
Statistical Science
2010, Vol. 25, No. 3, 311–324
DOI: 10.1214/10-STS336
© Institute of Mathematical Statistics, 2010

Graphics Processing Units and
High-Dimensional Optimization
Hua Zhou, Kenneth Lange and Marc A. Suchard

Abstract. This article discusses the potential of graphics processing units
(GPUs) in high-dimensional optimization problems. A single GPU card with
hundreds of arithmetic cores can be inserted in a personal computer and dra-
matically accelerates many statistical algorithms. To exploit these devices
fully, optimization algorithms should reduce to multiple parallel tasks, each
accessing a limited amount of data. These criteria favor EM and MM algo-
rithms that separate parameters and data. To a lesser extent block relaxation
and coordinate descent and ascent also qualify. We demonstrate the utility
of GPUs in nonnegative matrix factorization, PET image reconstruction, and
multidimensional scaling. Speedups of 100-fold can easily be attained. Over
the next decade, GPUs will fundamentally alter the landscape of computa-
tional statistics. It is time for more statisticians to get on-board.

Key words and phrases: Block relaxation, EM and MM algorithms, mul-
tidimensional scaling, nonnegative matrix factorization, parallel computing,
PET scanning.

1. INTRODUCTION

Statisticians, like all scientists, are acutely aware that
the clock speeds on their desktops and laptops have
stalled. Does this mean that statistical computing has
hit a wall? The answer fortunately is no, but the hard-
ware advances that we routinely expect have taken an
interesting detour. Most computers now sold have two
to eight processing cores. Think of these as separate
CPUs on the same chip. Naive programmers rely on
sequential algorithms and often fail to take advantage
of more than a single core. Sophisticated programmers
eagerly exploit parallel programming. However, multi-
core CPUs do not represent the only road to success of
statistical computing.

Hua Zhou is Assistant Professor, Department of Statistics,
North Carolina State University, Raleigh, North Carolina
27695-8203, USA (e-mail: huazhou@ncsu.edu). Kenneth
Lange is Professor, Departments of Biomathematics,
Human Genetics, and Statistics, UCLA, 5357A Gonda
Building, Los Angeles, California 90095-1766, USA
(e-mail: klange@ucla.edu). Marc A. Suchard is Professor,
Departments of Biomathematics, Biostatistics, and Human
Genetics, UCLA, 6558 Gonda Building, Los Angeles,
California 90095-1766, USA (e-mail:
msuchard@ucla.edu).

Graphics processing units (GPUs) have caught the
scientific community by surprise. These devices are
designed for graphics rendering in computer anima-
tion and games. Propelled by these nonscientific mar-
kets, the old technology of numerical (array) coproces-
sors has advanced rapidly. Highly parallel GPUs are
now making computational inroads against traditional
CPUs in image processing, protein folding, stock op-
tions pricing, robotics, oil exploration, data mining and
many other areas [28]. We are starting to see orders
of magnitude improvement on some hard computa-
tional problems. Three companies, Intel, NVIDIA and
AMD/ATI, dominate the market. Intel is struggling to
keep up with its more nimble competitors.

Modern GPUs support more vector and matrix op-
erations, stream data faster, and possess more local
memory per core than their predecessors. They are also
readily available as commodity items that can be in-
serted as video cards on modern PCs. GPUs have been
criticized for their hostile programming environment
and lack of double precision arithmetic and error cor-
rection, but these faults are being rectified. The CUDA
programming environment [27] for NVIDIA chips is
now easing some of the programming chores. We could
say more about near-term improvements, but most pro-
nouncements would be obsolete within months.

311

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/10-STS336
http://www.imstat.org
mailto:huazhou@ncsu.edu
mailto:klange@ucla.edu
mailto:msuchard@ucla.edu

312 H. ZHOU, K. LANGE AND M. A. SUCHARD

Oddly, statisticians have been slow to embrace the
new technology. Silberstein et al. [31] first demon-
strated the potential for GPUs in fitting simple Bayes-
ian networks. Recently Suchard and Rambaut [33]
have seen greater than 100-fold speedups in MCMC
simulations in molecular phylogeny. Lee et al. [18] and
Tibbits, Haran and Liechty [36] are following suit with
Bayesian model fitting via particle filtering and slice
sampling. Finally, work is underway to port common
data mining techniques such as hierarchical clustering
and multifactor dimensionality reduction onto GPUs
[32]. These efforts constitute the first wave of an even-
tual flood of statistical and data mining applications.
The porting of GPU tools into the R environment will
undoubtedly accelerate the trend [3].

Not all problems in computational statistics can ben-
efit from GPUs. Sequential algorithms are resistant un-
less they can be broken into parallel pieces. For exam-
ple, least squares and singular value decomposition—
two tasks frequently performed in statistics—may not
benefit greatly from GPUs unless problems are ex-
tremely large scale or many small problems need to
be solved simultaneously. Even parallel algorithms can
be problematic if the entire range of data must be ac-
cessed by each GPU. A case in point is the alternat-
ing least squares strategy for the nonnegative matrix
factorization problem featured in Section 3.1. Because
they have limited memory, GPUs are designed to oper-
ate on short streams of data. The greatest speedups oc-
cur when all of the GPUs on a card perform the same
arithmetic operation simultaneously. Effective applica-
tions of GPUs in optimization involve both separation
of data and separation of parameters.

In the current article, we illustrate how GPUs can
work hand in glove with the MM algorithm, a gener-
alization of the EM algorithm. In many optimization
problems, the MM algorithm explicitly separates pa-
rameters by replacing the objective function by a sum
of surrogate functions, each of which involves a single
parameter. Optimization of the one-dimensional sur-
rogates can be accomplished by assigning each sub-
problem to a different core. Provided the different
cores each access just a slice of the data, the paral-
lel subproblems execute quickly. By construction the
new point in parameter space improves the value of
the objective function. In other words, MM algorithms
are iterative ascent or descent algorithms. If they are
well designed, then they separate parameters in high-
dimensional problems. This is where GPUs enter. They
offer most of the benefits of distributed computer clus-
ters at a fraction of the cost. For this reason alone, com-
putational statisticians need to pay attention to GPUs.

Before formally defining the MM algorithm, it may
help the reader to walk through a simple numerical
example stripped of statistical content. Consider the
Rosenbrock test function

f (x) = 100(x2
1 − x2)

2 + (x1 − 1)2

(1.1)
= 100(x4

1 + x2
2 − 2x2

1x2) + (x2
1 − 2x1 + 1),

familiar from the minimization literature. As we iterate
toward the minimum at x = 1 = (1,1), we construct
a surrogate function that separates parameters. This is
done by exploiting the obvious majorization

−2x2
1x2 ≤ x4

1 + x2
2 + (x2

n1 + xn2)
2

− 2(x2
n1 + xn2)(x

2
1 + x2),

where equality holds when x and the current iterate xn

coincide. It follows that f (x) itself is majorized by the
sum of the two surrogates

g1(x1|xn)

= 200x4
1 − [200(x2

n1 + xn2) − 1]x2
1 − 2x1 + 1,

g2(x2|xn)

= 200x2
2 − 200(x2

n1 + xn2)x2 + (x2
n1 + xn2)

2.

The left panel of Figure 1 depicts the Rosenbrock func-
tion and its majorization g1(x1|xn) + g2(x2|xn) at the
point −1.

According to the MM recipe, at each iteration one
must minimize the quartic polynomial g1(x1|xn) and
the quadratic polynomial g2(x2|xn). The quartic pos-
sesses either a single global minimum or two local min-
ima separated by a local maximum. These minima are
the roots of the cubic function g′

1(x1|xn) and can be
explicitly computed. We update x1 by the root corre-
sponding to the global minimum and x2 via xn+1,2 =
1
2(x2

n1 + xn2). The right panel of Figure 1 displays
the iterates starting from x0 = −1. These immediately
jump into the Rosenbrock valley and then slowly de-
scend to 1.

Separation of parameters in this example makes it
easy to decrease the objective function. This almost
trivial advantage is amplified when we optimize func-
tions depending on tens of thousands to millions of pa-
rameters. In these settings, Newton’s method and vari-
ants such as Fisher’s scoring are fatally handicapped by
the need to store, compute, and invert huge Hessian or
information matrices. On the negative side of the bal-
ance sheet, MM algorithms are often slow to converge.
This disadvantage is usually outweighed by the speed
of their updates even in sequential mode. If one can

GPUS AND HIGH-DIMENSIONAL OPTIMIZATION 313

FIG. 1. Left: The Rosenbrock (banana) function (the lower surface) and a majorization function at point (−1, −1) (the upper surface).
Right: MM iterates.

harness the power of parallel processing GPUs, then
MM algorithms become the method of choice for many
high-dimensional problems.

We conclude this introduction by sketching a road-
map to the rest of the article. Section 2 reviews the MM
algorithm. Section 3 discusses three high-dimensional
MM examples. Although the algorithm in each case is
known, we present brief derivations to illustrate how
simple inequalities drive separation of parameters. We
then implement each algorithm on a realistic problem
and compare running times in sequential and parallel
modes. We purposefully omit extensive programming
syntax since many tutorials already exist for this pur-
pose, and material of this sort is bound to be ephemeral.
The two tutorials [34, 35] are a good place to start for
statisticians. Section 4 concludes with a brief discus-
sion of other statistical applications of GPUs and other
methods of accelerating optimization algorithms.

2. MM ALGORITHMS

The MM algorithm, like the EM algorithm, is a prin-
ciple for creating optimization algorithms. In mini-
mization the acronym MM stands for majorization–
minimization; in maximization it stands for minori-
zation–maximization. Both versions are convenient in
statistics. For the moment we will concentrate on max-
imization.

Let f (θ) be the objective function whose maximum
we seek. Its argument θ can be high-dimensional and
vary over a constrained subset � of Euclidean space.
An MM algorithm involves minorizing f (θ) by a sur-
rogate function g(θ |θn) anchored at the current iter-

ate θn of the search. The subscript n indicates itera-
tion number throughout this article. If θn+1 denotes the
maximum of g(θ |θn) with respect to its left argument,
then the MM principle declares that θn+1 increases
f (θ) as well. Thus, MM algorithms revolve around a
basic ascent property.

Minorization is defined by the two properties

f (θn) = g(θn|θn),(2.1)

f (θ) ≥ g(θ |θn), θ �= θn.(2.2)

In other words, the surface θ �→ g(θ |θn) lies below the
surface θ �→ f (θ) and is tangent to it at the point θ =
θn. Construction of the minorizing function g(θ |θn)

constitutes the first M of the MM algorithm. In our ex-
amples g(θ |θn) is chosen to separate parameters.

In the second M of the MM algorithm, one maxi-
mizes the surrogate g(θ |θn) rather than f (θ) directly.
It is straightforward to show that the maximum point
θn+1 satisfies the ascent property f (θn+1) ≥ f (θn).
The proof

f (θn+1) ≥ g(θn+1|θn) ≥ g(θn|θn) = f (θn)

reflects definitions (2.1) and (2.2) and the choice of
θn+1. The ascent property is the source of the MM al-
gorithm’s numerical stability and remains valid if we
merely increase g(θ |θn) rather than maximize it. In
many problems MM updates are delightfully simple
to code, intuitively compelling, and automatically con-
sistent with parameter constraints. In minimization we
seek a majorizing function g(θ |θn) lying above the sur-
face θ �→ f (θ) and tangent to it at the point θ = θn.
Minimizing g(θ |θn) drives f (θ) downhill.

314 H. ZHOU, K. LANGE AND M. A. SUCHARD

The celebrated Expectation–Maximization (EM) al-
gorithm [8, 22] is a special case of the MM algorithm.
The Q-function produced in the E step of the EM al-
gorithm constitutes a minorizing function of the log-
likelihood. Thus, both EM and MM share the same
advantages: simplicity, stability, graceful adaptation to
constraints, and the tendency to avoid large matrix in-
version. The more general MM perspective frees al-
gorithm derivation from the missing data straitjacket
and invites wider applications. For example, our mul-
tidimensional scaling (MDS) and nonnegative matrix
factorization (NNFM) examples involve no likelihood
functions. Wu and Lange [40] briefly summarized the
history of the MM algorithm and its relationship to the
EM algorithm.

The convergence properties of MM algorithms are
well known [16]. In particular, five properties of the ob-
jective function f (θ) and the MM algorithm map θ �→
M(θ) guarantee convergence to a stationary point of
f (θ): (a) f (θ) is coercive on its open domain; (b) f (θ)

has only isolated stationary points; (c) M(θ) is contin-
uous; (d) θ∗ is a fixed point of M(θ) if and only if θ∗ is
a stationary point of f (θ); and (e) f [M(θ∗)] ≥ f (θ∗),
with equality if and only if θ∗ is a fixed point of M(θ).
These conditions are easy to verify in many applica-
tions. The local rate of convergence of an MM algo-
rithm is intimately tied to how well the surrogate func-
tion g(θ |θ∗) approximates the objective function f (θ)

near the optimal point θ∗.

3. NUMERICAL EXAMPLES

In this section, we compare the performances of the
CPU and GPU implementations of three classical MM
algorithms coded in C++: (a) nonnegative matrix fac-
torization (NNMF), (b) positron emission tomography
(PET), and (c) multidimensional scaling (MDS). In
each case we briefly derive the algorithm from the MM
perspective. For the CPU version, we iterate until the
relative change

|f (θn) − f (θn−1)|
|f (θn−1)| + 1

of the objective function f (θ) between successive iter-
ations falls below a pre-set threshold ε or the number
of iterations reaches a pre-set number nmax, whichever
comes first. In these examples, we take ε = 10−9 and
nmax = 100,000. For ease of comparison, we iterate the
GPU version for the same number of steps as the CPU
version. Overall, we see anywhere from a 22-fold to a
112-fold decrease in total run time on our hardware.

TABLE 1
Configuration of the desktop system

CPU GPU

Model Intel Core 2 NVIDIA GeForce
Extreme X9440 GTX 280

Cores 4 240
Clock 3.2 G 1.3 G
Memory 16 G 1 G

The source code is freely available from the first au-
thor.

Table 1 shows how our desktop system is config-
ured. Although the CPU is a high-end processor with
four cores, we use just one of these for ease of com-
parison. In practice, it takes considerable effort to load
balance the various algorithms across multiple CPU
cores. With 240 GPU cores, the GTX 280 GPU card
delivers a peak performance of about 933 GFlops in
single precision. This card is already obsolete. Newer
cards possess twice as many cores and better double-
precision capability. Up to four cards can fit inside
a single desktop computer. It is relatively straightfor-
ward to program multiple GPUs. Because previous-
generation GPU hardware is largely limited to single
precision, this is a worry in scientific computing. To
assess the extent of roundoff error, we display the con-
verged values of the objective functions to ten sig-
nificant digits. Only rarely is the GPU value far off
the CPU mark. The extra effort in programming the
GPU version is relatively light. Exploiting the stan-
dard CUDA library [27], it takes 77, 176 and 163 extra
lines of GPU code to implement the NNMF, PET, and
MDS examples, respectively. Finally, for the PET and
MDS examples, we also list run times of a CPU imple-
mentation with a quasi-Newton acceleration [42]. This
generic acceleration significantly reduces the number
of MM iterations until convergence.

3.1 Nonnegative Matrix Factorizations

Nonnegative matrix factorization (NNMF) is an al-
ternative to principal component analysis useful in
modeling, compressing, and interpreting nonnegative
data such as observational counts and images. The arti-
cles [2, 19, 20] discuss in detail algorithm development
and statistical applications of NNMF. The basic prob-
lem is to approximate a data matrix X with nonnegative
entries xij by a product VW of two low-rank matrices
V and W with nonnegative entries vik and wkj . Here
X, V and W are p × q , p × r and r × q , respectively,

GPUS AND HIGH-DIMENSIONAL OPTIMIZATION 315

with r much smaller than min{p,q}. One version of
NNMF minimizes the objective function

f (V,W) = ‖X − VW‖2
F

(3.1)

= ∑
i

∑
j

(
xij − ∑

k

vikwkj

)2

,

where ‖ ·‖F denotes the Frobenius norm. To get an idea
of the scale of NNFM imaging problems, p (number
of images) can range 101 to 104, q (number of pix-
els per image) can surpass 102 to 104, and one seeks
a rank-r approximation of about 50. Notably, part of
the winning solution of the Netflix challenge relies on
variations of NNMF [13]. For the Netflix data ma-
trix, p = 480,000 (raters), q = 18,000 (movies), and r

ranged from 20 to 100.
Exploiting the convexity of the function x �→ (xij −

x)2, one can derive the inequality(
xij − ∑

k

vikwkj

)2

≤ ∑
k

anikj

bnij

(
xij − bnij

anikj

vikwkj

)2

,

where anikj = vnikwnkj and bnij = ∑
k anikj . This

leads to the surrogate function

g(V,W|Vn,Wn)
(3.2)

= ∑
i

∑
j

∑
k

anikj

bnij

(
xij − bnij

anikj

vikwkj

)2

majorizing the objective function f (V,W) = ‖X −
VW‖2

F. Although the majorization (3.2) does not
achieve a complete separation of parameters, it does
if we fix V and update W or vice versa. This strategy
is called block relaxation [7].

If we elect to minimize g(V,W|Vn,Wn) holding W
fixed at Wn, then the stationarity condition for V reads

∂

∂vik

g(V,Wn|Vn,Wn)

= −2
∑
j

(
xij − bnij

anikj

vikwnkj

)
wnkj = 0.

Its solution furnishes the simple multiplicative update

vn+1,ik = vnik

∑
j xijwnkj∑
j bnijwnkj

.(3.3)

Likewise the stationary condition

∂

∂wkj

g(Vn+1,W|Vn+1,Wn) = 0

gives the multiplicative update

wn+1,kj = wnkj

∑
i xij vn+1,ik∑
i cnij vn+1,ik

,(3.4)

where cnij = ∑
k vn+1,ikwnkj . Close inspection of the

multiplicative updates (3.3) and (3.4) shows that their
numerators depend on the matrix products XWt

n and
Vt

n+1X and their denominators depend on the matrix
products VnWnWt

n and Vt
n+1Vn+1Wn. Large matrix

multiplications are very fast on GPUs because CUDA
implements in parallel the BLAS (basic linear alge-
bra subprograms) library widely applied in numerical
analysis [26]. Once the relevant matrix products are
available, each elementwise update of vik or wkj in-
volves just a single multiplication and division. These
scalar operations are performed in parallel through
handwritten GPU code. Algorithm 1 summarizes the
steps in performing NNMF, and Listing 1 illustrates the
scalar operation kernel.

We now compare CPU and GPU versions of the mul-
tiplicative NNMF algorithm on a training set of face
images. Database #1 from the MIT Center for Bio-
logical and Computational Learning (CBCL) [25] re-
duces to a matrix X containing p = 2429 gray-scale
face images with q = 19 × 19 = 361 pixels per face.
Each image (row) is scaled to have mean and stan-
dard deviation 0.25. Figure 2 shows the recovery of
the first face in the database using a rank 49 decom-
position. The 49 basis images (rows of W) represent
different aspects of a face. The rows of V contain the
coefficients of these parts estimated for the various
faces. Some of these facial features are immediately
obvious in the reconstruction. Table 2 compares the
run times of Algorithm 1 implemented on our CPU
and GPU, respectively. We observe a 22- to 112-fold
speed-up in the GPU implementation. Run times for

Algorithm 1 (NNMF). Given X ∈ R
p×q
+ , find V ∈

R
p×r
+ and W ∈ R

r×q
+ minimizing ‖X − VW‖2

F.
Initialize: Draw v0ik and w0kj uniform on (0,1) for
all 1 ≤ i ≤ p, 1 ≤ k ≤ r , 1 ≤ j ≤ q

repeat
Compute XWt

n and VnWnWt
n

vn+1,ik ← vnik · {XWt
n}ik/{VnWnWt

n}ik for all
1 ≤ i ≤ p, 1 ≤ k ≤ r

Compute Vt
n+1X and Vt

n+1Vn+1Wn

wn+1,kj ← wnkj · {Vt
n+1X}kj /{Vt

n+1Vn+1Wn}kj
for all 1 ≤ k ≤ r , 1 ≤ j ≤ q

until convergence occurs

316 H. ZHOU, K. LANGE AND M. A. SUCHARD

__global__ void update_V_kernel(
Real* V, Real* XWt, Real* VWWt,
int p, int r, int stride

) {

// Determine indices for this thread,
column-major storage

int i = blockIdx.x * blockDim.x + threadIdx.x;
int k = blockIdx.y * blockDim.y + threadIdx.y;
int ik = i + k * stride;

// Perform scalar operation on each matrix entry
if (i < p && k < r) {

V[ik] = V[ik] * XWt[ik] / VWWt[ik];
}

}

LISTING 1. Scalar operation GPU kernel for NNMF.

the GPU version depend primarily on the number of
iterations to convergence and very little on the rank
r of the approximation. Run times of the CPU ver-
sion scale linearly in both the number of iterations
and r .

It is worth stressing a few points. First, the objec-
tive function (3.1) is convex in V for W fixed, and
vice versa, but not jointly convex. Thus, even though
the MM algorithm enjoys the descent property, it is not
guaranteed to find the global minimum [2]. There are
two good alternatives to the multiplicative algorithm.
First, pure block relaxation can be conducted by al-
ternating least squares (ALS). In updating V with W
fixed, ALS omits majorization and solves the p sepa-
rated nonnegative least squares problems

min
V(i,:)‖X(i, :) − V(i, :)W‖2

2

subject to V(i, :) ≥ 0,

where V(i, :) and X(i, :) denote the ith row of the
corresponding matrices. Similarly, in updating W
with V fixed, ALS solves q separated nonnegative least
squares problems. Separation naturally suggests paral-

lel implementations, but parallelization on a GPU can
hit a snag because each nonnegative least squares sub-
problem needs to operate on the whole W matrix si-
multaneously. Another possibility is to change the ob-
jective function to

L(V,W) = ∑
i

∑
j

[
xij ln

(∑
k

vikwkj

)
− ∑

k

vikwkj

]

according to a Poisson model for the counts xij [19].
This works even when some entries xij fail to be in-
tegers, but the Poisson log-likelihood interpretation is
lost. A pure MM algorithm for maximizing L(V,W)

is

vn+1,ik = vnik

√√√√∑
j xijwnkj /bnij∑

j wnkj

,

wn+1,ij = wnkj

√∑
i xij vnik/bnij∑

i vnik

.

Derivation of these variants of Lee and Seung’s [19]
Poisson updates is left to the reader.

3.2 Positron Emission Tomography

The field of computed tomography has exploited
EM algorithms for many years. In positron emis-
sion tomography (PET), the reconstruction problem
consists of estimating the Poisson emission intensi-
ties λ = (λ1, . . . , λp) of p pixels arranged in a two-
dimensional grid surrounded by an array of photon
detectors. The observed data are coincidence counts
(y1, . . . , yd) along d lines of flight connecting pairs
of photon detectors. The log-likelihood under the PET
model is

L(λ) = ∑
i

[
yi ln

(∑
j

eij λj

)
− ∑

j

eij λj

]
,

where the eij are constants derived from the geometry
of the grid and the detectors. Without loss of generality,

FIG. 2. Approximation of a face image by rank-49 NNMF: coefficients × basis images = approximate image.

GPUS AND HIGH-DIMENSIONAL OPTIMIZATION 317

TABLE 2
Run-time (in seconds) comparisons for NNMF on the MIT CBCL face image data

CPU GPU

Rank r Iters Time Function Time Function Speedup

10 25,459 1203 106.2653503 55 106.2653504 22
20 87,801 7564 89.56601262 163 89.56601287 46
30 55,783 7013 78.42143486 103 78.42143507 68
40 47,775 7880 70.05415929 119 70.05415950 66
50 53,523 11,108 63.51429261 121 63.51429219 92
60 77,321 19,407 58.24854375 174 58.24854336 112

Notes: The dataset contains p = 2429 faces with q = 19 × 19 = 361 pixels per face. The columns labeled Function refer to the converged
value of the objective function.

one can assume
∑

i eij = 1 for each j . It is straightfor-
ward to derive the traditional EM algorithm [14, 39]
from the MM perspective using the concavity of the
function ln s. Indeed, application of Jensen’s inequal-
ity produces the minorization

L(λ) ≥ ∑
i

yi

∑
j

wnij ln
(

eijλj

wnij

)
− ∑

i

∑
j

eij λj

= Q(λ|λn),

where wnij = eijλnj /(
∑

k eikλnk). This maneuver
again separates parameters. The stationarity conditions
for the surrogate Q(λ|λn) supply the parallel updates

λn+1,j =
∑

i yiwnij∑
i eij

.(3.5)

The convergence of the PET algorithm (3.5) is frus-
tratingly slow, even under systematic acceleration [30,
42]. Furthermore, the reconstructed images are of poor
quality with a grainy appearance. The early remedy
of premature halting of the algorithm cuts computa-
tional cost but is entirely ad hoc, and the final image
depends on initial conditions. A better option is to add
a roughness penalty to the log-likelihood. This device
not only produces better images but also accelerates
convergence. Thus, we maximize the penalized log-
likelihood

f (λ) = L(λ) − μ

2

∑
{j,k}∈N

(λj − λk)
2,(3.6)

where μ is the roughness penalty constant, and N is
the neighborhood system that pairs spatially adjacent
pixels. An absolute value penalty is less likely to deter
the formation of edges than a square penalty, but it is

easier to deal with a square penalty analytically, and
we adopt it for the sake of simplicity. In practice, visual
inspection of the recovered images guides the selection
of the roughness penalty constant μ.

To maximize f (λ) by an MM algorithm, we must
minorize the penalty in a manner consistent with the
separation of parameters. In view of the evenness and
convexity of the function s2, we have

(λj − λk)
2 ≤ 1

2(2λj − λnj − λnk)
2

+ 1
2(2λk − λnj − λnk)

2.

Equality holds if λj + λk = λnj + λnk , which is true
when λ = λn. Combining our two minorizations fur-
nishes the surrogate function

g(λ|λn)

= Q(λ|λn) − μ

4

∑
{j,k}∈N

[(2λj − λnj − λnk)
2

+ (2λk − λnj − λnk)
2].

To maximize g(λ|λn), we define Nj = {k : {j, k} ∈ N }
and set the partial derivative

∂

∂λj

g(λ|λn) = ∑
i

[
yiwnij

λj

− eij

]
(3.7)

− μ
∑

k:∈Nj

(2λj − λnj − λnk)

equal to 0 and solve for λn+1,j . Multiplying (3.7) by λj

produces a quadratic with roots of opposite signs. We
take the positive root

λn+1,j =
−bnj −

√
b2
nj − 4aj cnj

2aj

,

318 H. ZHOU, K. LANGE AND M. A. SUCHARD

where

aj = −2μ
∑

k∈Nj

1,

bnj = ∑
k∈Nj

(λnj + λnk) − 1,

cnj = ∑
i

yiwnij .

Algorithm 2 summarizes the complete MM scheme.
Obviously, complete parameter separation is crucial.
The quantities aj can be computed once and stored.
The quantities bnj and cnj are computed for each j in
parallel. To improve GPU performance in computing
the sums over i, we exploit the widely available paral-
lel sum-reduction techniques [31]. Given these results,
a specialized but simple GPU code computes the up-
dates λn+1,j for each j in parallel.

Table 3 compares the run times of the CPU and
GPU implementations for a simulated PET image [30].
The image as depicted in the top of Figure 3 has p =
64 × 64 = 4096 pixels and is interrogated by d = 2016
detectors. Overall we see a 43- to 53-fold reduction
in run times with the GPU implementation. Figure 3
displays the true image and the estimated images un-
der penalties of μ = 0, 10−5, 10−6 and 10−7. With-
out penalty (μ = 0), the algorithm fails to converge in
100,000 iterations.

Algorithm 2 (PET image recovering). Given the co-
efficient matrix E ∈ R

d×p
+ , coincident counts y =

(y1, . . . , yd) ∈ Zd+, and roughness parameter μ > 0,
find the intensity vector λ = (λ1, . . . , λp) ∈ R

p
+ that

maximizes the objective function (3.6).
Scale E to have unit l1 column norms.
Compute |Nj | = ∑

k:{j,k}∈N 1 and aj = −2μ|Nj |
for all 1 ≤ j ≤ p.
Initialize: λ0j ← 1, j = 1, . . . , p.
repeat

znij ← (yieijλnj)/(
∑

k eikλnk) for all 1 ≤ i ≤ d ,
1 ≤ j ≤ p

for j = 1 to p do
bnj ← μ(|Nj |λnj + ∑

k∈Nj
λnk) − 1

cnj ← ∑
i znij

λn+1,j ← (−bnj −
√

b2
nj − 4aj cnj)/(2aj)

end for
until convergence occurs

3.3 Multidimensional Scaling

Multidimensional scaling (MDS) was the first sta-
tistical application of the MM principle [5, 6]. MDS
represents q objects as faithfully as possible in p-
dimensional space given a nonnegative weight wij and
a nonnegative dissimilarity measure yij for each pair of
objects i and j . If θ i ∈ R

p is the position of object i,
then the p × q parameter matrix θ = (θ1, . . . , θq) is
estimated by minimizing the stress function

f (θ) = ∑
1≤i<j≤q

wij (yij − ‖θ i − θ j‖)2

= ∑
i<j

wij y
2
ij − 2

∑
i<j

wij yij‖θ i − θ j‖(3.8)

+ ∑
i<j

wij‖θ i − θ j‖2,

where ‖θ i − θ j‖ is the Euclidean distance between
θ i and θ j . The stress function (3.8) is invariant under
translations, rotations and reflections of R

p . To avoid
translational and rotational ambiguities, we take θ1 to
be the origin and the first p − 1 coordinates of θ2 to
be 0. Switching the sign of θ2

p leaves the stress func-
tion invariant. Hence, convergence to one member of
a pair of reflected minima immediately determines the
other member.

Given these preliminaries, we now review the deriva-
tion of the MM algorithm presented in [17]. Because
we want to minimize the stress, we majorize it. The
middle term in the stress (3.8) is majorized by the
Cauchy–Schwarz inequality

−‖θ i − θ j‖ ≤ −(θ i − θ j)t (θ i
n − θ j

n)

‖θ i
n − θ j

n‖
.

To separate the parameters in the summands of the
third term of the stress, we invoke the convexity of the
Euclidean norm ‖ · ‖ and the square function s2. These
maneuvers yield

‖θ i − θ j‖2

= ∥∥1
2 [2θ i − (θ i

n + θ j
n)] − 1

2 [2θ j − (θ j
n + θ j

n)]
∥∥2

≤ 2
∥∥θ i − 1

2(θ i
n + θ j

n)‖2 + 2‖θ j − 1
2(θ i

n + θ j
n)

∥∥2
.

Assuming that wij = wji and yij = yji , the surrogate
function therefore becomes

g(θ |θn) = 2
∑
i<j

wij

[∥∥∥∥θ i − 1

2
(θ i

n + θ j
n)

∥∥∥∥
2

− yij (θ
i)t (θ i

n − θ j
n)

‖θ i
n − θ j

n‖
]

GPUS AND HIGH-DIMENSIONAL OPTIMIZATION 319

FIGURE 3. The true PET image (top) and the recovered images with penalties μ = 0 (middle left), 10−7 (middle right), 10−6 (lower left)
and 10−5 (lower right).

+ 2
∑
i<j

wij

[∥∥∥∥θ j − 1

2
(θ i

n + θ j
n)

∥∥∥∥
2

+ yij (θ
j)t (θ i

n − θ j
n)

‖θ i
n − θ j

n‖
]

= 2
q∑

i=1

∑
j �=i

[
wij

∥∥∥∥θ i − 1

2
(θ i

n + θ j
n)

∥∥∥∥
2

− wijyij (θ
i)t (θ i

n − θ j
n)

‖θ i
n − θ j

n‖
]

up to an irrelevant constant. Setting the gradient of the
surrogate equal to the 0 vector produces the parallel
updates

θi
n+1,k =

(∑
j �=i

[
wijyij (θ

i
nk − θ

j
nk)

‖θ i
n − θ j

n‖
+ wij (θ

i
nk + θ

j
nk)

])

/(
2

∑
j �=i

wij

)

for all movable parameters θi
k .

Algorithm 3 summarizes the parallel organization of
the steps. Again the matrix multiplications �t

n�n and

320 H. ZHOU, K. LANGE AND M. A. SUCHARD

Algorithm 3 (MDS). Given weights W and distances
Y ∈ R

q×q , find the matrix � = [θ1, . . . , θq] ∈ R
p×q

which minimizes the stress (3.8).
Precompute: xij ← wijyij for all 1 ≤ i, j ≤ q

Precompute: wi· ← ∑
j wij for all 1 ≤ i ≤ q

Initialize: Draw θi
0k uniformly on [-1,1] for all 1 ≤

i ≤ q , 1 ≤ k ≤ p

repeat
Compute �t

n�n

dnij ← {�t
n�n}ii + {�t

n�n}jj − 2{�t
n�n}ij for

all 1 ≤ i, j ≤ q

znij ← xij /dnij for all 1 ≤ i �= j ≤ q

zni· ← ∑
j znij for all 1 ≤ i ≤ q

Compute �n(W − Zn)

θ i
n+1,k ← [θi

nk(wi· + zni·) + {�n(W −
Zn)}ik]/(2wi·) for all 1 ≤ i ≤ p, 1 ≤ k ≤ q

until convergence occurs

�n(W − Zn) can be taken care of by the CUBLAS
library [26]. The remaining steps of the algorithm are
conducted by easily written parallel code.

Table 4 compares the run times in seconds for MDS
on the 2005 United States House of Representatives
roll call votes. The original data consist of the 671 roll
calls made by 401 representatives. We refer readers to
the reference [9] for a careful description of the data
and how the MDS input 401 × 401 distance matrix is
derived. The weights wij are taken to be 1. In our nota-
tion, the number of objects (House Representatives) is
q = 401. Even for this relatively small dataset, we see
a 27- to 48-fold reduction in total run times, depending
on the projection dimension p. Figure 4 displays the re-
sults in p = 3 dimensional space. The Democratic and
Republican members are clearly separated. For p = 30,
the algorithm fails to converge within 100,000 itera-
tions.

Although the projection of points into p > 3 dimen-
sional space may sound artificial, there are situations
where this is standard practice. First, MDS is fore-
most a dimension reduction tool, and it is desirable to
keep p > 3 to maximize explanatory power. Second,
the stress function tends to have multiple local minima
in low dimensions [10]. A standard optimization algo-
rithm like MM is only guaranteed to converge to a local
minimum of the stress function. As the number of di-
mensions increases, most of the inferior modes disap-
pear. One can formally demonstrate that the stress has
a unique minimum when p = q −1 [4, 10]. In practice,
uniqueness can set in well before p reaches q − 1. In

FIGURE 4. Display of the MDS results with p = 3 coordinates on
the 2005 House of Representatives roll call data.

the recent work [41], we propose a “dimension crunch-
ing" technique that increases the chance of the MM al-
gorithm converging to the global minimum of the stress
function. In dimension crunching, we start optimizing
the stress in a Euclidean space R

m with m > p. The
last m−p components of each column θ i are gradually
subjected to stiffer and stiffer penalties. In the limit as
the penalty tuning parameter tends to ∞, we recover
the global minimum of the stress in R

p . This strat-
egy inevitably incurs a computational burden when m

is large, but the MM+GPU combination comes to the
rescue.

4. DISCUSSION

The rapid and sustained increases in computing
power over the last half century have transformed sta-
tistics. Every advance has encouraged statisticians to
attack harder and more sophisticated problems. We
tend to take the steady march of computational effi-
ciency for granted, but there are limits to a chip’s clock
speed, power consumption and logical complexity. Par-
allel processing via GPUs is the technological innova-
tion that will power ambitious statistical computing in
the coming decade. Once the limits of parallel process-
ing are reached, we may see quantum computers take
off. In the meantime statisticians should learn how to
harness GPUs productively.

We have argued by example that high-dimensional
optimization is driven by parameter and data separa-
tion. It takes both to exploit the parallel capabilities of
GPUs. Block relaxation and the MM algorithm often
generate ideal parallel algorithms. In our opinion the

G
PU

S
A

N
D

H
IG

H
-D

IM
E

N
SIO

N
A

L
O

PT
IM

IZ
A

T
IO

N
321

TABLE 3
Comparison of run times (in seconds) for a PET imaging problem on the simulated data in [30]

CPU GPU QN(10) on CPU

Penalty μ Iters Time Function Iters Time Function Speedup Iters Time Function Speedup

0 100,000 14,790 −7337.152765 100,000 282 −7337.153387 52 6549 2094 −7320.100952 n/a
10−7 24,457 3682 −8500.083033 24,457 70 −8508.112249 53 251 83 −8500.077057 44
10−6 6294 919 −15,432.45496 6294 18 −15,432.45586 51 80 29 −15,432.45366 32
10−5 589 86 −55,767.32966 589 2 −55,767.32970 43 19 9 −55,767.32731 10

Notes: The image has p = 64 × 64 = 4096 pixels and is interrogated by d = 2016 detectors. The columns labeled Function refer to the converged value of the objective function. The
results under the heading QN(10) on CPU invoke quasi-Newton acceleration [42] with 10 secant conditions.

TABLE 4
Comparison of run times (in seconds) for MDS on the 2005 House of Representatives roll call data

CPU GPU QN(20) on CPU

Dim-p Iters Time Stress Iters Time Stress Speedup Iters Time Stress Speedup

2 3452 43 198.5109307 3452 1 198.5109309 43 530 16 198.5815072 3
3 15,912 189 95.55987770 15,912 6 95.55987813 32 1124 38 92.82984196 5
4 15,965 189 56.83482075 15,965 7 56.83482083 27 596 18 56.83478026 11
5 24,604 328 39.41268434 24,604 10 39.41268444 33 546 17 39.41493536 19

10 29,643 441 14.16083986 29,643 13 14.16083992 34 848 35 14.16077368 13
20 67,130 1288 6.464623901 67,130 32 6.464624064 40 810 43 6.464526731 30
30 100,000 2456 4.839570118 100,000 51 4.839570322 48 844 54 4.839140671 n/a

Notes: The number of points (representatives) is q = 401. The results under the heading QN(20) on CPU invoke the quasi-Newton acceleration [42] with 20 secant conditions.

322 H. ZHOU, K. LANGE AND M. A. SUCHARD

MM algorithm is the more versatile of the two generic
strategies. Unfortunately, block relaxation does not ac-
commodate constraints well and may generate sequen-
tial rather than parallel updates. Even when its updates
are parallel, they may not be data separated. The EM
algorithm is one of the most versatile tools in the sta-
tistician’s toolbox. The MM principle generalizes the
EM algorithm and shares its positive features. Scoring
and Newton’s methods become impractical in high di-
mensions. Despite these arguments in favor of MM al-
gorithms, one should always keep in mind hybrid algo-
rithms such as the one we implemented for NNMF.

Although none of our datasets is really large by to-
day’s standards, they do demonstrate that a good GPU
implementation can easily achieve one to two orders of
magnitude improvement over a single CPU core. Ad-
mittedly, modern CPUs come with two to eight cores,
and distributed computing over CPU-based clusters re-
mains an option. But this alternative also carries a hefty
price tag. The NVIDIA GTX280 GPU on which our
examples were run drives 240 cores at a cost of sev-
eral hundred dollars. High-end computers with eight
or more CPU nodes cost thousands of dollars. It would
take 30 CPUs with eight cores each to equal a single
GPU at the same clock rate. Hence, GPU cards strike
an effective and cost-efficient balance.

In the three test examples, we report performance
results on the GTX 280 GPU card in single preci-
sion. While this two-year-old card is the first to sup-
port double-precision computation, its performance is
suboptimal. As the numerical results show, single-
precision speedups are gained at a potential loss of ac-
curacy and, in rare cases, single precision may lead to
an inferior mode, for example, the μ = 10−7 case in
Table 3. In some preliminary experimentation on the
same PET imaging algorithm, we find that a double-
precision implementation on GTX 280 runs at about
1/3 the speed of single precision. However, GPU tech-
nology is advancing rapidly. This year’s GTX 480 GPU
card drives twice as many cores as the GTX 280 and
offers much improved double-precision support. On
the same desktop system as in Table 1, a GTX 480
delivers 89-fold speedup in single-precision and 43-
fold speedup in double-precision over the CPU code.
Very recently released, the Tesla C2050 GPU sports
a peak double-precision floating point performance
(515 Gflops) that is three times that of the GTX 480
(168 Gflops). The challenge for the statistics commu-
nity is to tackle more complicated statistical models on
bigger datasets. Computational statisticians will have

to judge the speed versus precision trade-off problem
by problem.

The simplicity of MM algorithms often comes at a
price of slow (at best linear) convergence. Our MDS,
NNMF and PET (without penalty) examples are cases
in point. Slow convergence is a concern as statisticians
head into an era dominated by large datasets and high-
dimensional models. Think about the scale of the Net-
flix data matrix. The speed of any iterative algorithm
is determined by both the computational cost per iter-
ation and the number of iterations until convergence.
GPU implementation reduces the first cost. Computa-
tional statisticians also have a bag of software tricks
to decrease the number of iterations [11, 12, 15, 21,
23, 24, 38]. For instance, the recent article [42] pro-
poses a quasi-Newton acceleration scheme particularly
suitable for high-dimensional problems. The scheme
is off-the-shelf and broadly applies to any search al-
gorithm defined by a smooth algorithm map. The ac-
celeration requires only modest increments in storage
and computation per iteration. Tables 3 and 4 also list
the results of this quasi-Newton acceleration of the
CPU implementation for the MDS and PET examples.
As the tables make evident, quasi-Newton accelera-
tion significantly reduces the number of iterations un-
til convergence. The accelerated algorithm always lo-
cates a better mode while cutting run times compared
to the unaccelerated algorithm. We have tried the quasi-
Newton acceleration on our GPU hardware with mixed
results. We suspect that the lack of full double preci-
sion on the GPU is the culprit. When full double pre-
cision becomes widely available, the combination of
GPU hardware acceleration and algorithmic software
acceleration will be extremely potent.

Successful acceleration methods will also facilitate
attacking another nagging problem in computational
statistics, namely multimodality. No one knows how
often statistical inference is fatally flawed because a
standard optimization algorithm converges to an infe-
rior mode. The current remedy of choice is to start a
search algorithm from multiple random points. Algo-
rithm acceleration is welcome because the number of
starting points can be enlarged without an increase in
computing time. As an alternative to multiple starting
points, our recent article [41] suggests modifications
of several standard MM algorithms that increase the
chance of locating better modes. These simple modifi-
cations all involve variations on deterministic anneal-
ing [37].

Our treatment of simple classical examples should
not hide the wide applicability of the powerful MM+

GPUS AND HIGH-DIMENSIONAL OPTIMIZATION 323

GPU combination. A few other candidate applications
include penalized estimation of haplotype frequencies
in genetics [1], construction of biological and social
networks under a random multigraph model [29], and
data mining with a variety of models related to the
multinomial distribution [43]. Many mixture models
will benefit as well from parallelization, particularly
in assigning group memberships. Finally, paralleliza-
tion is hardly limited to optimization. We can expect to
see many more GPU applications in MCMC sampling.
Given the computationally intensive nature of MCMC,
the ultimate payoff may even be higher in the Bayesian
setting than in the frequentist setting. For example, in
a recent study [35], GPU implementations deliver up
to a 140-fold speedup in Bayesian fitting of massive
mixture models. Of course, realistically these future
triumphs will require a great deal of thought, effort,
and education. There is usually a desert to wander and
a river to cross before one reaches the promised land.

ACKNOWLEDGMENTS

The authors thank the editor and three review-
ers for their valuable suggestions for improving the
manuscript. M. S. acknowledges support from NIH
Grant R01 GM086887. K. L. was supported by United
States Public Health Service Grants GM53275 and
MH59490.

REFERENCES

[1] AYERS, K. L. and LANGE, K. L (2008). Penalized estima-
tion of haplotype frequencies. Bioinformatics 24 1596–1602.

[2] BERRY, M. W., BROWNE, M., LANGVILLE, A. N., PAUCA,
V. P. and PLEMMONS, R. J. (2007). Algorithms and applica-
tions for approximate nonnegative matrix factorization. Com-
put. Statist. Data Anal. 52 155–173. MR2409971

[3] BUCKNER, J., WILSON, J., SELIGMAN, M., ATHEY, B.,
WATSON, S. and MENG, F. (2010). The gputools package
enables GPU computing in R. Bioinformatics 26 134–135.

[4] DE LEEUW, J. (1992). Fitting distances by least squares. Un-
published manuscript.

[5] DE LEEUW, J. and HEISER, W. J. (1977). Convergence of
correction matrix algorithms for multidimensional scaling.
In Geometric Representations of Relational Data 133–145.
Mathesis Press, Ann Arbor, MI.

[6] DE LEEUW, J. (1977). Applications of convex analysis to
multidimensional scaling. In Recent Developments in Statis-
tics (Proc. European Meeting Statisticians, Grenoble, 1976)
133–145. North-Holland, Amsterdam. MR0478483

[7] DE LEEUW, J. (1994). Block relaxation algorithms in sta-
tistics. In Information Systems and Data Analysis. Springer,
Berlin.

[8] DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977).
Maximum likelihood from incomplete data via the EM algo-
rithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1–38.
MR0501537

[9] DIACONIS, P., GOEL, S. and HOLMES, S. (2008). Horse-
shoes in multidimensional scaling and local kernel methods.
Ann. Appl. Statist. 2 777–807. MR2516794

[10] GROENEN, P. J. F. and HEISER, W. J. (1996). The tunneling
method for global optimization in multidimensional scaling.
Pshychometrika 61 529–550.

[11] JAMSHIDIAN, M. and JENNRICH, R. I. (1993). Conjugate
gradient acceleration of the EM algorithm. J. Amer. Statist.
Assoc. 88 221–228. MR1212487

[12] JAMSHIDIAN, M. and JENNRICH, R. I. (1997). Acceleration
of the EM algorithm by using quasi-Newton methods. J. Roy.
Statist. Soc. Ser. B 59 569–587. MR1452026

[13] KOREN, Y., BELL, R. and VOLINSKY, C. (2009). Matrix fac-
torization techniques for recommender systems. Computer 42
30–37.

[14] LANGE, K. L. and CARSON, R. (1984). EM reconstruc-
tion algorithms for emission and transmission tomography.
J. Comput. Assist. Tomogr. 8 306–316.

[15] LANGE, K. L. (1995). A quasi-Newton acceleration of the
EM algorithm. Statist. Sinica 5 1–18. MR1329286

[16] LANGE, K. L. (2004). Optimization. Springer, New York.
MR2072899

[17] LANGE, K. L., HUNTER, D. R. and YANG, I. (2000). Op-
timization transfer using surrogate objective functions (with
discussion). J. Comput. Graph. Statist. 9 1–59. MR1819865

[18] LEE, A., YAN, C., GILES, M. B., DOUCET, A. and
HOLMES, C. C. (2009). On the utility of graphics cards to
perform massively parallel simulation of advanced Monte
Carlo methods. Technical report, Dept. Statistics, Oxford
Univ.

[19] LEE, D. D. and SEUNG, H. S. (1999). Learning the parts
of objects by non-negative matrix factorization. Nature 401
788–791.

[20] LEE, D. D. and SEUNG, H. S. (2001). Algorithms for non-
negative matrix factorization. In NIPS 556–562. MIT Press,
Cambridge, MA.

[21] LIU, C. and RUBIN, D. B. (1994). The ECME algorithm:
A simple extension of EM and ECM with faster monotone
convergence. Biometrika 81 633–648. MR1326414

[22] MCLACHLAN, G. J. and KRISHNAN, T. (2008). The EM
Algorithm and Extensions, 2nd ed. Wiley, Hoboken, NJ.
MR2392878

[23] MENG, X. L. and RUBIN, D. B. (1993). Maximum likeli-
hood estimation via the ECM algorithm: A general frame-
work. Biometrika 80 267–278. MR1243503

[24] MENG, X. L. and VAN DYK, D. (1997). The EM algorithm—
an old folk-song sung to a fast new tune (with discussion).
J. Roy. Statist. Soc. Ser. B 59 511–567. MR1452025

[25] MIT center for biological and computational learning. CBCL
Face Database #1. Available at http://cbcl.mit.edu/.

[26] NVIDIA (2008). NVIDIA CUBLAS Library.
[27] NVIDIA (2008). NVIDIA CUDA Compute Unified Device

Architecture: Programming Guide Version 2.0.
[28] OWENS, J. D., LUEBKE, D., GOVINDARAJU, N., HAR-

RIS, M., KRÜGER, J., LEFOHN, A. E. and PURCELL, T. J.
(2007). A survey of general-purpose computation on graphics
hardware. Computer Graphics Forum 26 80–113.

[29] RANOLA, J. M., AHN, S., SEHL, M. E., SMITH, D. J. and
LANGE, K. L. (2010). A Poisson model for random multi-
graphs. Bioinformatics 26 2004–2011.

http://www.ams.org/mathscinet-getitem?mr=2409971
http://www.ams.org/mathscinet-getitem?mr=0478483
http://www.ams.org/mathscinet-getitem?mr=0501537
http://www.ams.org/mathscinet-getitem?mr=2516794
http://www.ams.org/mathscinet-getitem?mr=1212487
http://www.ams.org/mathscinet-getitem?mr=1452026
http://www.ams.org/mathscinet-getitem?mr=1329286
http://www.ams.org/mathscinet-getitem?mr=2072899
http://www.ams.org/mathscinet-getitem?mr=1819865
http://www.ams.org/mathscinet-getitem?mr=1326414
http://www.ams.org/mathscinet-getitem?mr=2392878
http://www.ams.org/mathscinet-getitem?mr=1243503
http://www.ams.org/mathscinet-getitem?mr=1452025
http://cbcl.mit.edu/

324 H. ZHOU, K. LANGE AND M. A. SUCHARD

[30] ROLAND, C., VARADHAN, R. and FRANGAKIS, C. E.
(2007). Squared polynomial extrapolation methods with cy-
cling: An application to the positron emission tomography
problem. Numer. Algorithms 44 159–172. MR2334694

[31] SILBERSTEIN, M., SCHUSTER, A., GEIGER, D., PAT-
NEY, A. and OWENS, J. D. (2008). Efficient computation of
sum-products on GPUs through software-managed cache. In
Proceedings of the 22nd Annual International Conference on
Supercomputing 309–318. ACM, New York.

[32] SINNOTT-ARMSTRONG, N. A., GREENE, C. S., CAN-
CARE, F. and MOORE, J. H. (2009). Accelerating epistasis
analysis in human genetics with consumer graphics hardware.
BMC Res. Notes 2 149.

[33] SUCHARD, M. A. and RAMBAUT, A. (2009). Many-core
algorithms for statistical phylogenetics. Bioinformatics 25
1370–1376.

[34] SUCHARD, M. A., HOLMES, C. and WEST, M. (2010).
Some of the what?, why?, how?, who and where? of graphics
processing unit computing for Bayesian analysis. ISBA Bull.
17 12–16.

[35] SUCHARD, M. A, WANG, Q., CHAN, C., FRELINGER, A.
and West, M. (2010). Understanding GPU programming for
statistical computation: Studies in massively parallel massive
mixtures. J. Comput. Graph. Statist. 19 418–438.

[36] TIBBITS, M. M., HARAN, M. and LIECHTY, J. C. (2010).
Parallel multivariate slice sampling. Statist. Comput. To ap-
pear.

[37] UEDA, N. and NAKANO, R. (1998). Deterministic annealing
EM algorithm. Neural Networks 11 271–282.

[38] VARADHAN, R. and ROLAND, C. (2008). Simple and
globally convergent methods for accelerating the conver-
gence of any EM algorithm. Scand. J. Statist. 35 335–353.
MR2418745

[39] VARDI, Y., SHEPP, L. A. and KAUFMAN, L. (1985). A sta-
tistical model for positron emission tomography (with discus-
sion). J. Amer. Statist. Assoc. 80 8–37. MR0786595

[40] WU, T. T. and LANGE, K. L. (2010). The MM alternative to
EM. Statist. Sci. To appear.

[41] ZHOU, H. and LANGE K. L. (2009). On the bumpy road to
the dominant mode. Scand. J. Statist. DOI: 10.1111/j.1467-
9469.2009.00681.x.

[42] ZHOU, H., ALEXANDER, D. and LANGE, K. L. (2009).
A quasi-Newton acceleration for high-dimensional optimiza-
tion algorithms. Statist. Comput. DOI: 10.1007/s11222-009-
9166-3.

[43] ZHOU, H. and LANGE, K. L. (2010). MM algorithms for
some discrete multivariate distributions. J. Comput. Graph.
Statist. 19 645–665.

http://www.ams.org/mathscinet-getitem?mr=2334694
http://www.ams.org/mathscinet-getitem?mr=2418745
http://www.ams.org/mathscinet-getitem?mr=0786595
http://dx.doi.org/10.1111/j.1467-9469.2009.00681.x
http://dx.doi.org/10.1007/s11222-009-9166-3
http://dx.doi.org/10.1111/j.1467-9469.2009.00681.x
http://dx.doi.org/10.1007/s11222-009-9166-3

	Introduction
	MM Algorithms
	Numerical Examples
	Nonnegative Matrix Factorizations
	Positron Emission Tomography
	Multidimensional Scaling

	Discussion
	Acknowledgments
	References

