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Multiple Testing for Exploratory Research’

Jelle J. Goeman and Aldo Solari

Abstract. Motivated by the practice of exploratory research, we formulate
an approach to multiple testing that reverses the conventional roles of the user
and the multiple testing procedure. Traditionally, the user chooses the error
criterion, and the procedure the resulting rejected set. Instead, we propose
to let the user choose the rejected set freely, and to let the multiple testing
procedure return a confidence statement on the number of false rejections in-
curred. In our approach, such confidence statements are simultaneous for all
choices of the rejected set, so that post hoc selection of the rejected set does
not compromise their validity. The proposed reversal of roles requires noth-
ing more than a review of the familiar closed testing procedure, but with a
focus on the non-consonant rejections that this procedure makes. We suggest
several shortcuts to avoid the computational problems associated with closed

testing.
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1. INTRODUCTION

Central to the practice of statistics is the distinction
between exploratory and confirmatory data analysis,
and the interplay between the two. Exploratory data
analysis suggests and formulates hypotheses, which
can subsequently be rigorously tested by confirmatory
data analysis. The two types of data analysis require
very different methods (Tukey, 1980): where confir-
matory data analysis is structured and rigorous, ex-
ploratory data analysis can be open-minded and specu-
lative.

Hypothesis testing and strict Type I error control
are traditionally part of the realm of confirmatory data
analysis, and, by implication, so are multiple testing
procedures. However, multiple hypothesis testing is in-
creasingly finding its way into exploratory data anal-
ysis. In genomics research, for example, typical ex-
periments test thousands of hypotheses corresponding
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to as many molecular markers. Although somewhat
structured, such experiments should be viewed as ex-
ploratory rather than as confirmatory. The collection of
tested hypotheses is usually not selected on the basis of
any theory, but because it is convenient and exhaustive.
The rejected hypotheses are generally not meant to be
reported as end results, but are to be followed up by
independent validation experiments.

Despite the exploratory nature of these experiments,
researchers do feel a need for multiple hypothesis test-
ing methods and, in fact, routinely apply them. The
main reason for this is that researchers want to protect
themselves from following up on too many false leads
and doing too many unsuccessful validation experi-
ments. Most multiple testing methods, however, have
been designed for confirmatory data analysis and are
ill-suited for the specific requirements of exploratory
research.

Before we come to the main argument of this pa-
per, we would like to set the scene by sketching the re-
quirements for an inferential procedure for exploratory
research. Imagine the situation that we are exploring
a large, but finite number of candidate hypotheses, in-
discriminately selected. Rather than rigorously prov-
ing the validity of some or all of these hypotheses,
as in confirmatory analysis, we want to select a num-
ber of promising hypotheses for further probing in a
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next phase of validation. The open-minded nature of
exploratory research can be described by three charac-
teristics: exploratory research is mild, flexible and post
hoc. We explain these three terms below, contrasting
them with the more familiar characteristics of confir-
matory research.

An inferential procedure is mild if it allows some
false positives among the selected hypotheses. This is
the most obvious characteristic of exploratory research.
Mildness is reasonable because false positives are ex-
pected to be detected and removed in later validation
experiments. Confirmatory research, in contrast, being
the final phase of the research cycle, is not mild but
strict.

An inferential procedure is flexible if it does not pre-
scribe to the researcher which precise hypotheses to se-
lect or not to select. For example, if the procedure ranks
the hypotheses from most to least promising, but the
researcher detects a common theme in the hypotheses
ranked second, third and fourth, he or she can choose to
follow up on these three hypotheses and disregard the
hypothesis that ranked first. In fact, the researcher may
also choose to follow up on the hypothesis that ranked
last, if that fits the same theme. Such freedom, “picking
and choosing,” is an important part of the hypothesis-
generating aspect of exploratory research. In confirma-
tory research, in contrast, selection of an interesting
and coherent collection of hypotheses has been done
prior to the experiment, so that flexible selection is not
necessary.

Finally, an inferential procedure is post hoc if it al-
lows all choices that are inherent to the procedure to be
made after seeing the data. Specifically, how mild the
procedure should be, and which precise set of hypothe-
ses to select does not have to be chosen beforehand, but
may be chosen on the basis of the data. This is probably
the most distinguishing feature of exploratory research.
The decision which inferences, and how many, to fol-
low up is often based on a mixture of considerations;
these considerations are usually not purely statistical,
and are often difficult to make explicit. In contrast, in
pure confirmatory research all choices regarding the
testing procedure have to be set in stone before data
collection.

An ideal multiple hypothesis testing procedure for
exploratory research should sanction a mild, post hoc
and flexible approach. Multiple testing procedures gen-
erally do not fulfil these criteria. The main present dis-
tinction is between multiple testing methods based on
the familywise error (FWER), and variants, and meth-
ods based on the false discovery rate (FDR), and vari-
ants of that.

FWER-based methods control the probability of
making any false rejection at a prespecified rate. These
are the archetypical methods for confirmatory analy-
sis. Such methods are clearly not mild, and they are
not post hoc, as all data analysis decisions have to be
made before seeing the data. They can be argued to
be flexible in a limited sense: it is possible to refrain
from rejecting some of the rejected hypotheses with-
out violating control of the familywise error, but it is
not possible to reject any hypotheses that were not se-
lected by the procedure. A variant of familywise error,
k-FWER, has been formulated that controls the prob-
ability of making at least k > 1 false rejections (Ro-
mano and Wolf, 2007). Depending on k, methods with
this error rate are mild and are flexible in the same
limited way as FWER itself is. Still, k-FWER-based
methods have so far only attracted theoretical interest
as in these methods value of k£ may not be chosen post
hoc, and nobody knows how to choose k a priori in an
applied setting. A recent permutation method of Mein-
shausen (2006) can be seen as a method that controls
k-FWER simultaneously for all values of k, and conse-
quently allows post hoc selection of k. This method is
mild, post hoc, and quite flexible, although it does not
allow a fully arbitrary selection of the set of rejected
hypotheses.

False Discovery Rate (Benjamini and Hochberg,
1995) methods control the expected proportion of
falsely rejected hypotheses among the rejected hy-
potheses. Such methods are not very well suited for tra-
ditional confirmatory research and take a step toward
exploratory research. FDR-based methods are certainly
mild compared to FWER-based methods. However,
they are not post hoc, as the set of rejected hypotheses
is completely determined after setting the FDR thresh-
old. Moreover, FDR-based methods are not flexible: as
shown by Finner and Roters (2001), and illustrated in
a practical example by Marenne et al. (2009), selecting
a subset from the hypotheses that the FDR-controlling
procedure rejects may increase the false discovery rate
above the prespecified level, just like, of course, select-
ing a superset can. Many variants of FDR have been
proposed (e.g., Storey, 2002; Efron et al., 2001; Van
Der Laan, Dudoit and Pollard, 2004), but none of these
has the desired three characteristics of the ideal multi-
ple testing procedure for exploratory inference. Meth-
ods have been formulated for selective inference (Ben-
jamini and Yekutieli, 2005), but these still do not allow
the full flexibility of exploratory selection.

In this paper we present an approach to multiple test-
ing that does allow mild, flexible and post hoc infer-



586 J.J. GOEMAN AND A. SOLARI

ence. By the nature of the requirements of being flex-
ible and post hoc, such a procedure cannot prescribe
what hypotheses to reject, but can only advise. This
reverses the traditional roles of the user and the proce-
dure in multiple testing. Rather than, as in FWER- or
FDR-based methods, to let the user choose the quality
criterion, and to let the procedure return the collection
of rejected hypotheses, the user chooses the collection
of rejected hypotheses freely, and the multiple testing
procedure returns the associated quality criterion. In
our view, the task of a multiple testing procedure in
the exploratory context is not to dictate what to reject,
but to quantify the risk taken, in terms of the poten-
tial number of false rejections, of following up on any
specific set of hypotheses, chosen freely.

This reversal of roles can be achieved while avoiding
the pitfall of proposing yet another variant of FWER or
FDR; it can be done simply by combining the famil-
iar concept of the confidence set, the discrete version
of the confidence interval, with the well-known closed
testing procedure (Marcus, Peritz and Gabriel, 1976),
widely recognized as a fundamental principle of multi-
ple testing. What we will show is that the closed testing
procedure can be used to construct exact simultaneous
confidence sets for the number of false rejections in-
curred when rejecting any specific set of hypotheses,
measuring the risk of following up on this particular set
of hypotheses. Because the confidence sets are simul-
taneous over all possible sets of rejected hypotheses,
the user is free to optimize, making the procedure valid
even under post hoc selection of the rejected set.

The approach we propose is constrained by the re-
quirement that the number of hypotheses potentially
to be followed up is finite and that these hypotheses
can be listed a priori. While this requirement rules out
the most open-minded and unstructured applications of
exploratory research, many exploratory problems are
structured enough to fit the framework.

Our proposed procedure has strong links to k-FWER
methods. In fact, the constructed confidence sets can
be seen as controlling the k-FWER, but simultaneously
for all values of k, thus sanctioning post hoc selection
of k and removing the requirement of selecting k a pri-
ori, which traditionally plagues k-FWER-based meth-
ods. Through this, our method links to the approach of
Meinshausen (2006); we come back to this link in Sec-
tion 4.2.

Another interesting link is with methods that have
appeared in recent years for estimating g, the number
of true hypotheses among the collection of all hypothe-
ses (Schweder and Spjgtvoll, 1982; Benjamini and

Hochberg, 2000; Langaas, Lindqvist and Ferkingstad,
2005; Meinshausen and Biihlmann, 2005; Jin and Cai,
2007). The procedure outlined in this paper automati-
cally gives a confidence set for the quantity g, because
the collection of all hypotheses is one of the possible
sets of rejected hypotheses that the user can choose to
follow up, and the number of false rejections in that set
is exactly .

The outline of this paper is as follows. In the next
section, we review the closed testing procedure and the
role of the concept of consonance in that procedure.
We argue that non-consonant closed testing procedures
have been underrated, and illustrate the type of addi-
tional inference that is possible from a non-consonant
closed testing procedure, but typically neglected, be-
fore we argue how these additional inferences can be
used to construct a confidence set. Section 3 applies the
approach to selection of variables in a multiple regres-
sion model. Section 4 explores computational issues
related to closed testing procedures and proposes sit-
uations in which shortcuts can be found. Finally, Sec-
tion 5 looks at estimation of the number of correctly
rejected hypotheses. Software to perform the methods
described in this paper is available in the cherry pack-
age, downloadable from CRAN.

2. NON-CONSONANT CLOSED TESTING

The closed testing procedure (Marcus, Peritz and
Gabriel, 1976) is well known as a cornerstone of fam-
ilywise error control. In this section we show how
closed testing may also be used to construct confidence
sets for the number of falsely rejected hypotheses.

First we introduce some notation. Let Hy, ..., H,, be
the collection of hypotheses of interest, the elementary
hypotheses, out of which we want to select hypothe-
ses to follow up. Some of these hypotheses are true; let
T C{1,...,n} denote the unknown indices of true hy-
potheses. To use a closed testing procedure, we must
consider not only the elementary hypotheses, but also
all intersection hypotheses of the form H; = ();¢; H;,
where I C {1,...,n}, I # . Figure 1 illustrates the
intersection hypotheses formed by three hypotheses
Hy, Hy and Hj3 in the form of a graph, with arrows
denoting subset relationships (ignore the crosses for
now).

An intersection hypothesis Hj is true whenever all
H;, i € I, are true, that is, whenever I C T. Let the
closure C be the collection of all nonempty subsets of
the index set {1, ..., n}. Each element of C corresponds
to an intersection hypothesis, some of which are true.
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F1G. 1. Intersection hypotheses formed by elementary hypothe-
ses Hy, Hy and H3. Rejected hypotheses have been marked with a
cross. The rejection of Hy N H3 is a non-consonant rejection.

Let 7 ={I € C:I C T} be the subsets correspond-
ing to true intersection hypotheses. The collection C
also contains singleton sets. Noting that we can equate
H; = Hy;y, let H = {I € C:#I = 1} be the subsets cor-
responding to the elementary hypotheses.

The closed testing procedure works as follows. It re-
quires «-level tests for every intersection hypothesis
Hj, I € C, which are called the local tests. Applying
these local tests, let i/ C C be the collection of subsets
U e C for which the test rejects the hypotheses Hy .
The collection U represents the raw rejections uncor-
rected for multiple testing. Based on these raw rejec-
tions, the closed testing procedure rejects every I € C
for which J € U for every J 2 I. Denote the collec-
tion of all such I by X. It was shown very elegantly
by Marcus, Peritz and Gabriel (1976) that with this re-
jected set the closed testing procedure strongly controls
the familywise error for all hypotheses Hy, I € C, at
level «. They showed that the event E = {Hr ¢ U},
which happens with probability at least 1 — «, implies
that Y N7 = 2.

In the example of Figure 1, suppose that the hy-
potheses rejected by the local tests are the ones marked
with a cross. In this example H; is rejected by the
closed testing procedure because the four hypotheses
Hy, HHNHy, H N Hz and H) N HyN H3 are all rejected
by their local test. In fact, in the example of Figure 1 we
have X = U, because each hypothesis rejected by the
local test has all its ancestors in the graph of Figure 1
rejected.

When using the closed testing procedure for family-
wise error control, the intersection hypotheses are gen-
erally constructed for the benefit of the procedure, but
are not of genuine interest by themselves. The reported
result of the procedure is therefore usually not the col-
lection X, but only X N H. From the perspective of
familywise error control, a rejection / € X for which

there isno J € X N'H with J C I is a wasted rejection.
Such a rejection was not instrumental in facilitating a
rejection of interest; if that rejection had not occurred,
the same rejected set X N H of elementary hypotheses
would have resulted from the procedure. This consid-
eration has led to a quest for consonant closed testing
procedures. A closed testing procedure is consonant
if the local tests for every I € C are chosen in such a
way that rejection of I implies rejection of at least one
J € 'H. It is easily shown that for every closed test-
ing procedure there is a consonant procedure that re-
jects at least as much in X N H. Moving from a non-
consonant to a consonant procedure may often lead to
a gain in power on the elementary hypotheses. From a
familywise error perspective, consonance is, therefore,
a desirable property, and non-consonant procedures are
best avoided (Bittman et al., 2009).

However, once we are interested in milder inference
than a familywise error-based one, the premise that
only rejection of the elementary hypotheses Hi, ...,
H, is of interest should be dropped, and non-consonant
closed testing procedures need not be avoided. We il-
lustrate this with the simple example of Figure 1, which
will immediately serve as a small showcase of the point
of view on multiple testing we propose in this pa-
per. Here, the only one of the elementary hypotheses
that has been rejected is Hj. Of the intersection hy-
potheses we see three “consonant” rejections, namely
H, N Hy N H3, HH N Hy and H; N Hz, which have
all facilitated rejection of the elemental hypothesis H.
We also see one “non-consonant” rejection, H» N Hs.
A familywise error perspective would dictate rejection
of H; and nothing else. An exploratory perspective,
however, on the same data would lay the choice what
and how many hypotheses to reject with the user. An
obstinate user could, for example, choose not to reject
Hj, but to reject H, and H3. What can we say about
the risk incurred by such a user in terms of the number
of false rejections?

In general, the number of false rejections made when
rejecting the hypotheses H;, i € R, is equal to t(R) =
#(T N R), the number of true null hypotheses among R.
For a given set R, this quantity is just a function of
the model parameters, for which we can find estimates
and confidence intervals just like for any other func-
tion of the model parameters. The confidence interval
takes the form of a confidence set, because t(R) only
takes discrete values. We come to the issue of estima-
tion later, and first construct such a confidence set.

To construct a confidence set, define

Cr={l€C:I C R},
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the collection of all intersection hypotheses involving
only rejected hypotheses, and let

to(R) =max{#I:1 €Cp, I ¢ X},

taking 7, (R) = 0 if Cr C X. The quantity #,(R) is the
size of the largest subset of R for which the corre-
sponding intersection hypothesis is not rejected by the
closed testing procedure. We claim that the set

(1) {0, ..., 1 (R)}

is a (1 — a)-confidence set of the parameter 7 (R).

To prove the coverage of this set, remember that if
the event E has happened, then all rejections that the
closed testing procedure has made are correct. Given
that £ has happened, the value of t(R) cannot be
greater than the value of 7,(R), because otherwise a
true intersection hypothesis would have been rejected,
which is inconsistent with the definition of E. Conse-
quently, T(R) € {0, ..., 1, (R)} with probability at least
P(E) =1 — «, which makes {0, ..., % (R)} a (1 — a)-
confidence set for 7(R).

The confidence set (1) is always one-sided, never
providing a nontrivial lower bound for t(R). The rea-
son for this is that the confidence set originates from a
procedure that is focused on rejecting, not on accepting
null hypotheses. Furthermore, for many applications
the null hypotheses are point hypotheses, of which it
can never be proved that they are true. In these cases,
no procedure can produce a confidence interval with a
nontrivial lower bound, and the upper bound is the only
bound of real interest.

Often interest is in quantifying not the number of
true hypotheses in R, but the number of false hypothe-
ses ¢ (R) =#R — t(R). A confidence set for ¢ (R) fol-
lows from (1) immediately as

{fa(R), ..., #R},

where f,(R) =#R — 1, (R). Confidence sets for other
quantities that depend only on t(R) and #R, such as
the false discovery proportion 7(R)/#R, may be de-
rived in a similar way.

Returning to the example of Figure 1 with choice
of a rejected set, R = {2, 3}, we have a realized value
of t,(R) = 1. We conclude that {0, 1} is a (1 — «)-
confidence set for the number of false rejections in-
curred when rejecting H> and Hz. Even though nei-
ther Hy or H3 was rejected by the closed testing pro-
cedure, when rejecting both Hy and H3 the user can
be confident of making at least one correct rejection.
The choice of R = {2, 3} is only one of many possible

TABLE 1
Confidence sets for the numbers of incorrect rejections t(R) and
correct rejections ¢ (R) incurred with various choices of the
rejected set, based on the closed testing result of Figure 1

R Confidence set for 7 (R) Confidence set for ¢(R)

{1 {0} {1}
{2} {0, 1} {0, 1}
3} {0, 1} {0, 1}
{1,2} {0, 1} {1,2}
{1,3} {0, 1} {1,2}
{2.3} {0, 1} {1,2}
{1,2,3} {0, 1} {2,3}

rejection choices that the user can make. For each al-
ternative choice, a confidence set can be made in the
same way as for R = {2, 3}. These confidence sets, and
the corresponding confidence sets for ¢(R), are given
in Table 1.

The important thing to note about confidence sets of
the form (1) is that they are simultaneous confidence
sets, which all depend on exactly the same event E for
their coverage. Because these confidence sets are si-
multaneous, the user can review all these confidence
sets, and select the rejected set R that he or she likes
best, while still keeping correct 1 — o coverage of the
selected confidence set: under the event E, all confi-
dence sets cover the true parameter simultaneously, and
therefore, under the same event E, the selected con-
fidence set covers the true parameter. Consequently,
the selected confidence set has coverage of at least
P(E) =1 — «. The simultaneity of the sets makes their
coverage robust against post hoc selection.

In the specific case of Table 1, the user might choose
to follow up on all three hypotheses, which would give
him or her confidence in at least two discoveries of
a false null hypothesis. On the other hand, if suffi-
cient funds are available for only two validation exper-
iments, the user may choose to follow up on any two
hypotheses, any pair giving confidence of obtaining at
most one false positive.

Contrary to the application of closed testing for fam-
ilywise error control, in terms of confidence sets non-
consonant rejections do improve the results obtained
from the procedure. Without the rejection of Hy N H3
in Figure 1 the confidence sets for R = {2, 3} and for
R ={1,2,3} would have been larger than the ones
given in Table 1. From the definition of consonance it
follows immediately that the value of #,(R) in a con-
sonant closed testing procedure is equal to the number
of hypotheses in R that are not rejected by the closed
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testing procedure under a familywise error regime. In
non-consonant closed testing procedures, the value of
to(R) can be substantially smaller, as we shall see in
examples below.

Essentially, the example of Table 1 summarizes the
confidence set approach to multiple testing. The user
has unlimited options in selecting what to reject, and
may review all options and their consequences in or-
der to make his or her choice. This approach fulfills all
three criteria set for multiple testing in exploratory re-
search formulated in the introduction. The procedure
is flexible, because it does not prescribe any rejections
but leaves the choice which hypotheses to follow up
completely in the hands of the user. The procedure is
mild, because it allows any number or proportion of
false rejections that the user desires. Furthermore, the
procedure is post hoc, because it allows the user to re-
view the consequences, in terms of the potential num-
ber of false rejections, of any choice of rejected hy-
potheses before making a final choice, without com-
promising the quality of the inferences obtained. Still,
even with the lenience of all these properties, the infer-
ential statements resulting from the procedure are ab-
solutely classical and rigorous, requiring no new defi-
nitions of error rates but only the classical concept of
simultaneous confidence sets.

3. EXAMPLE: SELECTING COVARIATES
IN REGRESSION

One area of statistics in which common practice is
highly exploratory and post hoc is the selection of co-
variates in a multiple regression. Methods such as for-
ward or backward selection, or their combination, are
typically used to select a model containing a subset of
a set of candidate covariates. Often, p-values that are
reported for the selected covariates completely ignore
the selection process. The confidence set method out-
lined in the previous section can be used in this situa-
tion to set confidence limits to the number of selected
variables that is truly associated with the response vari-
able.

As an example, consider the physical dataset (Larner,
1996), in which 10 physical measurements on 22 male
subjects (length, and circumference of various parts of
the body) are used as covariates for modeling body
mass. An analysis based on a linear regression model
with a forward-backward algorithm selects the four
covariates forearm, waist, height and thigh as the rel-
evant variables. Table 2 gives the p-values of the co-
variates in both the full and the selected model. The

TABLE 2
Uncorrected p-values (t-test) for relevance of variables in the full
model and selected model

Covariate Full model Selected model
(Intercept) 0.036 0.000
Forearm 0.061 0.000
Biceps 0.755 -
Chest 0.420 -
Neck 0.518 -
Shoulder 0.905 -
Waist 0.000 0.000
Height 0.033 0.005
Calf 0.303 -
Thigh 0.351 0.036
Head 0.105 -

reported p-values of the selected model are known to
be anti-conservative as they do not take the selection
into account. An important question to ask, therefore,
is how many truly relevant variables are, in fact, in-
cluded in this selection. This would give a measure of
confidence for the selected set.

Following the strategy outlined in the previous sec-
tion, we construct a linear regression model with an in-
tercept and 10 regression coefficients By, ..., B10, and
define the elementary hypotheses H;,i =1,..., 10, to
be the hypotheses that the corresponding regression co-
efficient 8; = 0. Next we construct all 1,023 intersec-
tion hypotheses Hj, I € C, each of which corresponds
to the hypothesis that 8; = 0 for all j € I. As the lo-
cal tests we choose the F-test of the corresponding
null model against the saturated model, tested at level
a =0.05.

The closed testing procedure rejects 626 out of the
1023 hypotheses, among which there is one elemen-
tary hypothesis: waist. Several non-consonant rejec-
tions have occurred. We can summarize these by find-
ing the defining rejections, that is, the rejections I € X
which have no rejected subset J C I, J € X. For
this dataset, these defining rejections are the following
seven sets:

{waist}

{forearm, neck, shoulder, height}

{forearm, biceps, shoulder, calf}

{forearm, shoulder, height, calf'}

{forearm, biceps, chest, neck, shoulder, thigh}
{forearm, shoulder, height, thigh}

{forearm, calf, thigh}

As each of these sets corresponds to a rejected in-
tersection hypothesis, we can conclude with 95% con-
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fidence that each of the seven sets contains at least
one truly relevant covariate. It is tempting to say that,
beside waist, forearm must be relevant, since it is in-
cluded in all defining sets except the first. This is not
warranted, however, as the sets are also consistent with
alternative truths, such as that both shoulder and thigh
are relevant variables. What we can conclude, is that if
we select, for example, the set

2) R = {waist, forearm, calf, thigh}

we have selected at least two relevant variables. Fur-
thermore, we can also directly conclude that waist is a
relevant variable.

Coming back to the set R = {waist, forearm, height,
thigh} selected by the forward—backward procedure,
we can find all 15 intersection hypotheses of the four
hypotheses in R and check whether they were rejected
by the closed testing procedure. We find that R € X,
but {forearm, height, thigh} ¢ &', so that 7, (R) = 3.
Therefore, we can say with confidence that the selected
set R contains one truly relevant hypothesis, but not
that it contains more than one. From this result, it is
clear that the p-values given for the selected model in
Table 2 are highly untrustworthy.

To find out how many of the original 10 hypothe-
ses are relevant, we take R to be the full set of 10 hy-
potheses, and we calculate #,(R) = 8 for this set. Ap-
parently, we can conclude that there are at least two co-
variates among these 10 that are determinants of mass.
The smallest set that contains at least two relevant co-
variates is the set (2).

It should be noted that the set selected by variable se-
lection procedure should not generally be expected to
be optimal from a confidence set perspective, because
the perspectives of the two procedures are quite dif-
ferent. This is best illustrated by thinking of a dataset
in which there are two covariates which are both highly
correlated with each other, and with the response. Vari-
able selection algorithms will always choose one of
the two variables, disregarding the second one as su-
perfluous given the first. The confidence set approach,
however, will emphasize the uncertainty of the choice
between the two variables, and will not reject any in-
tersection hypothesis that involves only one of the two
covariates. To have confidence that at least one truly
relevant covariate is included, both of the highly corre-
lated variables must be selected. This reflects a differ-
ence in emphasis between the two approaches: variable
selection selects optimal sets, whereas the confidence
set approach quantifies the uncertainty inherent in the
selection process.

It is interesting to investigate the price of post hoc
selection relative to a priori selection. It is immedi-
ate from the procedure that reducing the tested set of
hypotheses to a set R a priori is at least as powerful
as, and likely more powerful than, testing a larger set
and selecting the same set R post hoc. Post hoc se-
lection will generally result in wider confidence sets
than a priori selection: this is the price to be paid for
the risk of overfit caused by post hoc selection. In
the example this price is surprisingly small. If the set
R = {waist, forearm, height, thigh} would have been
defined a priori as the set of hypotheses of interest,
treating the remaining covariates’ regression coeffi-
cients as nuisance parameters, the confidence set of
¢ (R) improves from {1, 2, 3,4} to {2, 3,4}. The con-
fidence set for ¢ (R) for the set R defined in (2) does
not change.

4. SHORTCUTS

In its standard form, application of a closed testing
procedure requires 2" — 1 tests to be performed. Smart
bookkeeping can reduce this number somewhat, espe-
cially if some intersection hypotheses high up in the hi-
erarchy turn out non-significant, because it can be used
that if 7 ¢ &, then immediately J ¢ X forevery J C I,
which saves calculation of some of the tests. Still, even
with such tricks and with high computational power,
the closed testing procedure becomes computationally
intractable in its general form for a number of hypothe-
ses around 20-30, depending on the computational ef-
fort needed for each single test.

If a large number of hypotheses is to be investigated,
it is, therefore, convenient if the local tests can be cho-
sen in such a way that not all these tests need to be
calculated. Methods for avoiding calculation of some
of the hypothesis tests in the closed testing procedure
are known as shortcuts. The literature on shortcuts in
the closed testing procedure has been focused mainly
on consonant procedures, and on finding the rejected
individual hypotheses (Grechanovsky and Hochberg,
1999; Zaykin et al., 2002; Hommel, Bretz and Maurer,
2007, Bittman et al., 2009; Brannath and Bretz, 2010).
In this section, we loosely extend the concept of short-
cuts to non-consonant procedures, and discuss ways
of finding #,(R) in a computationally easy way for
specific choices of the local test, namely those based
on Fisher combinations, on Simes’ inequality, and on
sums of normally distributed test statistics. We also
demonstrate how the permutation-based procedure of
Meinshausen (2006) fits into the closed testing frame-
work. Finally, we touch upon the possible use of other



MULTIPLE TESTING FOR EXPLORATORY RESEARCH 591

procedures than closed testing for constructing confi-
dence sets.

4.1 Fisher Combinations

The case of independent null hypotheses deserves
special attention as a benchmark, because several
important multiple testing methods (Benjamini and
Hochberg, 1995; Efron et al., 2001; Storey, 2002) have
been initially formulated for independent hypotheses
only. Independent tests are relatively rare in practical
applications.

One highly suitable choice for the local tests in the
independent case is Fisher’s combination method. It re-
quires only the p-values pi, ..., p, of the tests of the
elemental hypotheses Hi, ..., Hy, and rejects an inter-
section hypothesis corresponding to / € C whenever

=2 "log(pi) > gur,
iel

where g, is the (1 — a)-quantile of a ¥ 2-distribution
with 2r degrees of freedom. This test is a valid a-level
test of the hypothesis Hy if the p-values p;, i € I, are
independent. Note that the requirement of being a valid
local test only refers to intersection null hypotheses
that are true, so that there is no requirement of inde-
pendence among p-values of false null hypotheses, nor
even between p-values of true and false null hypothe-
ses.

Fisher’s method is highly non-consonant, as sum test
often are. Moreover, the simple structure of the local
tests allows easy shortcuts to be formulated. For any
s < #R, we have that 7, (R) < s if

R, 1) > ma il — R,' ,
u(R,s + )_OEJEXM{85+1+1 u(R, j)}

where u(/, k) is the sum of the k smallest values of
—2log(p;) with i € I, R is the complement of R, and
M 1is the number of values of —2log(py) in R smaller
than the (s 4 1)th largest value of —2log(py) in R. This
shortcut, related to the shortcut of Zaykin et al. (2002),
allows calculation of #,(R) for any R without expo-
nentially many tests having to be calculated. It is an
example of a general method for finding shortcuts for
exchangeable tests, which we explain in Appendix A.

As an example, consider the following application in
the realm of adverse drug reactions. Consider the data
in Table 3, which give raw p-values for null hypothe-
ses concerning the presence of adverse drug reactions
reported for a certain drug. We assume the hypotheses
to be independent, although the validity of this assump-
tion can be disputed.

TABLE 3
Adverse events data, taken from Herson (2009), sorted to
increasing p-values and with a typo corrected

Adverse event p-value
Anemia 0.02
Myocardial infarct 0.03
Diarrhea 0.04
Nausea and vomiting 0.04
Stomatitis 0.08
Skin rash 0.10
Dehydration 0.12
Shortness of breath 0.18
Renal failure 0.20
Fever 0.23
Blurred vision 0.26
Nose bleed 0.28
Anorexia 0.30
Bronchitis 0.31
Wheezing 0.40
Headache 0.50

An analysis based on familywise error rate (Siddk,
1967) or false discovery rate (procedure of Ben-
jamini and Hochberg, 1995) results in no rejections for
these data. However, among the hypotheses with small
p-values, the researcher notices three hypotheses
concerned with problems of the gastrointestinal tract:
diarrhea, nausea and vomiting, and stomatitis. The re-
searcher may hypothesize that the drug causes prob-
lems in this area, and may consider following up on
these three hypotheses. For this choice of R we can
calculate fy(R) =1 at @ = 0.05, and we can conclude
that the drug in question has at least some adverse ef-
fect somewhere in the gastrointestinal tract. The re-
searcher can be confident that following up on these
three hypotheses will lead to at least one potentially
successful validation experiment.

Alternatively, if the researcher wants to optimize the
number of correct rejections, he or she may simply
wish to reject those hypotheses that have the smallest
p-values. In that case the only choice the researcher has
to make is the number of rejections, and a plot such as
Figure 2 may be made, which plots the lower bound
of the number of correct rejections f,(R) against the
number of rejections #R. Based on this plot, the re-
searcher can claim with 95% confidence that at least
five adverse drug reactions occur for this drug, and
that these are found among the hypotheses with the 10
smallest p-values. If the researcher does not have funds
available for 10 follow-up experiments, the researcher
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FIG. 2.  Number of correct rejections versus number of rejections
for the data of Table 3. The bars only give the lower bound of the
95% confidence interval; the number of false null hypotheses (cor-
rect rejections) is likely to be larger than indicated.

may want to validate the top six, which gives confi-
dence of finding at least four false null hypotheses, or
perhaps the top three, for confidence of finding at least
two false null hypotheses.

Figure 2 also illustrates the link between our pro-
posed approach and the k-FWER criterion. A user
wishing to control k-FWER can reject any set R that
has 7, (R) < k, for example taking R as the set cor-
responding to the i smallest p-values, choosing i as
the largest value such that #,(R) < k still holds. The
graph of Figure 2 simultaneously shows the numbers
of rejections allowed with k = 1,2, 3,4, ..., which are
given by i =0,3,6,7,.... A major advantage of our
approach over traditional k-FWER control approaches
is that control is simultaneous over all rejected sets,
and therefore over all choices of k. The procedure thus
bridges the gap between weak FWER control, related
to n-FWER, and strong 1-FWER control. Furthermore,
rather than choosing k in advance, its value may be
picked after seeing the data without destroying the as-
sociated control property. The link between k-FWER
and our approach is not limited to local tests based on
Fisher combinations.

An interesting feature of using Fisher’s method
in combination with the confidence set approach is
that the method may prove the presence of false null

hypotheses even in the situation that no individual
p-value is smaller than «. Consider the following
p-values, taken from Huang and Hsu (2007):

p1=0.051; pr=0.064;
p3=0.097; ps=0.108.

Even though all p-values are non-significant individu-
ally, the confidence set for ¢ (R) when rejecting the top
two hypotheses is {1, 2}, when rejecting the top three
hypotheses {2, 3}, and when rejecting all four hypothe-
ses {2, 3, 4}. This indicates that even in absence of any
individually significant hypotheses we can make a rig-
orous confidence statement that at least two out of the
first three hypotheses are false.

Fisher’s method is highly non-consonant, and can
be very powerful, especially if there are many mod-
erately small p-values. It is not uniformly more pow-
erful than other tests, however. Compared to consonant
local tests, such as Sidak’s, Fisher’s method tends to
have smaller values of 7, (R) for large rejected sets R
due to its large number of non-consonant rejections,
but Sidak’s method often has more sets R which have
1o (R) =0, due to a higher number of consonant rejec-
tions.

4.2 Simes Type Local Tests and Permutations

A different type of local test with potentially non-
consonant rejections is a type of test that rejects a hy-
pothesis Hy, I € C, whenever
3) ply =<’
for at least one 1 <i < #I, where p(li) is the ith small-
est among the p-values {p;};es of the elementary hy-
potheses with indices in [, and c;", l<m<mn, 1<
i < m, are appropriately chosen critical values. With-
out loss of generality we can take ¢;" < ¢! ifi < j.

We call local tests of the form (3) Simes type local
tests because if we choose
) ="

m

the test based on (3) is a valid a-level test of Hj
by Simes’ (1986) inequality. Simes’ inequality holds
whenever p-values of true null hypotheses are indepen-
dent, but also under more general conditions, as inves-
tigated by Sarkar (1998). In particular it holds for p-
values from identically distributed, nonnegatively cor-
related test statistics.

A variant of Simes’ inequality has been proposed by
Hommel (1983). This variant uses critical values
5) =
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where K, = Y7, v~!. Unlike the one based on
Simes’ inequality, the local test defined by these criti-
cal values is of the correct level @ whatever the depen-
dence structure of the original p-values.

Local tests of the form (3) do not generally allow
shortcuts for the calculation of 7, (R), but two useful
shortcuts are available if the critical values are chosen
in such a way that

(6) cf <c" whenever ! >m.

The first shortcut this condition allows is the general
shortcut described in Appendix A, the conditions of
which are fulfilled whenever (6) holds. The second
shortcut is even faster to calculate, but is less general:
it holds for rejected sets of the form R = {i: p; < ¢}
only. Let pgy, i = 1,...,n, be short for p(;y with
I ={1,...,n}. For R of the form mentioned, we have
the shortcut

(7) fa(R) > max{S,:1 <r <#R},

where S, = max{s > 0: p) < c/_;}. The value of S,
can be interpreted as the number of more stringent criti-
cal values ¢_,, ..., ¢} by which the p-value p() over-
shoots its mark c¢'. The number of false hypotheses is
larger than the greatest such overshoot of the ordered
p-values in the set R. The shortcut (7) is useful for
making plots such as the one in Figure 2. We prove
this shortcut in Appendix B. A slightly more powerful
variant of the shortcut (7) is available if we have

] <y

i_p forevery 1 <w <i.

In this case, we have the same shortcut as (7), but with
S =max{s > 0: p¢-) < ¢ _; }. The proof of this state-
ment is analogous to the proof for (7) and is also given
in Appendix B. It is easy but tedious to show that the
Simes critical values (4) and (5) conform to (6) and that
the critical values (4) also conform to the stronger (8),
so that the shortcuts may be used for these choices of
the local test (see also Benjamini and Heller, 2008).
As a side note, we remark that the critical values
(4) and (5) are the same as the critical values used
in the false discovery rate controlling algorithms of
Benjamini and Hochberg (1995) and Benjamini and
Yekutieli (2001), respectively. The correspondence be-
tween the critical values creates a connection between
the corresponding methods. The set that has been re-
jected by the false discovery rate algorithm always has
fo(R) > 0 based on the closed testing procedure with
the corresponding local test. Note that the assumptions
underlying each local test and its corresponding false

discovery rate algorithm are very similar. For the ex-
ample data of Section 4.1, the Simes local test leads to
no rejections, which is consistent with finding no rejec-
tions with the procedure of Benjamini and Hochberg
(1995).

Permutation testing can be a powerful tool to take
into account the joint distribution of the p-values.
Useful shortcuts in a closed testing procedure with
permutation-based local tests can be constructed from
the work of Meinshausen and Biihlmann (2005) and
Meinshausen (2006). These authors describe a permu-
tation-based way to find critical values k;,i =1, ..., n,
such that the probability under the complete null hy-
pothesis that p(y < k; for at least one i is bounded
by «. The same method may in principle also be used
to find corresponding permutation critical values kl-I
for every intersection hypothesis Hy, I € C, and there-
fore a local test for every intersection hypothesis Hy;
a closed testing procedure can be made on the basis of
these tests. However, unless the number of hypotheses
is limited, this will be extremely time-consuming, and
it would lead to a closed testing procedure for which
shortcuts are not available. A way out of this dilemma
can be found by remarking that, by construction of the
permutation critical values, we have kiI > k; for every
i and I. Therefore, a valid, though conservative, local
test may be constructed by simply using a procedure
of the form (3) with ¢! = k; for every 1 <m < n.
This local test fulfils the condition (6) and therefore
admits shortcuts. With this choice of a local test, the
confidence set approach to multiple testing can be used
for every collection of test statistics for which permu-
tation is possible, opening up the possibility to use
permutation-based closed testing in genomics research.

Meinshausen (2006) constructed simultaneous con-
fidence bands for the number of falsely rejected hy-
potheses for rejected sets of the form R = {i : p; < g},
similar to Figure 2, based on the permutation critical
values ki, ..., k, he found. Even though Meinshausen
did not use closed testing, these confidence bands are
identical to the confidence bounds that would be ob-
tained when using the local tests (3) with " = k;
in combination with the shortcut (7). By exploiting
the shortcut of Appendix A rather than this simpler
shortcut, it becomes possible to extend Meinshausen’s
method to be able to find confidence bounds for t(R)
for sets R not of the form R = {i: p; < q}. Alter-
natively, for a very small number of tests, the full
permutation-based closed testing procedure may be
used, which could be more powerful.
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4.3 Normally Distributed Test Statistics

Workable local tests may also be constructed on the
basis of normally distributed scores. Consider the sit-
uation that we have scores z1, ..., z, for each hypoth-
esis Hi, ..., Hy, respectively, which are standard nor-
mally distributed if their respective null hypothesis is
true, and we would reject H; one-sidedly when z; is
large. This situation occurs quite frequently in prac-
tice, at least asymptotically, for example if we do many
one-sided binomial z-tests. A sensible choice for a test
statistic for a local test is Z; = ) ;<; z;. Consider first
the case in which the scores of true null hypotheses
are independent. In that case Z; is normally distributed
with mean O and variance #I, and we may reject Hy
whenever Z; > V#I - ®(1 — a), where @ is the stan-
dard normal distribution function. If the scores are not
independent but only jointly normally distributed, we
have the following, more conservative result. In that
case Zj is normally distributed with mean 0 but un-
known variance. Let ¥ be the correlation matrix of
{zi}ier, then the variance of Z; is given by 1731,
where 1 is a vector of ones of length #/. This vari-
ance is bounded by #/ times the largest eigenvalue of
%, and therefore by (#/ )2. It follows that for o < 1/2,
we may reject H; whenever Z; > #I - ®(1 — «). This
type of test was used by Van De Wiel, Berkhof and Van
Wieringen (2009).

Both tests are exchangeable and lead to easy short-
cuts in the sense of Appendix A. In practice, the test
for the non-independent case can be highly conserva-
tive if used for small values of «, unless the scores are
strongly positively correlated. One case to note, how-
ever, is the case that « = 1/2, when the critical value
is O for both the independent and the general situation,
negating the conservativeness of the latter. This situa-
tion is relevant for the method of Section 5.

4.4 Other Types of Shortcuts

Shortcuts of the form described in the appendices
can only be used within a restricted class of local tests
that is calculated as an exchangeable function of per-
hypothesis statistics. Other types of shortcuts may be
devised for other classes of local tests in the future.

A very different way to construct confidence inter-
vals of t(R) while avoiding calculation of the com-
plete closed testing procedure is to use a different mul-
tiple testing procedure that still allows non-consonant
rejection of some intersection hypotheses. Examples of
such procedures are the tree-based testing procedure
of Meinshausen (2008), recently improved by Goeman

and Solari (2010), the focus level procedure of Goeman
and Mansmann (2008), and the gatekeeping method of
Edwards and Madsen (2007). These procedures allow
familywise error inference on a collection of hypothe-
ses comprising the elementary hypotheses and a selec-
tion from the 2" — 1 intersection hypotheses, and may
produce non-consonant rejections on these intersection
hypotheses. The results of these procedures may be
used as a basis for constructing confidence intervals in
the same way as the results of the closed testing proce-
dure were used in Section 2.

5. ESTIMATION

In addition to the confidence interval, it can some-
times be informative to have a point estimate of the
number of true null hypotheses among a set of in-
terest. Estimation of the number of true null hy-
potheses has been a subject of recent interest in the
context of genomic data analysis, and several au-
thors (Schweder and Spjgtvoll, 1982; Benjamini and
Hochberg, 2000; Langaas, Lindqvist and Ferkingstad,
2005; Meinshausen and Biihlmann, 2005; Jin and Cai,
2007) have proposed methods for estimating 7 (R), al-
though for R = {1, ..., n} only. The quantity 7 (R) for
R =1{1,...,n} is commonly referred to as .

The confidence intervals of the previous sections are
easily adapted to produce a point estimate of 7(R) for
any set R. We propose to use the value 71,2(R) as an
estimate, the upper bound of the confidence interval,
calculated at the significance level o = 1/2. This es-
timate can be seen as a conservative median estimate
of the true quantity 7(R): by the properties of #,(R)
derived in the previous sections, f1/2(R) exceeds the
value of t(R) with a probability that is bounded above
by 1/2. Furthermore, this property holds simultane-
ously for all R by the simultaneity of the confidence
interval on which it is based, which makes the defining
property of the estimate robust against selection of R.

The estimate can be used to get an impression where
the “midpoint” of the confidence interval is. Applying
the procedure to the physical dataset of Section 3 at
o = 1/2, we find the following defining rejections:

{waist}

{forearm}
{height}

{chest, calf, thigh}
{neck, calf, thigh}
{thigh, head}

The estimated number of true null hypotheses among
all 10 hypotheses, for which the 95% confidence set
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was {0, ..., 8}, 1is calculated as 6, which points to an es-
timated number of four relevant variables in the regres-
sion. For the set R = {waist, forearm, height, thigh}
of four variables selected by the stepwise procedure,
the number of truly relevant variables is estimated
at 3 (the 95% confidence set for this quantity was
{1,2, 3, 4}). In contrast, the set (2) which included with
95% confidence at least two relevant variables, also
contains an estimated number of two relevant vari-
ables. The smallest rejected set that contains an es-
timated number of four relevant variables is the set
R = {waist, forearm, height, thigh, head}. We can re-
port this optimized set without fear of overfit, because
the property that the number of truly relevant covariates
is overestimated with probability at most 1/2 holds si-
multaneously for all rejected sets.

In the adverse event data of Section 4.1 the number
of true null hypotheses among the 16 hypotheses is es-
timated at two using a Fisher local test at « = 1/2. In
this case, all rejections turn out to be consonant: re-
jecting the 14 hypotheses with smallest p-values leads
to an estimated number of O false discoveries. If we
use Simes rather than Fisher for the local test, we even
obtain an estimated number of O true null hypotheses
among all 16 hypotheses.

We warn against using the estimate of the number
of falsely rejected hypotheses by itself, without the
associated confidence interval. To see the danger of
this, consider the simplest “multiple testing problem”
in which only a single null hypothesis is tested. The es-
timation procedure of this section would estimate this
hypothesis as true whenever the p-value is greater than
1/2, and as false whenever it is smaller than or equal to
1/2. This seems generally too lenient a conclusion to
be a viable strategy, although it may be useful in some
highly exploratory and risk-seeking settings. In these
situations, the special status of @ = 1/2 in the shortcut
of Section 4.3 may be of interest.

6. CONCLUSION

All exploratory research is essentially picking and
choosing. From a large number of potential hypothe-
ses to follow up, the researcher selects for further in-
vestigation those hypotheses or sets of hypotheses that
stand out in the researcher’s eyes. This selection is
made in complete freedom. The notion that any statis-
tical method would dictate what the researcher should
find interesting is contrary to the spirit of exploratory
research.

However, a well-known risk of picking and choos-
ing is overfit, “cherry-picking.” Patterns that strike the

researcher as relevant and interesting may have arisen
due to chance, and turn out to be false positives in
follow-up experiments. To protect a researcher against
too many disappointments of this type, it is important
to make a realistic assessment of the risk taken when
following up on a certain collection of hypotheses.

In this paper, we have presented an approach to mul-
tiple testing that is especially designed for the require-
ments of exploratory research, and which reverses the
way that multiple testing methods are typically used.
Rather than letting the user decide on the error rate, and
the procedure on the rejections, we let the user decide
on the rejections, and the procedure on the error rate.
Our approach does not rely on the definition of any new
error rates, and has not even required the design of a
new algorithm. The approach uses the classical con-
cept of the simultaneous confidence set, together with
the equally classical closed testing procedure, although
both in a novel way.

The end result of the procedure is a collection of
confidence sets for the number of falsely rejected hy-
potheses for all possible choices of the rejected set.
The most important property of these confidence sets
is that they are simultaneous. This simultaneity pro-
tects the user of the procedure against overoptimism
resulting from post hoc selection of the rejected set,
and removes many of the problems traditionally asso-
ciated with cherry-picking from a large set.

Finally, the approach is very general, and the limits
on its useability are mostly computational. The most
important assumption we make is that the number of
hypotheses potentially to be followed up is finite, and
that these hypotheses may be enumerated before start-
ing the experiment. Aside from that, the ability of the
closed testing procedure to work with any choice of
a local test makes that procedure very flexible. Only
if the number of hypotheses becomes large, computa-
tional issues limit the choice of local tests to those for
which shortcuts are available. The shortcuts described
in this paper already cover a wide range of applica-
tion areas. More and improved shortcuts are likely to
be found in the future.

APPENDIX A: SHORTCUTS FOR EXCHANGEABLE
LOCAL TESTS

We present a fairly general method for constructing
shortcuts in the closed testing procedure which can be
used for finding #, (R) and are appropriate for the meth-
ods in Section 4. This shortcut delineates a class of lo-
cal tests for which #,(R) can be calculated for any R
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by calculating only n?, rather than 2" tests. We give
the shortcut for a p-value-based method. The shortcut
for methods based on other scores (e.g., Section 4.3) is
completely analogous.

Assume that the local test is exchangeable, that is,
rejection of Hy, I € C, only depends on the set P; =
{piticr of raw p-values, and not on the collection [
itself. Let & be the function that maps from a set of
p-values P to rejection, §(P) = 1 if the collection
P = P; would lead to rejection of Hy, and §(P) =0
otherwise. Further, suppose that

) S{p1s--spe}) =8Uq1,s - qi})
whenever p1 <gqi, ..., pr <qi, and that
(10) d(qUP)=45(P)

whenever ¢ < min(p € P).
If these assumptions hold, it can be shown that for
any s < #R,

(1) 8(@f,u0fH =1 forevery j€{0,...,mg}

implies 7, (R) < s. Here, QSRJrl is the set of the s + 1
largest p-values of hypotheses in R; Qf is the set of
the j largest p-values of hypotheses not in R, and mp
is the number of p-values not in R that are larger than
the smallest p-value in Q§+1.

To show this, note that by assumptions (9) and (10),
equation (11) implies that

sk uprPn=1
for every I € C, and that therefore, by assumption (9),
S(PyUPH)=1

for every I € C and for every J € R for which #J =
s + 1. Consequently, J € X for every J C R for which
#J =s + 1, so that 7, (R) < s by definition.

APPENDIX B: SHORTCUTS FOR SIMES-TYPE
LOCAL TESTS

Next, we prove the shortcut (7) for Simes-type local
tests. Let R ={i : p; < ¢} be arejected set, and assume
that condition (6) holds.

First, let r = #R, and remark that p() < ¢}
some s > 0, implies that

(1 fa(R) > s.

To see why this is true, choose any K C R with #K >
r —s and any J 2 K. Remark that p() < c'_, implies
that

_,» for

J K #J
Pr—s) = Pr—s) =P = Cffs =6l

Consequently, K € X forevery K € R with #K >r —
s, so that 7, (R) < r — s, and (1) follows. To obtain
the final statement (7), remark that f,(R) > f,(S) for
every R 2 S, and apply the bound (1) on all S C R of
the form specified.

Analogously, if (8) holds, choose K and J as above,
and let § =#(R\ J) <s.Then p( < ¢/ implies that

r—s
J —s n—s
p(r—E)Sp(")Scr—sfc T<C

noting, in the last inequality, that #J < n — § and that
(8) implies (6). From this result (1) and (7) follow as
above.
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