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Connected Spatial Networks over Random
Points and a Route-Length Statistic
David J. Aldous and Julian Shun

Abstract. We review mathematically tractable models for connected net-
works on random points in the plane, emphasizing the class of proximity
graphs which deserves to be better known to applied probabilists and statisti-
cians. We introduce and motivate a particular statistic R measuring shortness
of routes in a network. We illustrate, via Monte Carlo in part, the trade-off
between normalized network length and R in a one-parameter family of prox-
imity graphs. How close this family comes to the optimal trade-off over all
possible networks remains an intriguing open question.

The paper is a write-up of a talk developed by the first author during 2007–
2009.
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1. INTRODUCTION

The topic called random networks or complex net-
works has attracted huge attention over the last 20
years. Much of this work focuses on examples such as
social networks or WWW links, in which edges are not
closely constrained by two-dimensional geometry. In
contrast, in a spatial network not only are vertices and
edges situated in two-dimensional space, but also it is
actual distances, rather than number of edges, that are
of interest. To be concrete, we visualize idealized inter-
city road networks, and a feature of interest is the (min-
imum) route length between two given cities. Because
we work only in two dimensions, the word spatial may
be misleading, but equally the word planar would be
misleading because we do not require networks to be
planar graphs (if edges cross, then a junction is cre-
ated).

Our major purpose is to draw the attention of read-
ers from the applied probability and statistics commu-
nities to a particular class of spatial network models.
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Recall that the most studied network model, the ran-
dom geometric graph [40] reviewed in Section 2.1,
does not permit both connectivity and bounded nor-
malized length in the n → ∞ limit. An attractive al-
ternative is the class of proximity graphs, reviewed in
Section 2.3, which in the deterministic case have been
studied within computational geometry. These graphs
are always connected. Proximity graphs on random
points have been studied in only a few papers, but are
potentially interesting for many purposes other than
the specific “short route lengths” topic of this paper
(see Section 6.5). One could also imagine construc-
tions which depend on points having specifically the
Poisson point process distribution, and one novel such
network, which we name the Hammersley network, is
described in Section 2.5.

Visualizing idealized road networks, it is natural to
take total network length as the “cost” of a network, but
what is the corresponding “benefit”? Primarily we are
interested in having short route lengths. Choosing an
appropriate statistic to measure the latter turns out to be
rather subtle, and the (only) technical innovation of this
paper is the introduction (Section 3.2) and motivation
of a specific statistic R for measuring the effectiveness
of a network in providing short routes.

In the theory of spatial networks over random points,
it is a challenge to quantify the trade-off between net-
work length [precisely, the normalized length L de-
fined at (2)] and route length efficiency statistics such
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as R. Our particular statistic R is not amenable to ex-
plicit calculation even in comparatively tractable mod-
els, but in Section 4 we present the results from Monte
Carlo simulations. In particular, Figure 7 shows the
trade-off for the particular β-skeleton family of prox-
imity graphs.

Given a normalized network length L, for any real-
ization of cities there is some network of normalized
length L which minimizes R. As indicated in Sec-
tion 5, by general abstract mathematical arguments,
there must exist a deterministic function Ropt(L) giv-
ing (in the “number of cities → ∞” limit under the
random model) the minimum value of R over all pos-
sible networks of normalized length L. An intriguing
open question is as follows:

how close are the values Rβ-skel(L) from the
β-skeleton proximity graphs to the optimum
values Ropt(L)?

As discussed in Section 5.3, at first sight it looks easy to
design heuristic algorithms for networks which should
improve over the β-skeletons, for example, by intro-
ducing Steiner points, but in practice we have not suc-
ceeded in doing so.

This paper focuses on the random model for city po-
sitions because it seems the natural setting for theoret-
ical study. As a complement, in [10] we give empiri-
cal data for the values of (L,R) for certain real-world
networks (on the 20 largest cities, in each of 10 US
States). In [8] we give analytic results and bounds on
the trade-off between L and the mathematically more
tractable stretch statistic Rmax at (4), in both worst-case
and random-case settings for city positions. Let us also
point out a (perhaps) nonobvious insight discussed in
Section 3.3: in designing networks to be efficient in the
sense of providing short routes, the main difficulty is
providing short routes between city-pairs at a specific
distance (2–3 standardized units) apart, rather than be-
tween pairs at a large distance apart.

Finally, recall this is a nontechnical account. Our
purpose is to elaborate verbally the ideas outlined
above; some technical aspects will be pursued else-
where.

2. MODELS FOR CONNECTED SPATIAL
NETWORKS

There are several conceptually different ways of
defining networks on random points in the plane. To
be concrete, we call the points cities; to be consistent
about language, we regard xi as the position of city i

and represent network edges as line segments (xi, xj ).

First (Sections 2.1–2.3) are schemes which use de-
terministic rules to define edges for an arbitrary deter-
ministic configuration of cities; then one just applies
these rules to a random configuration. Second, one can
have random rules for edges in a deterministic config-
uration (e.g., the probability of an edge between cities
i and j is a function of Euclidean distance d(xi, xj ), as
in popular small worlds models [39]), and again apply
to a random configuration. Third, and more subtly, one
can have constructions that depend on the randomness
model for city positions—Section 2.5 provides a novel
example.

We work throughout with reference to Euclidean dis-
tance d(x, y) on the plane, even though many mod-
els could be defined with reference to other metrics (or
even when the triangle inequality does not hold, for the
MST).

2.1 The Geometric Graph

In Sections 2.1–2.3 we have an arbitrary configura-
tion x = {xi} of city positions, and a deterministic rule
for defining the edge-set E . Usually in graph theory
one imagines a finite configuration, but note that every-
thing makes sense for locally finite configurations too.
Where helpful, we assume “general position,” so that
intercity distances d(xi, xj ) are all distinct.

For the geometric graph one fixes 0 < c < ∞ and
defines

(xi, xj ) ∈ E iff d(xi, xj ) ≤ c.

For the K-neighbor graph one fixes K ≥ 1 and defines

(xi, xj ) ∈ E iff xi is one of the K closest
neighbors of xj , or xj is one of the K clos-
est neighbors of xi .

A moment’s thought shows these graphs are in general
not connected, so we turn to models which are “by con-
struction” connected. We remark that the connectivity
threshold cn in the finite n-vertex model of the random
geometric graph has been studied in detail—see Chap-
ter 13 of [40].

2.2 A Nested Sequence of Connected Graphs

The material here and in the next section was de-
veloped in graph theory with a view toward algorith-
mic applications in computational geometry and pat-
tern recognition. The 1992 survey [28] gives the his-
tory of the subject and 116 citations. But everything
we need is immediate from the (careful choice of) defi-
nitions. On our arbitrary configuration x we can define
four graphs whose edge-sets are nested as follows:

MST ⊆ relative n’hood ⊆ Gabriel ⊆ Delaunay.(1)
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Here are the definitions (for MST and Delaunay, it
is easy to check these are equivalent to more familiar
definitions). In each case, we write the criterion for an
edge (xi, xj ) to be present:

• Minimum spanning tree (MST) [24]. There does not
exist a sequence i = k0, k1, . . . , km = j of cities such
that

max(d(xk0, xk1), d(xk1, xk2), . . . , d(xkm−1, xkm))

< d(xi, xj ).

• Relative neighborhood graph. There does not exist a
city k such that

max(d(xi, xk), d(xk, xj )) < d(xi, xj ).

• Gabriel graph. There does not exist a city inside
the disc whose diameter is the line segment from xi

to xj .
• Delaunay triangulation [23]. There exists some disc,

with xi and xj on its boundary, so that no city is
inside the disc.

The inclusions (1) are immediate from these defini-
tions. Because the MST (for a finite configuration) is
connected, all these graphs are connected.

Figure 1 illustrates the relative neighborhood and
Gabriel graphs. Figures for the MST and the Delaunay
triangulation can be found online at http://www.spss.
com/research/wilkinson/Applets/edges.html.

Constructions such as the relative neighborhood and
Gabriel graphs have become known loosely as prox-
imity graphs in [28] and subsequent literature, and we
next take the opportunity to turn an implicit definition
in the literature into an explicit definition.

2.3 Proximity Graphs

Write v− and v+ for the points (−1
2 ,0) and (1

2 ,0).
The lune is the intersection of the open discs of radii 1
centered at v− and v+. So v− and v+ are not in the
lune but are on its boundary. Define a template A to be
a subset of R

2 such that:

(i) A is a subset of the lune.
(ii) A contains the open line segment (v−, v+).

(iii) A is invariant under the “reflection in the y-
axis” map Reflectx(x1, x2) = (−x1, x2) and the “re-
flection in the x-axis” map Reflecty(x1, x2) = (x1,

−x2).
(iv) A is open.

For arbitrary points x, y in R
2, define A(x, y) to

be the image of A under the natural transformation
(translation, rotation and scaling) that takes (v−, v+)

to (x, y).

DEFINITION. Given a template A and a locally fi-
nite set V of vertices, the associated proximity graph G

has edges defined by, for each x, y ∈ V ,

(x, y) is an edge of G iff A(x, y) contains no
vertex of V .

From the definitions:

• if A is the lune, then G is the relative neighborhood
graph;

• if A is the disc centered at the origin with radius 1/2,
then G is the Gabriel graph.

But the MST and Delaunay triangulation are not in-
stances of proximity graphs.

Note that replacing A by a subset A′ can only intro-
duce extra edges. It follows from (1) that the proximity

FIG. 1. The relative neighborhood graph (left) and Gabriel graph (right) on different realizations of 500 random points.

http://www.spss.com/research/wilkinson/Applets/edges.html
http://www.spss.com/research/wilkinson/Applets/edges.html
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graph is always connected. The Gabriel graph is pla-
nar. But if A is not a superset of the disc centered at the
origin with radius 1/2, then G might not be a subgraph
of the Delaunay triangulation, and in this case edges
may cross, so G is not planar (e.g., if the vertex-set is
the four corners of a square, then the diagonals would
be edges).

For a given configuration x, there is a collection of
proximity graphs indexed by the template A, so by
choosing a monotone one-parameter family of tem-
plates, one gets a monotone one-parameter family of
graphs, analogous to the one-parameter family Gc of
geometric graphs. Here is a popular choice [30] in
which β = 1 gives the Gabriel graph and β = 2 gives
the relative neighborhood graph.

DEFINITION (The β-skeleton family). (i) For 0 <

β < 1 let Aβ be the intersection of the two open discs
of radius (2β)−1 passing through v− and v+.

(ii) For 1 ≤ β ≤ 2 let Aβ be the intersection of
the two open discs of radius β/2 centered at (±(β −
1)/2,0).

2.4 Networks Based on Powers of Edge-Lengths

It is not hard to think of other ways to define one-
parameter families of networks. Here is one scheme
used in, for example, [38]. Fix 1 ≤ p < ∞. Given
a configuration x, and a route (sequence of vertices)
x0, x1, . . . , xk , say, the cost of the route is the sum of
pth powers of the step lengths. Now say that a pair
(x, y) is an edge of the network Gp if the cheapest
route from x to y is the one-step route. As p increases
from 1 to ∞, these networks decrease from the com-
plete graph to the MST. Moreover, for p ≥ 2 the net-
work Gp is a subgraph of the Gabriel graph.

2.5 The Hammersley Network

There is a quite separate recent literature in theoreti-
cal probability [26, 27] defining structures such as trees
and matchings directly on the infinite Poisson point
process. In this spirit, we observe that the Hammers-
ley process studied in [6] can be used to define a new
network on the infinite Poisson point process, which
we name the Hammersley network. This network is de-
signed to have the feature that each vertex has exactly
4 edges, in directions NE (between North and East),
NW, SE and SW. The conceptual difference from the
networks in the previous section is that there is not such
a simple “local” criterion for whether a potential edge
(xi, xj ) is in the network. And edges cross, creating
junctions.

For a picturesque description, imagine one-eyed
frogs sitting on an infinitely long, thin log, each being
able to see only the part of the log to their left before
the next frog. At random times and positions (precisely,
as a space–time Poisson point process of rate 1) a fly
lands on the log, at which instant the (unique) frog
which can see it jumps left to the fly’s position and eats
it. This defines a continuous time Markov process (the
Hammersley process) whose states are the configura-
tions of positions of all the frogs. There is a stationary
version of the process in which, at each time, the posi-
tions of the frogs form a Poisson (rate 1) point process
on the line.

Now consider the space–time trajectories of all the
frogs, drawn with time increasing upward on the page.
See Figure 2. For each frog, the part of the trajectory
between the completions of two successive jumps con-
sists of an upward edge (the frog remains in place as
time increases) followed by a leftward edge (the frog
jumps left).

Reinterpreting the time axis as a second space axis,
and introducing compass directions, that part of the
trajectory becomes a North edge followed by a West
edge. Now replace these two edges by a single North-
West straight edge. Doing this procedure for each frog
and each pair of successive jumps, we obtain a col-
lection of NW paths, that is, a network in which each
city (the reinterpreted space–time random points) has
an edge to the NW and an edge to the SE. Finally, we

FIG. 2. Space–time trajectories in Hammersley’s process.
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FIG. 3. The Hammersley network on 2500 random points.

repeat the construction with the same realization of the
space–time Poisson point process but with frogs jump-
ing rightward instead of leftward. This yields a network
on the infinite Poisson point process, which we name
the Hammersley network. See Figure 3.

REMARKS. (a) To draw the Hammersley network
on random points in a finite square, one needs external
randomization to give the initial (time 0) frog positions,
in fact, two independent randomizations for the left-
ward and the rightward processes. So to be pedantic,
one gets a random network over the given realization
of cities. However, one can deduce from the theoretical
results in [6] that the external randomization has effect
only near the boundary of the square.

(b) The property that each vertex has exactly
4 edges, in directions NE (between North and East),
NW, SE and SW, is immediate from the construction.
Note, however, that while adjacent NW space–time tra-
jectories in Figure 2 do not cross, the corresponding di-
agonal roads in the Hammersley network may cross, so
it is not a planar graph, though this has only negligible
effect on route lengths.

(c) Intuition, confirmed by Figure 7 later, says that
the Hammersley network is not very efficient as a road
network. It serves to demonstrate that there do exist
random networks other than the familiar ones, and pro-
vides an instance where imposing deterministic con-
straints (the four edges, in this case) on a random net-
work makes it much less efficient. How general a phe-
nomenon is this?

2.6 Normalized Length

The notion of normalized network length L is most
easily visualized in the setting of an infinite determin-
istic network which is “regular” in the sense of con-
sisting of a repeated pattern. First choose the unit of
length so that cities have an average density of one per
unit area. Then define

L = average network length per unit area,(2)

�̄ = average degree (number of incident edges)
(3)

of cities.

Figure 4 shows the values of L and �̄ for some sim-
ple “repeated pattern” networks. Though not directly
relevant to our study of the random model, we find
Figure 4 helpful for two reasons: as intuition for the
interpretation of the different numerical values of L,
and because we can make very loose analogies (Sec-
tion 6.6) between particular networks on random points
and particular deterministic networks.

3. NORMALIZED LENGTH AND ROUTE-LENGTH
EFFICIENCY

3.1 The Random Model

For the remainder of the paper we work with “the
random model” for city positions. The finite model as-
sumes n random vertices (cities) distributed indepen-
dently and uniformly in a square of area n. The infinite
model assumes the Poisson point process of rate 1 (per
unit area) in the plane. The quantities L, �̄ above and
R below that we discuss may be interpreted as exact
values in the infinite model or as n → ∞ limits in the
finite model; see Section 5. We use the word normal-
ized as a reminder of the “density 1” convention—we
choose the normalized unit of distance to make cities
have average density 1 per unit area. After this normal-
ization, L is the average network length per unit area.

3.2 The Route-Length Efficiency Statistic R

In designing a network, it is natural to regard total
length as a “cost”. The corresponding “benefit” is hav-
ing short routes between cities. Write �(i, j) for the
route length (length of shortest path) between cities i

and j in a given network, and d(i, j) for Euclidean
distance between the cities. So �(i, j) ≥ d(i, j), and
we write

r(i, j) = �(i, j)

d(i, j)
− 1
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FIG. 4. Variant square, triangular and hexagonal lattices. Drawn so that the density of cities is the same in each diagram, and ordered by
value of L.

so that “r(i, j) = 0.2” means that route length is 20%
longer than straight line distance. With n cities we get(n
2

)
such numbers r(i, j); what is a reasonable way to

combine these into a single statistic? Two natural pos-
sibilities are as follows:

Rmax := max
j 	=i

r(i, j),

(4)
Rave := ave(i,j) r(i, j),

where ave(i,j) denotes average over all distinct pairs
(i, j). The statistic Rmax has been studied in the con-
text of the design of geometric spanner networks [37]
where it is called the stretch. However, being an “ex-
tremal” statistic Rmax seems unsatisfactory as a de-
scriptor of real world networks—for instance, it seems

unreasonable to characterize the UK rail network as in-
efficient simply because there is no very direct route
between Oxford and Cambridge.

The statistic Rave has a more subtle drawback. Con-
sider a network consisting of:

• the minimum-length connected network (Steiner
tree) on given cities;

• and a superimposed sparse collection of randomly
oriented lines (a Poisson line process [45]).

See Figure 5. By choosing the density of lines to be
sufficiently low, one can make the normalized network
length be arbitrarily close to the minimum needed for
connectivity. But it is easy to show (see [7] for careful
analysis and a stronger result) that one can construct
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FIG. 5. Efficient or inefficient? Rave would judge this network
efficient in the n → ∞ limit.

such networks so that Rave → 0 as n → ∞. Of course
no one would build a road network looking like Fig-
ure 5 to link cities, because there are many pairs of
nearby cities with only very indirect routes between
them. The disadvantage of Rave as a descriptive sta-
tistic is that (for large n) most city-pairs are far apart,
so the fact that a given network has a small value of
Rave says nothing about route lengths between nearby
cities.

We propose a statistic R which is intermediate be-
tween Rave and Rmax. First consider (see discussion
below for details)

ρ(d) := mean value of r(i, j) over

city-pairs with d(i, j) = d

and then define

R := max
0≤d<∞ρ(d).(5)

In words, R = 0.2 means that on every scale of dis-
tance, route lengths are on average at most 20% longer
than straight line distance.

On an intuitive level, R provides a sensible and in-
terpretable way to compare efficiency of different net-
works in providing short routes. On a technical level,
we see two advantages and one disadvantage of using
R instead of Rave.

Advantage 1. Using R to measure efficiency, there
is a meaningful n → ∞ limit for the network length/

efficiency trade-off [the function Ropt(L) discussed in
Section 5], and so, in particular, it makes sense to com-
pare the values of R for networks with different n.

Advantage 2. A more realistic model for traffic
would posit that volume of traffic between two cities
varies as a power-law d−γ of distance d , so that in cal-
culating Rave it would be more realistic to weight by
d−γ . This means that the optimal network, when using
Rave as optimality criterion, would depend on γ . Use of
R finesses this issue; the value of γ does not affect R.
A related issue is that volume of traffic between two
cities should depend on their populations. Intuitively,
incorporating random population sizes should make
the optimal R smaller because the network designer
can create shorter routes between larger cities. We see
this effect in data [10]; R calculated via population-
weighting is typically slightly smaller. But we have not
tried theoretical study.

Disadvantage. The statistic R is tailored to the in-
finite model, in which it makes sense to consider two
cities at exactly distance d apart (then the other city po-
sitions form a Poisson point process). For finite n we
need to discretize. For the empirical data in [10], where
n = 20, we average over intervals of width 1 unit (re-
call the unit of distance is taken such that the density
of cities is 1 per unit area), that is, for d = 1,2, . . . ,5,

we calculate

ρ̃(d) := mean value of r(i, j) over city-pairs

with d − 1
2 < d(i, j) < d + 1

2 ,(6)

R̃ := max
1≤d<∞ ρ̃(d)

and use R̃ as proxy for R. For larger n we can use
shorter intervals. Thus, there is, in principle, a certain
fuzziness to the notion of R for finite networks, and,
in particular, it is not clear how to assign a value of R

to regular networks such as those in Figure 4. But in
practice, for networks we have studied on real-world
data and on random points, this is not a problem, as
explained next.

3.3 Characteristic Shape of the Function ρ(d)

For the connected networks on random points (ex-
cluding the Hammersley network) we are discussing,
the function ρ(d) has a characteristic shape (see Fig-
ure 6) attaining its maximum between 2 and 3 and
slowly decreasing thereafter. We suspect that “this
characteristic shape holds for any reasonable model,”
but we do not know how to turn that phrase into a pre-
cise conjecture. Note that “smoothness near the maxi-
mum” implies that any calculated value R̃ at (6) is quite
insensitive to the choice of discretization.
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FIG. 6. The function ρ(d) for three theoretical networks on random cities. Irregularities are Monte Carlo random variation.

This characteristic shape has a common-sense in-
terpretation. Any efficient network will tend to place
roads directly between unusually close city-pairs, im-
plying that ρ(d) should be small for d < 1. For large
d the presence of multiple alternate routes helps pre-
vent ρ(d) from growing. At distance 2 − 3 from a typ-
ical city i there will be about π32 − π22 ≈ 16 other
cities j . For some of these j there will be cities k near
the straight line from i to j , so the network designer
can create roads from i to k to j . The difficulty arises
where there is no such intermediate city k: including a
direct road (xi, xj ) will increase L, but not including it
will increase ρ(d) for 2 < d < 3.

Thus, Figure 6 offers a minor insight into spatial net-
work design: that it is city pairs at normalized distance
2 − 3 specifically that enforce the constraints on effi-
cient network design.

The characteristic shape—at least, the flatness over
2 ≤ d ≤ 5—is also visible in the real-world data [10].

For the Hammersley network, the graph of ρ(d) is
quite different; ρ(d) increases to a maximum of 0.35
around d = 0.8 and then decreases more steeply to a
value of 0.21 at d = 5. This arises from the particular
structure (from each city there is one road in each quad-
rant) resembling the deterministic “diagonal lattice” of
Figure 4, in which the route between some nearby pairs
will be via two diagonal roads and a junction.

4. LENGTH-EFFICIENCY TRADE-OFF FOR
TRACTABLE NETWORKS

Recall that our overall theme is the trade-off between
network length and route-length efficiency, and that in
this paper we focus on n → ∞ limits in the random
model and the particular statistics L and R.

The models described in Section 2 are “tractable”
in the specific sense that one can find exact analytic
formulas for normalized length L. Unfortunately R is
not amenable to analytic calculation, and we resort to
Monte Carlo simulation to obtain values for R. Table 1
and Figure 7 show the values of (L,R) in the models.
We explain below how the values of L are calculated.

Notes on Table 1. (a) Values of R from our simula-
tions with n = 2500.

TABLE 1
Statistics of tractable networks on random points

Network L �̄ R

Minimum spanning tree 0.633 2 ∞
Relative n’hood 1.02 2.56 0.38
Gabriel 2 4 0.15
Hammersley 3.25 4 0.35
Delaunay 3.40 6 0.07

Notes: Integer values are exact. Recall L is normalized length (2),
�̄ is average degree (3) and R is our route-length statistic (5).
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FIG. 7. The normalized network length L and the route-length efficiency statistic R for certain networks on random points. The ◦ show the
beta-skeleton family, with RN the relative neighborhood graph and G the Gabriel graph. The • are special models: � shows the Delaunay
triangulation, � shows the network G2 from Section 2.4 and ♦ shows the Hammersley network.

(b) Value of L for MST from Monte Carlo [19].
In principle, one can calculate arbitrarily close bounds
[11], but apparently this has never been carried out. Of
course, �̄ = 2 for any tree.

(c) The Gabriel graph and the relative neighborhood
graph fit the assumptions of Lemma 1 with c = π/4

and c = 2π
3 −

√
3

4 , respectively, and their table entries
for L and �̄ are obtained from Lemma 1, as are the
values for β-skeletons in Figure 7.

(d) For the Hammersley network, every degree
equals 4, so L = 2 × (mean edge-length). It follows
from theory [6] that a typical edge, say, NE from (x, y),
goes to a city at position (x + ξx, y + ξy), where ξx and
ξy are independent with Exponential(1) distribution.
So mean edge-length equals

∫ ∞
0

∫ ∞
0

√
x2 + y2e−x−y dx dy ≈ 1.62.(7)

(e) For any triangulation, �̄ = 6 in the infinite model.
For the Delaunay triangulation, L = ES where S is
the perimeter length of a typical cell, and it is known
([35], page 113) that ES = 32

3π
. Note [33] that the De-

launay triangulation is in general not the minimum-
length triangulation. Our simulation results in Figure 6
for ρ(d) for the Delaunay triangulation are roughly
consistent with a simulation result in [13] saying that
ρ(65) ≈ 0.05.

4.1 A Simple Calculation for Proximity Graphs

Let us give an example of an elementary calculation
for proximity graphs over random points.

LEMMA 1. For a proximity graph with template A

on the Poisson point process,

L = π3/2

4c3/2 ,(8)

�̄ = π

c
,(9)

where c = area(A).

PROOF. Take a typical city at position x0. For a
city x at distance s the chance that (x0, x) is an edge
equals exp(−cs2) and so

mean-degree =
∫ ∞

0
exp(−cs2)2πs ds,

L = 1

2

∫ ∞
0

s exp(−cs2)2πs ds.

Evaluating the integrals gives (8) and (9). �
One can derive similar integral formulas for other

“local” characteristics, for example, mean density of
triangles and moments of vertex degree. See [18, 20,
21, 34] for a variety of such generalizations and spe-
cializations.

4.2 Other Tractable Networks

We do not know any other ways of defining networks
on random points which are both “natural” and are
tractable in the sense that one can find exact analytic
formulas for L. In particular, we know no tractable way
of defining networks with deliberate junctions as in
Figure 8. Note also that, while it is easy to make ad hoc
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FIG. 8. An ad hoc modification of the relative neighborhood
graph, introducing junctions.

modifications to the geometric graph to ensure connec-
tivity, these destroy tractability. On the other hand, one
can construct “unnatural” networks (see, e.g., [8]) de-
signed to permit calculation of L.

5. OPTIMAL NETWORKS AND N → ∞ LIMITS

5.1 Tractable Models

As mentioned earlier, the quantities L, �̄,R we dis-
cuss may be interpreted as exact values in the infinite
model or as n → ∞ limits in the finite model. To elab-
orate briefly, in a realization of the finite model (n cities
distributed independently and uniformly in a square of
area n), a network in Table 1 has a normalized length
Ln = n−1 × (network length) and an average degree
�̄n which are random variables, but there is conver-
gence (in probability and in expectation)

Ln → L, �̄n → �̄ as n → ∞(10)

to limit constants definable in terms of the analogous
network on the infinite model (rate 1 Poisson point
process on the infinite plane). For the proximity graphs
or Delaunay triangulation, the network definition ap-
plies directly to the infinite model and proof of (10) is
straightforward. For the Hammersley network, (10) is
implicit in [6], and for the MST detailed arguments can
be found in [9, 43].

5.2 Optimal Networks

We now turn to consideration of optimal networks.
Given a configuration x of n cities in the area-n
square, and a value of L which is greater than n−1 ×
(length of Steiner tree), one can define a number

Rn(x,L) = min of R̃ over all networks
(11)

on x with normalized length ≤ L,

where R̃ is the discretized version (6) calculated using
intervals of some suitable length δn. Applying this to a
random configuration X in the finite model gives, for
each L, a random variable


n(L) := Rn(X,L).

One intuitively expects convergence to some determin-
istic limit


n(L) → Ropt(L) say, as n → ∞.(12)

The analogous result for Rmax will be proved care-
fully in [8], and the same “superadditivity” argument
could be used to prove (12). See [43, 44, 47] for gen-
eral background to such results. The point is that we
do not have any explicit description of the optimal
[i.e., attaining the minimum in (11)] networks in the
finite or infinite models, so it seems very challenging
to prove the natural stronger supposition that the finite
optimal networks themselves converge (in some appro-
priate sense) to a unique infinite optimal network for
which the value R = Ropt(L) is attained.

5.3 The Curve Ropt(L)

Every possible network on the infinite Poisson point
process defines a pair (L,R), and the curve R =
Ropt(L) can be defied equivalently as the lower bound-
ary of the set of possible values of (L,R). There is
no reason to believe that proximity graphs are exactly
optimal, and, indeed, Figure 7 shows that the Delau-
nay triangulation is slightly more efficient than the cor-
responding β-skeleton. But our attempts to do better
by ad hoc constructions (e.g., by introducing degree-3
junctions—see Figure 8 for an example) have been un-
successful. And, indeed, the fact that the two special
models in Figure 7 lie close to the β-skeleton curve
lends credence to the idea that this curve is almost
optimal. We therefore speculate that the function Ropt
looks something like the curve in Figure 9, which we
now discuss.

What can we say about Ropt(L)? It is a priori nonin-
creasing. It is known [47] that there exists a Euclidean
Steiner tree constant LST representing the limit nor-
malized Steiner tree length in the random model, and
clearly Ropt(L) = ∞ for L < LST. The facts

Ropt(L) < ∞ for all L > LST;
(13)

Ropt(L) → 0 as L → ∞
are not trivial to prove rigorously, but follow from the
corresponding facts for Rmax proved in [8]. But we are
unable to prove rigorously that Ropt(L) is strictly de-
creasing or that it is continuous.



CONNECTED NETWORKS OVER RANDOM POINTS 285

FIG. 9. Speculative shape for the curve Ropt(L), with ◦ and • values from tractable networks in Figure 7.

6. FINAL REMARKS

6.1 Toy Models for Road Networks

The idea of using proximity graphs as toy models for
road networks has previously been noted [30] but not
investigated very thoroughly. It is an intuitively natural
idea to a network designer: whether or not to place a di-
rect road from city i to a nearby city j depends (partly)
on whether some other city k is close to the line be-
tween them.

As observed by a referee, for the kind of models
studied in this paper we expect route length �(i, j) be-
tween distant cities to be roughly proportional to graph
distance (number of edges), which is a more relevant
quantity in some contexts. However, when one con-
siders design of optimal networks, replacing or par-
tially replacing route length by graph distance leads
to quite different optimal networks [1, 22]. For some
other cost/benefit functionals leading to yet different
optimal networks see [2, 14].

6.2 Rigorous Proof of Finite R in Random
Proximity Graphs

Table 1 presented the Monte Carlo numerical value
≈0.38 of R for the relative neighborhood graph on ran-
dom points. From a rigorous viewpoint, the assertion
that a random network has R < ∞ is essentially the
assertion that ρ(d) = O(d) as d → ∞. This is often
nontrivial to prove. A general sufficient condition for
this property, which applies to the relative neighbor-
hood graph (and hence all proximity graphs), is proved
in [3]. The related fact that the limit limd→∞ ρ(d)/d

exists is proved in [4].

6.3 Real-World Trade-Off Between Network Length
and Route-Length Efficiency

Recall that our central theme is seeking to quan-
tify the trade-off between normalized network length l

and route-length efficiency R. Figure 9 suggests that
for optimal networks the “law of diminishing returns”
sets in around L = 2 (for comparison, this is the value
of L corresponding to the square grid network), in
that Ropt(L) decreases rapidly to around 0.13 as L in-
creases to 2 but decreases only slowly as L increases
further. This suggests a kind of “economic prediction”
for the lengths of real-world networks which are per-
ceived by users to be efficient in providing short routes:

the length of an efficient network linking n

cities in a region of area A will be roughly
2
√

An.

Here the
√

An arises from undoing the normalization
and the “2” is the value of L. Of course, this is rough:
we mean “closer to 2 than to 1 or 3.”

6.4 Other Results for the Random Network Models

There is substantial literature on the networks (MST,
proximity graphs, Delaunay triangulation) in the de-
terministic setting. In the random case, central limit
theorems for total network length have been studied
in many models: for the MST in [29, 31, 32], and for
the Delaunay triangulation, Voronoi tessellation, rela-
tive neighborhood and Gabriel graphs in [12, 25, 42].
Large deviation estimates for total network length are
given for the Gabriel graph in [46], Section 11.4, and



286 D. J. ALDOUS AND J. SHUN

presumably could be extended to other models. Oth-
erwise the literature for the random case is rather dif-
fuse, with different focuses for different networks. For
instance, work on MSTs has focused on connections
with critical continuum percolation [17]. For the rel-
ative neighborhood graph and the Gabriel graph, [20]
calculates �̄ and [18] shows that, in the finite model,
in a certain range the β-skeletons have

Rmax grows as order
√

logn/ log logn(14)

and [21] shows the same order for maximum vertex
degree in the Gabriel graph. As for the Delaunay tri-
angulation, there has been surprisingly little follow-up
to the seminal analysis by Miles [35] (various maxi-
mal statistics are studied in [16]), though the closely
related Voronoi tessellation has been studied in more
detail [36].

6.5 Speculative Applications of Random Proximity
Graphs

Random proximity graphs seem an interesting ob-
ject of study from many viewpoints, in particular, as
an attractive alternative to random geometric graphs
for modeling spatial networks that are connected by
design. It is remarkable that results such as (14) are
the only nonelementary results about them that we can
find in the literature. As well as being natural models
for road networks, proximity graphs might be useful
in modeling communication networks suffering line of
sight interference.

At a more mathematical level, for questions such as
spread-out percolation [41] or critical value of contact
processes [15], random proximity graphs with small A

are an interesting alternative to the usual lattice- or ran-
dom graph-based models. For instance, it is natural to
conjecture that the critical value p∗

A for edge perco-
lation on a random proximity graph with template A

satisfies

p∗
A ∼ π−1 area(A) as area(A) → 0(15)

[the right side = 1/�̄ from (9)] and that the critical
value λ∗

A for the contact process has the same asymp-
totics.

6.6 Analogies Between Deterministic and Random
Networks

As mentioned earlier, we may make very loose
analogies between particular networks on random
points and particular deterministic networks in Fig-
ure 4, based in part on exact equality of �̄ in the latter

three cases:

Relative n’hood graph ↔ punctured lattice,

Gabriel graph ↔ square lattice,

Hammersley network ↔ diagonal lattice,

Delaunay triangulation ↔ triangular lattice.

6.7 Scale Invariant Continuum Networks

Introducing the statistic R can be viewed as one
approach to resolving the “paradox” from [7], dis-
cussed in Section 3.2, that the more natural statistic
Rave does not lead to realistic optimal networks in the
n → ∞ limit. This particular approach was prompted
by visualizing real-world road networks—cf. discus-
sion in Section 3.3. Let us mention a mathematically
more sophisticated alternative, under study as a work
in progress [5]. Instead of a discrete Poisson process of
cities, we imagine a continuum limit. That is, for each
finite set (z1, . . . , zk) of points in the plane, there is a
random network S(z1, . . . , zk) linking the points, con-
sistent as more points are added. Mathematically nat-
ural structural properties for the distribution of such a
process are as follows:

(i) translation and rotation invariance,
(ii) scale invariance,

where the latter means that routes, as point-sets in R
2,

are invariant in distribution under Euclidean scaling.
This implies that the quantity ρ(d) analogous to (5),
assumed finite, is a constant, which we can call R′. The
analog L′ of L is defined by

the expected length of the network on n

uniform random points in the area-n square
grows ∼ L′n as n → ∞.

In this setting we can study the optimal trade-off be-
tween L′ and R′, and the kind of “paradoxical” Fig-
ure 5 network cannot arise because it violates scale-
invariance.
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