulli
(

exp(β0 + β1xij + ui)

1 + exp(β0 + β1xij + ui)

)
,

where ui ∼ N(0, σ 2). For the Poisson random inter-
cept model, we set xij = j − 1 for i = 1, . . . ,100,
j = 1,2, and used β0 = β1 = −0.5, σ = 0.1. For the
logistic random intercept model, we set xij = j

8 , for

i = 1, . . . ,50, j = 1, . . . ,8, and used β0 = 0, β1 = 5,
σ = √

1.5. Similar settings have been considered by
Ormerod and Wand (2012). For each model, 100 data
sets were generated. No convergence issues were en-
countered for these simulated data, but experience with
other simulated data sets (not shown) indicate that
problems may arise when the covariance matrix of the
fixed effects estimated from penalized quasi-likelihood
is nearly singular or when the standard deviation of the
random effects are very close to zero. In such cases,
we can use alternative means of initialization such as
estimates from the generalized linear model obtained
by setting the random effects as zero. The expres-
sion in (5) can also serve as a prior guess for D (see
Kass and Natarajan, 2006). Table 1 reports the esti-
mates from penalized quasi-likelihood and the poste-
rior means and standard deviations estimated by Algo-
rithm 3 (using different parametrizations) and MCMC.
Results are averaged over the 100 sets of simulated
data. We have also included root mean squared errors

computed as
√

1
100

∑100
l=1(ϑ̂l − ϑ0

l )2 for an estimate ϑ̂l

from the lth simulated data set obtained from penalized
quasi-likelihood or Algorithm 3 where ϑ0

l is the corre-
sponding estimate from MCMC regarded as the “gold
standard.”

For the Poisson model, the posterior means of the
fixed effects and random effects estimated using the
centered and noncentered parametrizations are quite
close and also close to that of MCMC. However, the
posterior standard deviations of the fixed effects are
underestimated in the centered parametrization and the
noncentered parametrization does better. The average
time to convergence was shorter with noncentering
and a higher lower bound was attained on average.
We observe that the partially noncentered parametriza-
tion where tuning parameters were not updated took
on average the least time to converge and produced
a fit closer to that of the noncentered parametrization
but with improvements in the estimation of the pos-
terior means of the random effects. When the tuning
parameters were updated, the fit was just as good, al-
though computation time was longer. For the logis-
tic model, centering and noncentering have different
merits. While centering produced better estimates of
the posterior means, the posterior standard deviations
of the fixed effects were underestimated. The partially
noncentered parametrization tries to adapt between the
centered and noncentered parametrizations, producing
better estimates of the posterior means than noncenter-
ing and better estimates of the posterior standard devia-
tions than centering. When the tuning parameters were
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TABLE 1
Results of simulation study showing initialization values from penalized quasi-likelihood, posterior means and standard deviations
estimated by Algorithm 3 (different parametrizations) and MCMC, computation times (seconds) and variational lower bounds (L),

averaged over 100 sets of simulated data. Values in () are the corresponding root mean squared errors

Model Method β0 SE(β0) β1 SE(β1) σ SE(σ ) Time L

Poisson Penalized −0.54 (0.11) 0.13 (0.02) −0.48 (0.01) 0.19 (0.03) 0.27 (0.35) — 0.1 —
quasi-likelihood

Noncentered −0.63 (0.01) 0.13 (0.02) −0.49 (<0.005) 0.21 (<0.005) 0.48 (0.02) 0.03 (0.08) 3.6 −196.0
Centered −0.63 (0.01) 0.05 (0.10) −0.50 (0.01) 0.16 (0.05) 0.50 (0.01) 0.04 (0.07) 4.3 −197.0
Partially −0.63 (0.01) 0.13 (0.02) −0.49 (<0.005) 0.20 (0.01) 0.49 (0.01) 0.03 (0.08) 3.5 −196.0

noncentered:
Wi fixed
Partially −0.63 (0.01) 0.13 (0.02) −0.49 (<0.005) 0.19 (0.02) 0.49 (0.01) 0.03 (0.08) 4.0 −196.0

noncentered:
Wi updated

MCMC −0.64 0.15 −0.48 0.21 0.50 0.11 60.1 —

Logistic Penalized −0.10 (0.06) 0.32 (0.07) 5.02 (0.27) 0.63 (0.24) 1.25 (0.16) — 0.2 —
quasi-likelihood

Noncentered −0.07 (0.02) 0.33 (0.06) 5.20 (0.04) 0.77 (0.09) 1.18 (0.06) 0.12 (0.20) 3.2 −140.4
Centered −0.07 (0.02) 0.17 (0.21) 5.24 (0.02) 0.41 (0.45) 1.24 (0.03) 0.13 (0.20) 3.1 −141.1
Partially −0.07 (0.02) 0.30 (0.09) 5.23 (0.02) 0.50 (0.37) 1.22 (0.03) 0.12 (0.20) 2.9 −140.5

noncentered:
Wi fixed
Partially −0.07 (0.02) 0.30 (0.08) 5.21 (0.04) 0.50 (0.36) 1.22 (0.04) 0.12 (0.20) 3.9 −140.5

noncentered:
Wi updated

MCMC −0.05 0.38 5.23 0.85 1.24 0.32 146.6 —

updated, the results leaned more toward the noncen-
tered parametrization and the algorithm took longer to
converge. In both cases, Algorithm 3 using the partially
noncentered parametrization was faster than MCMC
and provided better estimates of the fixed effects and
random effects than penalized quasi-likelihood. There
are some difficulties, however, in comparing Algo-
rithm 3 and MCMC in this way, as the time taken for
Algorithm 3 to converge depends on the initialization,
stopping rule and the rate of convergence also depends
on the problem. Similarly, the updating time taken for
MCMC is also problem-dependent and depends on the
length of burn-in and number of sampling iterations.
In addition, we observed (in simulated data sets not
shown) that posterior inferences can be sensitive to
prior assumptions on the variance components in Pois-
son models where many of the counts are close to zero
or in binary data where the cluster size is small (see
Browne and Draper, 2006 and Roos and Held, 2011).

6.2 Epilepsy Data

Here we consider the epilepsy data of Thall and
Vail (1990) which has been analyzed by many au-
thors (see, e.g., Breslow and Clayton, 1993; Ormerod

and Wand, 2012). In this clinical trial, 59 epileptics
were randomized to a new anti-epileptic drug, pro-
gabide (Trt = 1) or a placebo (Trt = 0). Before receiv-
ing treatment, baseline data on the number of epilep-
tic seizures during the preceding 8-week period were
recorded. The logarithm of 1

4 the number of baseline
seizures (Base) and the logarithm of age (Age) were
treated as covariates. Counts of epileptic seizures dur-
ing the 2 weeks before each of four successive clinic
visits (Visit, coded as Visit1 = −0.3, Visit2 = −0.1,
Visit3 = 0.1 and Visit4 = 0.3) were recorded. A bi-
nary variable (V4 = 1 for fourth visit, 0 otherwise) was
also considered as a covariate. We consider models II
and IV from Breslow and Clayton (1993). Model II is
a Poisson random intercept model where

logμij = β0 + βBaseBasei + βTrtTrti

+ βBase×TrtBasei × Trti + βAgeAgei

+ βV4V4ij + ui

for i = 1, . . . , n, j = 1, . . . ,4 and ui ∼ N(0, σ 2).
Model IV is a Poisson random intercept and slope
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model of the form

logμij = β0 + βBaseBasei + βTrtTrti

+ βBase×TrtBasei × Trti + βAgeAgei

+ βVisitVisitij + u1i + u2iVisitij

for i = 1, . . . , n, j = 1, . . . ,4 and[
u1i

u2i

]
∼ N

(
0,

[
σ 2

11 σ12

σ21 σ 2
22

])
.

As the MCMC chains for intercept and Age were mix-
ing poorly, we decided to center the covariate Age. In
the analysis that follows, we assume Agei has been re-
placed by Agei − mean(Age).

Table 2 shows the estimates of the posterior means
and standard deviations of the fits from MCMC and
Algorithm 3 (using different parametrizations), ini-
tialization values from penalized quasi-likelihood and
computation times in seconds taken by different meth-
ods. All the variational methods are faster than MCMC
by an order of magnitude which is especially im-
portant in large scale applications. In the noncen-
tered parametrization, the standard deviations of the

fixed effects were underestimated and the centered
parametrization does better in this aspect. The par-
tially noncentered parametrization produced a fit that
is closer to that of the centered parametrization and
improved upon it. In both models, the fits produced by
partial noncentering are very close to that produced
by MCMC and are superior to that of the centered
and noncentered parametrizations. The lower bound
attained by partial noncentering is also higher than that
of centering and noncentering, giving a tighter bound
on the log marginal likelihood. It is important to em-
phasize that the relevant comparison is of the partially
noncentered parametrization to the worst of the cen-
tered and noncentered parametrizations, since in gen-
eral we do not know if centering or noncentering is
better without running both algorithms. Partial noncen-
tering, on the other hand, automatically chooses a near
optimal parametrization. Updating of the tuning pa-
rameters helped to improve the fit produced by partial
noncentering. Figure 2 shows the marginal posterior
distributions for parameters in models II and IV esti-
mated by MCMC (solid line) and Algorithm 3 using

TABLE 2
Results for epilepsy data models II and IV showing initialization values from penalized quasi-likelihood, posterior means and standard

deviations (values after ±) estimated by Algorithm 3 (different parametrizations) and MCMC, computation times (seconds) and variational
lower bounds (L)

Penalized Partially Partially
quasi- noncentered: noncentered:

likelihood Noncentered Centered Wi fixed Wi updated MCMC

Model II
β0 0.31 ± 0.26 0.26 ± 0.11 0.27 ± 0.24 0.27 ± 0.26 0.27 ± 0.27 0.26 ± 0.27
βBase 0.88 ± 0.13 0.89 ± 0.04 0.88 ± 0.13 0.88 ± 0.13 0.88 ± 0.14 0.89 ± 0.14
βTrt −0.91 ± 0.41 −0.94 ± 0.15 −0.94 ± 0.36 −0.94 ± 0.40 −0.94 ± 0.41 −0.94 ± 0.42
βBase×Trt 0.34 ± 0.20 0.34 ± 0.06 0.34 ± 0.19 0.34 ± 0.21 0.34 ± 0.21 0.34 ± 0.21
βAge 0.54 ± 0.35 0.50 ± 0.12 0.48 ± 0.33 0.48 ± 0.35 0.48 ± 0.36 0.48 ± 0.37
βV4 −0.16 ± 0.08 −0.16 ± 0.05 −0.16 ± 0.05 −0.16 ± 0.05 −0.16 ± 0.05 −0.16 ± 0.05
σ 0.44 0.50 ± 0.05 0.54 ± 0.05 0.53 ± 0.05 0.53 ± 0.05 0.53 ± 0.06
L — −707.3 −702.0 −701.6 −701.5 —
Time 0.2 1.1 0.4 0.4 0.6 61

Model IV
β0 0.27 ± 0.26 0.21 ± 0.10 0.21 ± 0.24 0.21 ± 0.26 0.21 ± 0.26 0.21 ± 0.27
βBase 0.88 ± 0.13 0.89 ± 0.04 0.88 ± 0.13 0.89 ± 0.13 0.89 ± 0.13 0.88 ± 0.14
βTrt −0.92 ± 0.41 −0.94 ± 0.15 −0.93 ± 0.36 −0.93 ± 0.40 −0.93 ± 0.40 −0.94 ± 0.42
βBase×Trt 0.35 ± 0.20 0.34 ± 0.06 0.34 ± 0.19 0.34 ± 0.20 0.34 ± 0.21 0.34 ± 0.22
βAge 0.54 ± 0.35 0.49 ± 0.12 0.47 ± 0.32 0.47 ± 0.35 0.47 ± 0.35 0.47 ± 0.37
βVisit −0.28 ± 0.16 −0.27 ± 0.10 −0.27 ± 0.10 −0.27 ± 0.14 −0.27 ± 0.15 −0.27 ± 0.17
σ11 0.45 0.50 ± 0.05 0.53 ± 0.05 0.52 ± 0.05 0.53 ± 0.05 0.53 ± 0.06
σ22 0.46 0.75 ± 0.07 0.77 ± 0.07 0.75 ± 0.07 0.76 ± 0.07 0.76 ± 0.15
L — −701.4 −696.1 −695.3 −695.1 —
Time 0.5 1.5 1.3 1.2 1.4 122
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FIG. 2. Marginal posterior distributions for parameters in model II (first two rows) and model IV (last two rows) of the epilepsy data
estimated by MCMC (solid line) and Algorithm 3 using partially noncentered parametrization where tuning parameters are updated (dashed
line).

the partially noncentered parametrization where tun-
ing parameters are updated (dashed line). The varia-
tional posterior densities of the fixed effects are very
close to those obtained via MCMC. For the variance
components, there is still some underestimation of the
posterior variance.

6.3 Toenail Data

This data set was obtained from a multicenter study
comparing two competing oral antifungal treatments
for toenail infection (De Backer et al., 1998), cour-
tesy of Novoartis, Belgium. It contains information for
294 patients to be evaluated at seven visits. Not all pa-
tients attended all seven planned visits and there were
1908 measurements in total. The patients were ran-
domized into two treatment groups, one group receiv-
ing 250 mg per day of terbinafine (Trt = 1) and the
other group 200 mg per day of itraconazole (Trt = 0).
Visits were planned at weeks 0, 4, 8, 12, 24, 36 and 48,
but patients did not always arrive as scheduled and
the exact time in months (t) that they did attend was

recorded. The binary response variable (onycholysis)
indicates the degree of separation of the nail plate from
the nail bed (0 if none or mild, 1 if moderate or se-
vere). We consider the following logistic random inter-
cept model,

logit(μij ) = β0 +βTrtTrti +βt tij +βTrt×tTrti × tij +ui,

where ui ∼ N(0, σ 2) for i = 1, . . . ,294, 1 ≤ j ≤ 7.
Table 3 shows the posterior means and standard devi-

ations of the fits from MCMC and Algorithm 3 (using
different parametrizations), initialization values from
penalized quasi-likelihood and computation time in
seconds taken by different methods. Again, the VB
methods are faster than MCMC by an order of mag-
nitude. In this example, centering produced a better fit
than noncentering and partial noncentering produced
a fit closer to that of the centered parametrization but
improving it. Partial noncentering also took less time to
converge and attained a lower bound higher than that of
the centered and noncentered parametrizations. Again,
we emphasize that it is not easy to know beforehand
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TABLE 3
Results for toenail data showing values used for initialization from penalized quasi-likelihood, posterior means and posterior standard

deviations (values after ±) from Algorithm 3 (different parametrizations) and MCMC, computation times (seconds) and variational lower
bounds (L)

Penalized Partially Partially
quasi- noncentered: noncentered:

likelihood Noncentered Centered Wi fixed Wi updated MCMC

β0 −0.75 ± 0.25 −1.41 ± 0.17 −1.44 ± 0.29 −1.44 ± 0.35 −1.44 ± 0.32 −1.65 ± 0.44
βTrt −0.04 ± 0.35 −0.13 ± 0.25 −0.13 ± 0.41 −0.13 ± 0.49 −0.13 ± 0.45 −0.17 ± 0.60
βt −0.30 ± 0.03 −0.38 ± 0.04 −0.38 ± 0.03 −0.38 ± 0.03 −0.38 ± 0.03 −0.40 ± 0.05
βTrt×Time −0.10 ± 0.05 −0.13 ± 0.06 −0.13 ± 0.04 −0.13 ± 0.04 −0.13 ± 0.04 −0.14 ± 0.07
σ 2.32 3.52 ± 0.15 3.56 ± 0.15 3.55 ± 0.15 3.55 ± 0.15 4.10 ± 0.39

L — −664.1 −663.1 −662.7 −662.9 —
Time 2.8 37.9 27.9 26.0 24.1 1072

which of centering or noncentering will perform bet-
ter, and a big advantage of partial noncentering is the
way that it automatically chooses a good parametriza-
tion. In this example, updating the tuning parameters
did not result in a better fit although the time to con-
vergence is reduced. The marginal posterior distribu-
tions estimated by MCMC (solid line) and Algorithm 3
using the partially noncentered parametrization where
tuning parameters were not updated (dashed line) are
shown in Figure 3. Compared with the MCMC fit,
there is still some underestimation of the variance of
the fixed effects particularly for the parameters which
could not be centered. Although the partially noncen-
tered parametrization has improved the estimation of
the random effects from the initial penalized quasi-
likelihood fit, there is still some underestimation of the
mean and variance of the random effects when com-
pared to the MCMC fit.

6.4 Six Cities Data

In the previous two real data examples, centering
performed better than noncentering and partial non-
centering was able to improve on the centering results.

While centering often performs better than noncenter-
ing, we use this example to show that partial noncenter-
ing will automatically tend toward noncentering when
noncentering is preferred. We consider the six cities
data in Fitzmaurice and Laird (1993), where the binary
response variable yij indicates the wheezing status (1 if
wheezing, 0 if not wheezing) of the ith child at time-
point j , i = 1, . . . ,537, j = 1,2,3,4. We use as co-
variate the age of the child at time-point j , centered
at 9 years (Age), and consider the following random
intercept and slope model:

logit(μij ) = β0 + βAgeAgei + u1i + u2iAgei

for i = 1, . . . ,537, j = 1, . . . ,4 and[
u1i

u2i

]
∼ N

(
0,

[
σ 2

11 σ12

σ21 σ 2
22

])
.

This model has been considered in Overstall and
Forster (2010).

Table 4 shows the estimates of the posterior means
and standard deviations of the fits from MCMC and Al-
gorithm 3 using different parametrizations, the values
from penalized quasi-likelihood used for initialization

FIG. 3. Marginal posterior distributions for parameters in toenail data estimated by MCMC (solid line) and Algorithm 3 using partially
noncentered parametrization (tuning parameters not updated) (dashed line).
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TABLE 4
Results for six cities data showing values used for initialization from penalized quasi-likelihood, posterior means and posterior standard
deviations (values after ±) from Algorithm 3 (different parametrizations) and MCMC, computation times (seconds) and variational lower

bounds (L)

Penalized Partially Partially
quasi- noncentered: noncentered:

likelihood Noncentered Centered Wi fixed Wi updated MCMC

β0 −3.12 ± 0.14 −3.05 ± 0.09 −3.05 ± 0.09 −3.05 ± 0.13 −3.05 ± 0.13 −3.29 ± 0.25
βAge −0.24 ± 0.08 −0.22 ± 0.07 −0.21 ± 0.02 −0.22 ± 0.07 −0.22 ± 0.07 −0.25 ± 0.16
σ11 2.52 2.16 ± 0.07 2.16 ± 0.07 2.16 ± 0.07 2.16 ± 0.07 2.48 ± 0.24
σ22 1.19 0.55 ± 0.02 0.56 ± 0.02 0.55 ± 0.02 0.55 ± 0.02 0.61 ± 0.10
L — −833.2 −834.1 −832.8 −832.6 —
Time 3.8 114.7 125.8 110.6 120.6 1010

and the computation times in seconds taken by differ-
ent methods. Noncentering performed better than cen-
tering in this case with a shorter time to convergence,
higher lower bound and a better estimate of the pos-
terior standard deviation of βAge. Partial noncentering
further improved upon the results of noncentering with
an improved estimate of the posterior standard devia-
tion of β0 and faster convergence. All the variational
methods are again faster than MCMC by an order of
magnitude.

6.5 Owl Data

In this example we illustrate the use of the varia-
tional lower bound, a by-product of Algorithm 3, for
model selection. For MCMC, on the other hand, it is
not straightforward in general to get a good estimate
of the marginal likelihood based on the MCMC out-
put. It is also not always obvious how to apply standard
model selection criteria like AIC and BIC to hierarchi-
cal models like GLMMs.

Roulin and Bersier (2007) analyzed the begging be-
havior of nestling barn owls and looked at whether off-
spring beg for food at different intensities from the
mother than father. They sampled n = 27 nests and
counted the number of calls made by all offspring in the
absence of parents. Half of the nests were given extra
prey, and from the other half prey were removed. Mea-
surements took place on two nights, and food treatment
was swapped the second night. The number of mea-
surements at each nest ranged from 4 to 52 with a total
of 599. We use as covariates sex of parent (Sex = 1 if
male, 0 if female), the time at which a parent arrived
with a prey (t), and food treatment (Trt = 1 if “sati-
ated,” 0 if “deprived”). The number of nestlings per
nest (broodsize, E) ranged from 1 to 7.

Zuur et al. (2009) modeled the number of calls at
nest i for the j th observation as a Poisson distribution
with mean μij and used log transformed broodsize as
an offset with nest as a random effect. The prime aim
of their analysis was to find a sex effect and the largest
model they considered was the following:

1. log(μij ) = log(Eij )+β0 +βSexSexij +βTrtTrtij +
βt tij +βSex×TrtSexij × Trtij +βSex×tSexij × tij +
ui ,

where log(Eij ) is an offset and ui ∼ N(0, σ 2) for
i = 1, . . . ,27, j = 1, . . . , ni . At the recommendation
of Zuur et al. (2009), we center t to reduce correlation
of t with the intercept. Henceforth, we assume tij has
been replaced by tij − mean(t). In the first stage, we
consider models 1 to 4 and determine if the two inter-
action terms should be retained. Models 2 to 4 are as
follows:

2. log(μij ) = log(Eij )+β0 +βSexSexij +βTrtTrtij +
βt tij + βSex×TrtSexij × Trtij + ui ,

3. log(μij ) = log(Eij )+β0 +βSexSexij +βTrtTrtij +
βt tij + βSex×tSexij × tij + ui ,

4. log(μij ) = log(Eij )+β0 +βSexSexij +βTrtTrtij +
βt tij + ui .

From Table 5, the preferred model (with the highest
lower bound) is model 4 where both interaction terms
have been dropped from model 1. Next, we consider
models 5 to 7 where the main terms sex, food treatment
and arrival time are each dropped in turn:

5. log(μij ) = log(Eij ) + β0 + βTrtTrtij + βt tij + ui ,
6. log(μij ) = log(Eij )+β0 +βTrtTrtij +βSexSexij +

ui ,
7. log(μij ) = log(Eij )+β0 +βt tij +βSexSexij +ui .
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TABLE 5
Variational lower bounds for owl data models 1 to 11 and computation time in brackets

Partially Partially
noncentered: noncentered:

Noncentered Centered Wi fixed Wi updated

First stage
Model 1 −2544.6 (0.2) −2543.7 (0.3) −2543.6 (0.4) −2543.7 (0.6)
Model 2 −2537.6 (0.2) −2536.6 (0.3) −2536.6 (0.4) −2536.6 (0.5)
Model 3 −2540.2 (0.2) −2539.2 (0.3) −2539.2 (0.3) −2539.2 (0.5)
Model 4 −2533.2 (0.2) −2532.1 (0.3) −2532.1 (0.3) −2532.1 (0.4)

Second stage
Model 5 −2527.0 (0.2) −2525.5 (0.2) −2525.5 (0.2) −2525.4 (0.3)
Model 6 −2628.3 (0.2) −2627.2 (0.3) −2627.1 (0.3) −2627.1 (0.5)
Model 7 −2664.0 (0.2) −2662.9 (0.2) −2662.8 (0.3) −2662.8 (0.4)

Third stage
Model 8 −2621.5 (0.2) −2620.0 (0.2) −2620.0 (0.2) −2620.0 (0.3)
Model 9 −2660.4 (0.2) −2658.8 (0.2) −2658.8 (0.2) −2658.8 (0.2)
Model 10 −2689.4 (<0.05)

Final stage
Model 11 −2448.7 (1.1) −2445.7 (0.4) −2445.8 (0.3) −2445.6 (0.4)

Table 5 indicates that model 5 is the preferred model
where the term sex of the parent has been dropped from
model 4. Now we consider dropping each of the terms
food treatment and arrival time in turn or dropping the
random effects ui :

8. log(μij ) = log(Eij ) + β0 + βTrtTrtij + ui ,
9. log(μij ) = log(Eij ) + β0 + βt tij + ui ,

10. log(μij ) = log(Eij ) + β0 + βTrtTrtij + βt tij .

Table 5 indicates that none of the main terms food treat-
ment and arrival time as well as random effects should
be dropped from model 5. Finally, we consider adding
a random slope for arrival time:

11. log(μij ) = log(Eij )+β0 +βTrtTrtij +βt tij +u1i +
u2i tij ,

where [
u1i

u2i

]
∼ N

(
0,

[
σ 2

11 σ12

σ21 σ 2
22

])
.

From Table 5, the optimal model is model 11. This con-
clusion is similar to that of Zuur et al. (2009) and is the
same regardless of which parametrization was used. It
is thus sufficient to consider just the partially noncen-
tered parametrization. The computation time taken by
Algorithm 3 for each model fitting is very short and
makes this a convenient way of carrying out model se-
lection or for narrowing down the range of likely mod-
els. Further model comparisons can be performed us-
ing cross-validation or other approaches.

We present the estimated posterior means and stan-
dard deviations for the optimal model in Table 6. The
marginal posterior distributions estimated by MCMC
(solid line) and Algorithm 3 using partially noncen-
tered parametrization where tuning parameters are up-
dated (dashed line) are shown in Figure 4. In this
case, centering produced a better fit than noncentering
and partial noncentering produced a fit that is close
to that of centering. Updating the tuning parameters
helped to improve the fit of the partially noncentered
parametrization slightly and is closest to the MCMC
fit. From the posterior density plots, there is good es-
timation of the posterior means by Algorithm 3 us-
ing partially noncentered parametrization with updated
tuning parameters, but there is still some underestima-
tion of the posterior variance.

7. CONCLUSION

In this paper we described a partially noncentered
parametrization for GLMMs and compared the perfor-
mance of different parametrizations using an algorithm
called nonconjugate variational message passing de-
veloped recently in machine learning. Focusing on
Poisson and logistic mixed models, we applied our
methods to analysis of longitudinal data sets. For the
logistic model, some parameter updates were not avail-
able in closed form and we used adaptive Gauss–
Hermite quadrature to approximate the intractable inte-
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TABLE 6
Results for owl data (model 11) showing values used for initialization from penalized quasi-likelihood, posterior means and standard

deviations (values after ±) from Algorithm 3 (different parametrizations) and MCMC and computation times (seconds)

Penalized Partially Partially
quasi- noncentered: noncentered:

likelihood Noncentered Centered Wi fixed Wi updated MCMC

β0 0.60 ± 0.07 0.53 ± 0.02 0.51 ± 0.08 0.51 ± 0.08 0.51 ± 0.09 0.50 ± 0.10
βTrt −0.55 ± 0.08 −0.57 ± 0.03 −0.57 ± 0.03 −0.57 ± 0.03 −0.57 ± 0.03 −0.57 ± 0.04
βt −0.13 ± 0.03 −0.15 ± 0.01 −0.16 ± 0.04 −0.16 ± 0.04 −0.16 ± 0.04 −0.16 ± 0.05
σ11 0.24 0.44 ± 0.06 0.46 ± 0.06 0.45 ± 0.06 0.46 ± 0.06 0.47 ± 0.09
σ22 0.11 0.22 ± 0.03 0.23 ± 0.03 0.22 ± 0.03 0.23 ± 0.03 0.23 ± 0.05
Time 0.4 1.1 0.4 0.3 0.4 255

grals efficiently. Comparing the performance of Algo-
rithm 3 under the partially noncentered parametrization
with that of the centered and noncentered parametriza-
tions, we observed that partial noncentering auto-
matically tends toward the better of centering and
noncentering so that it is not necessary to choose
in advance between the centered and noncentered
parametrizations. In many cases, the partially noncen-
tered parametrization was able to improve upon the
fit produced by the better of centering and noncenter-
ing to produce a fit that was closest to that of MCMC.
In terms of computation time, the partially noncen-
tered parametrization can also provide more rapid con-
vergence when centering or noncentering is particu-
larly slow. Very often, the lower bound attained by
the partially noncentered parametrization is also higher
than that of the centered and noncentered parametriza-
tions, giving a tighter lower bound to the log marginal
likelihood. To some degree, the partially noncentered
parametrization also alleviates the issue of underes-
timation of the posterior variance, leading to some
improvement in the estimation of the posterior vari-
ance, particularly in the fixed effects which could be
centered. Algorithm 3 under the partially noncentered
parametrization thus offers itself as a fast, determinis-

tic alternative to MCMC methods for fitting GLMMs
with improved estimation compared to the centered
and noncentered parametrizations. We also demon-
strate that the variational lower bound produced as part
of the computation in Algorithm 3 can be useful in
model selection.

APPENDIX A: EVALUATING THE VARIATIONAL
LOWER BOUND

From (2), (7) and (16),

L =
n∑

i=1

Syi
+

n∑
i=1

Sα̃i
+ Sβ + Eq

{
logp(D|ν,S)

}

− Eq

{
logq(β)

} −
n∑
i

Eq

{
logq(α̃i)

}

− Eq

{
logq(D)

}
.

To evaluate the terms in the lower bound, we use the
following two lemmas which we state without proof:

LEMMA 1. Suppose p1(x) = N(μ1,�1) and
p2(x) = N(μ2,�2) where x is a p-dimensional vector,
then

∫
p2(x) logp1(x)dx = −p

2 log(2π)− 1
2 log|�1|−

1
2(μ2 − μ1)

T �−1
1 (μ2 − μ1) − 1

2 tr(�−1
1 �2).

FIG. 4. Marginal posterior distributions for parameters in model 11 (owl data) estimated by MCMC (solid line) and Algorithm 3 using
partially noncentered parametrization where tuning parameters are updated (dashed line).
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LEMMA 2. Suppose p(D) = IW(ν, S) where D

is a symmetric, positive definite r × r matrix, then∫
p(D) log|D|dD = log|S| − ∑r

l=1 ψ(ν−l+1
2 ) −

r log 2 and
∫

p(D)D−1 dD = νS−1 where ψ(·) de-
notes the digamma function.

Using these two lemmas, we can compute most of
the terms in the lower bound:

Sβ =
∫

q(β) logp(β|�β)dβ

= −p

2
log(2π) − 1

2
log|�β |

− 1

2
μ

q
β

T
�−1

β μ
q
β − 1

2
tr

(
�−1

β �
q
β

)
,

Sα̃i
=

∫
q(β)q(D)q(α̃i) logp(α̃i |β,D)dβ dD dα̃i

= − r

2
log(2π)

− 1

2

{
log

∣∣Sq
∣∣ − r∑

l=1

ψ

(
νq − l + 1

2

)

− r log 2

}

− νq

2

[(
μ

q

α̃i
− W̃iμ

q
β

)T
Sq−1(

μ
q

α̃i
− W̃iμ

q
β

)
+ tr

{
Sq−1(

�
q

α̃i
+ W̃i�

q
βW̃T

i

)}]
,

Eq

{
logp(D|ν,S)

}
=

∫
q(D) logp(D|ν,S)dD

= −νq

2
tr

(
Sq−1

S
) − r(r − 1)

4
log(π)

−
r∑

l=1

log�

(
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2

)
+ ν

2
log|S|

− ν + r + 1
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(
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2
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− νr

2
log 2,

Eq

{
logq(β)
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=

∫
q(β) logq(β)dβ

= −p

2
log(2π) − 1

2
log

∣∣�q
β
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2
,

Eq

{
logq(α̃i)

}
=

∫
q(α̃i) logq(α̃i)dα̃i

= − r

2
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2
log

∣∣�q
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2
,
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logq(D)
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=
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4
logπ
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∣∣

− νq + r + 1

2

{
log

∣∣Sq
∣∣ − r∑

l=1

ψ

(
νq − l + 1

2

)

− r log 2

}

− νqr

2
.

The only term left to evaluate is

Syi
=

∫
q(β)q(α̃i) logp(yi |β, α̃i)dβ dα̃i .

For Poisson responses with the log link function [see
(9)],

Syi
= yT

i

{
log(Ei) + Viμ

q
β + XR

i μ
q

α̃i

} − ET
i κi

− 1T
ni

log(yi !),
where κi = exp{Viμ

q
β + XR

i μ
q

α̃i
+ 1

2 diag(Vi�
q
βVi

T +
XR

i �
q

α̃i
XR

i

T
)}. For Bernoulli responses with the logit

link function [see (10)],

Syi
= yT

i

(
Viμ

q
β + XR

i μ
q

α̃i

)

−
ni∑

j=1

Eq

[
log

{
1 + exp

(
V T

ij β + XR
ij

T
α̃i

)}]
,

where Eq[log{1 + exp(V T
ij β + XR

ij

T
α̃i)}] is evaluated

using adaptive Gauss–Hermite quadrature (see Ap-
pendix B). The variational lower bound is thus given
by

L =
n∑

i=1

Syi
+ 1

2

n∑
i=1

log
∣∣�q

α̃i

∣∣

+ 1

2
log

∣∣�−1
β �

q
β

∣∣ − 1

2
tr

(
�−1

β �
q
β

)
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− 1

2
μ

q
β

T
�−1

β μ
q
β − νq

2
log

∣∣Sq
∣∣

+ ν

2
log|S| −

r∑
l=1

log�

(
νq + 1 − l

2

)

+
r∑

l=1

log�

(
ν + 1 − l

2

)

+ p + nr

2
+ nr

2
log 2.

Note that this expression is valid only after each of the
parameter updates has been made in Algorithm 3.

APPENDIX B: GAUSS–HERMITE QUADRATURE
FOR LOGISTIC MIXED MODELS

We want to evaluate Eq{b(V T
ij β + XR

ij

T
α̃i)} where

b(x) = log(1 + ex) for each i = 1, . . . , n and j =
1, . . . , ni . Let μij = V T

ij μ
q
β + XR

ij

T
μ

q

α̃i
and σ 2

ij =
V T

ij �
q
βVij + XR

ij

T
�

q

α̃i
XR

ij . Following Ormerod and

Wand (2012), we reduce Eq{b(V T
ij β + XR

ij

T
α̃i)} to a

univariate integral such that

Eq

{
b
(
V T

ij β + XR
ij

T
α̃i

)}
=

∫ ∞
−∞

b(σij x + μij )φ(x;0,1)dx,

where φ(x;μ,σ) denotes the Gaussian density for
a random variable x with mean μ and standard de-
viation σ . Let B(r)(μ,σ ) = ∫ ∞

−∞ b(r)(σx + μ)φ(x;
0,1)dx where b(r)(x) denotes the r th derivative of b(·)
with respect to x. If μ and σ are vectors, say,

μ =
⎡
⎣ 1

2
3

⎤
⎦ and σ =

⎡
⎣ 4

5
6

⎤
⎦ ,

then

B(r)(μ,σ ) =
⎡
⎣B(r)(1,4)

B(r)(2,5)

B(r)(3,6)

⎤
⎦ .

For each cluster i, let μi = (μi1, . . . ,μini
)T = Viμ

q
β +

XR
i μ

q

α̃i
and

σi = (σi1, . . . , σini
)T

=
√

diag
(
Vi�

q
βV T

i + XR
i �

q

α̃i
XR

i

T )
.

We evaluate B(r)(μij , σij ) using adaptive Gauss–
Hermite quadrature (Liu and Pierce, 1994) for each

i = 1, . . . , n, j = 1, . . . , ni and r = 0,1,2. Ormerod
and Wand (2012) have considered a similar approach.
In Gauss–Hermite quadrature, integrals of the form∫ ∞
−∞ f (x)e−x2

dx are approximated by
∑m

k=1 wkf (xk),
where m is the number of quadrature points, the nodes
xi are zeros of the mth order Hermite polynomial and
wi are suitably corresponding weights. This approxi-
mation is exact for polynomials of degree 2m − 1 or
less. For low-order quadrature to be effective, some
transformation is usually required so that the integrand
is sampled in a suitable range. Following the procedure
recommended by Liu and Pierce (1994), we rewrite
B(r)(μij , σij ) as

B(r)(μij , σij )

=
∫ ∞
−∞

b(r)(σij x + μij )φ(x;0,1)

φ(x; μ̂ij , σ̂ij )
φ(x; μ̂ij , σ̂ij )dx

= √
2σ̂ij

∫ ∞
−∞

[
ex2

b(r)(σij (μ̂ij + √
2σ̂ij x) + μij

)
· φ(μ̂ij + √

2σ̂ij x;0,1)
]

· e−x2
dx,

which can be approximated using Gauss–Hermite
quadrature by

B(r)(μij , σij )

≈ √
2σ̂ij

m∑
k=1

wkex2
k b(r)(σij (μ̂ij + √

2σ̂ij xk) + μij

)

· φ(μ̂ij + √
2σ̂ij xk;0,1).

For the integrand to be sampled in an appropriate re-
gion, we take μ̂ij to be the mode of the integrand and
σ̂ij to be the standard deviation of the normal density
approximating the integrand at the mode, so that

μ̂ij = arg max
x

{
b(r)(σij x + μij )φ(x;0,1)

}
,

σ̂ij =
[
− d2

dx2 log
{
b(r)(σij x + μij )

· φ(x;0,1)
}∣∣∣∣

x=μ̂ij

]−1/2

for j = 1, . . . , ni and i = 1, . . . , n. For computational
efficiency, we evaluate μ̂ij and σ̂ij , i = 1, . . . , n, j =
1, . . . , ni , for the case r = 1 only once in each cy-
cle of updates and use these values for r = 0,2. No
significant loss of accuracy was observed in doing
this. We implement adaptive Gauss–Hermite quadra-
ture in R using the R package fastGHQuad (Blocker,
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2011). The quadrature nodes and weights can be ob-
tained via the function gaussHermiteData() and
the function aghQuad() approximates integrals us-
ing the method of Liu and Pierce (1994). We used 10
quadrature points in all the examples.
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