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Gibbs Sampling, Exponential Families and
Orthogonal Polynomials1

Persi Diaconis, Kshitij Khare and Laurent Saloff-Coste

Abstract. We give families of examples where sharp rates of convergence
to stationarity of the widely used Gibbs sampler are available. The examples
involve standard exponential families and their conjugate priors. In each case,
the transition operator is explicitly diagonalizable with classical orthogonal
polynomials as eigenfunctions.
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lar value decomposition.

1. INTRODUCTION

The Gibbs sampler, also known as Glauber dynamics
or the heat-bath algorithm, is a mainstay of scientific
computing. It provides a way to draw samples from a
multivariate probability density f (x1, x2, . . . , xp), per-
haps only known up to a normalizing constant, by
a sequence of one-dimensional sampling problems.
From (X1, . . . ,Xp) proceed to (X′

1,X2, . . . ,Xp), then
(X′

1,X
′
2,X3, . . . ,Xp), . . . , (X′

1,X
′
2, . . . ,X

′
p) where at

the ith stage, the coordinate is sampled from f with
the other coordinates fixed. This is one pass. Continu-
ing gives a Markov chain X,X′,X′′, . . . , which has f

as stationary density under mild conditions discussed
in [4, 102].

The algorithm was introduced in 1963 by Glauber
[49] to do simulations for Ising models, and indepen-
dently by Turcin [103]. It is still a standard tool of
statistical physics, both for practical simulation (e.g.,
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[88]) and as a natural dynamics (e.g., [10]). The ba-
sic Dobrushin uniqueness theorem showing existence
of Gibbs measures was proved based on this dynam-
ics (e.g., [54]). It was introduced as a base for image
analysis by Geman and Geman [46]. Statisticians be-
gan to employ the method for routine Bayesian compu-
tations following the works of Tanner and Wong [101]
and Gelfand and Smith [45]. Textbook accounts, with
many examples from biology and the social sciences,
along with extensive references are in [47, 48, 78].

In any practical application of the Gibbs sampler, it
is important to know how long to run the Markov chain
until it has forgotten the original starting state. Indeed,
some Markov chains are run on enormous state spaces
(think of shuffling cards or image analysis). Do they
take an enormous number of steps to reach station-
arity? One way of dealing with these problems is to
throw away an initial segment of the run. This leaves
the question of how much to throw away. We call these
questions running time analyses below.

Despite heroic efforts by the applied probability
community, useful running time analyses for Gibbs
sampler chains is still a major research effort. An
overview of available tools and results is given at
the end of this introduction. The main purpose of the
present paper is to give families of two component ex-
amples where a sharp analysis is available. These may
be used to compare and benchmark more robust tech-
niques such as the Harris recurrence techniques in [64],
or the spectral techniques in [2] and [107]. They may
also serve as a base for the comparison techniques in
[2, 26, 32].
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Here is an example of our results. The following ex-
ample was studied as a simple expository example in
[16] and [78], page 132. Let

fθ(x) =
(

n

x

)
θx(1 − θ)n−x,

π(dθ) = uniform on (0,1), x ∈ {0,1,2, . . . , n}.
These define the bivariate Beta/Binomial density (uni-
form prior)

f (x, θ) =
(

n

x

)
θx(1 − θ)n−x

with marginal density

m(x) =
∫ 1

0
f (x, θ) dθ

= 1

n + 1
, x ∈ {0,1,2, . . . , n}.

The posterior density [with respect to the prior π(dθ)]
is given by

π(θ |x) = fθ (x)

m(x)

= (n + 1)

(
n

x

)
θx(1 − θ)n−x, θ ∈ (0,1).

The Gibbs sampler for f (x, θ) proceeds as follows:

• From x, draw θ ′ from Beta(x + 1, n − x + 1).
• From θ ′, draw x′ from Binomial(n, θ ′).

The output is (x′, θ ′). Let K̃(x, θ;x′, θ ′) be the tran-
sition density for this chain. While K̃ has f (x, θ) as
stationary density, the (K̃, f ) pair is not reversible
(see below). This blocks straightforward use of spec-
tral methods. Liu et al. [77] observed that the “x-chain”
with kernel

k(x, x′) =
∫ 1

0
fθ (x

′)π(θ |x)dθ

=
∫ 1

0

fθ (x)fθ (x
′)

m(x)
dθ

is reversible with stationary density m(x) [i.e., m(x) ·
k(x, x′) = m(x′)k(x′, x)]. For the Beta/Binomial ex-
ample

k(x, x′) = n + 1

2n + 1

(n
x

)(n
x′

)( 2n
x+x′

) ,

(1.1)
0 ≤ x, x′ ≤ n.

A simulation of the Beta/Binomial “x-chain” (1.1)
with n = 100 is given in Figure 1. The initial position

FIG. 1. Simulation of the Beta/Binomial “x-chain” with n = 100.

is 100 and we track the position of the Markov chain
for the first 200 steps.

The proposition below gives an explicit diagonaliza-
tion of the x-chain and sharp bounds for the bivariate
chain [K̃�

n,θ denotes the density of the distribution of
the bivariate chain after � steps starting from (n, θ)].
It shows that order n steps are necessary and suffi-
cient for convergence. That is, for sampling from the
Markov chain K̃ to simulate from the probability dis-
tribution f , a small (integer) multiple of n steps suf-
fices, while n

2 steps do not. The following bounds make
this quantitative. The proof is given in Section 4. For
example, when n = 100, after 200 steps the total vari-
ation distance (see below) to stationarity is less than
0.0192, while after 50 steps the total variation distance
is greater than 0.1858, so the chain is far from equilib-
rium.

We simulate 3000 independent replicates of the
Beta/Binomial “x-chain” (1.1) with n = 100, starting
at the initial value 100. We provide histograms of the
position of the “x-chain” after 50 steps and 200 steps
in Figure 2. Under the stationary distribution (which is
uniform on {0,1, . . . ,100}), one would expect roughly
150 observations in each block of the histogram. As
expected, these histograms show that the empirical dis-
tribution of the position after 200 steps is close to the
stationary distribution, while the empirical distribution
of the position after 50 steps is quite different.

If f,g are probability densities with respect to a σ -
finite measure μ, then the total variation distance be-
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FIG. 2. Histograms of the observations obtained from simulating 3000 independent replicates of the Beta/Binomial “x-chain” after 50
steps and 200 steps.

tween f and g is defined as

‖f − g‖TV = 1
2

∫
|f (x) − g(x)|μ(dx).(1.2)

PROPOSITION 1.1. For the Beta/Binomial exam-
ple with uniform prior, we have:

(a) The chain (1.1) has eigenvalues

β0 = 1,

βj = n(n − 1) · · · (n − j + 1)

(n + 2)(n + 3) · · · (n + j + 1)
, 1 ≤ j ≤ n.

In particular, β1 = 1 − 2/(n + 2). The eigenfunctions
are the discrete Chebyshev polynomials [orthogonal
polynomials for m(x) = 1/(n + 1) on {0, . . . , n}].

(b) For the bivariate chain K̃ , for all θ, n and �,

1

2
β�

1 ≤ ‖K̃�
n,θ − f ‖TV ≤ β

�−1/2
1

1 − β2�−1
1

.

The calculations work because the operator with
density k(x, x′) takes polynomials to polynomials. Our
main results give classes of examples with the same ex-
plicit behavior. These include:

• fθ (x) is one of the exponential families singled out
by Morris [86, 87] (binomial, Poisson, negative bi-
nomial, normal, gamma, hyperbolic) with π(θ) the
conjugate prior.

• fθ (x) = g(x −θ) is a location family with π(θ) con-
jugate and g belongs to one of the six exponential
families above.

Section 2 gives background. In Section 2.1 the Gibbs
sampler is set up more carefully in both systematic and
random scan versions. Relevant Markov chain tools are
collected in Section 2.2. Exponential families and con-
jugate priors are reviewed in Section 2.3. The six fam-
ilies are described more carefully in Section 2.4 which
calculates needed moments. A brief overview of or-
thogonal polynomials is in Section 2.5.

Section 3 is the heart of the paper. It breaks the oper-
ator with kernel k(x, x′) into two pieces: T : L2(m) →
L2(π) defined by

T g(θ) =
∫

fθ (x)g(x)m(dx)

and its adjoint T ∗. Then k is the kernel of T ∗T . Our
analysis rests on a singular value decomposition of T .
In our examples, T takes orthogonal polynomials for
m(x) into orthogonal polynomials for π(θ). This leads
to explicit computations and allows us to treat the ran-
dom scan, x-chain and θ -chain on an equal footing.

The x-chains and θ -chains corresponding to three of
the six classical exponential families are treated in Sec-
tion 4. There are some surprises; while order n steps
are required for the Beta/Binomial example above, for
the parallel Poisson/Gamma example, logn + c steps
are necessary and sufficient. The six location chains are
treated in Section 5 where some standard queuing mod-
els emerge (e.g., the M/M/∞ queue). The final sec-
tion points to other examples with polynomial eigen-
functions and other methods for studying present ex-
amples. Our examples are just illustrative. It is easy to
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sample from any of the families f (x, θ) directly. Fur-
ther, we do not see how to carry our techniques over
to higher component problems. We further point out
that in routine Bayesian use of the Gibbs sampler, the
distribution we wish to sample from is typically a pos-
terior distribution of the parameters. Nevertheless, our
two component problems are easy-to-understand stan-
dard statistical examples.

Basic convergence properties of the Gibbs sampler
can be found in [4, 102]. Explicit rates of convergence
appear in [95, 96]. These lean on Harris recurrence and
require a drift condition of type E(V (X1)|X0 = x) ≤
aV (x) + b for all x. Also required are a minorization
condition of the form k(x, x′) ≥ εq(x′) for ε > 0, some
probability density q , and all x with V (x) ≤ d . Here d

is fixed with d ≥ b/(1 + a). Rosenthal [95] then gives
explicit upper bounds and shows these are sometimes
practically relevant for natural statistical examples. His
paper [97] is a nice expository account. Finding useful
V and q is currently a matter of art. For example, a
group of graduate students tried to use these techniques
in the Beta/Binomial example treated above and found
it difficult to make choices giving useful results. This
led to the present paper.

A marvelous expository account of this set of tech-
niques with many examples and an extensive literature
review is given by Jones and Hobert in [64]. In their
main example an explicit eigenfunction was available
for V ; our Gamma/Gamma examples below general-
ize this. Further, “practically relevant” examples with
useful analyses of Markov chains for stationary distri-
butions which are difficult to sample directly from are
in [65, 81, 98]. Some sharpenings of the Harris recur-
rence techniques are in [9] which also makes useful
connections with classical renewal theory.

The Markov chains studied in this paper generate
stochastic processes which have the marginal as sta-
tionary distribution. These chains have been used in a
variety of applied modeling contexts in [80] and [89–
91]. The present paper presents some new tools for
these models. A related family of Markov chains and
analyses have been introduced by Eaton [33–35] to
study admissibility of formal Bayes estimators. The
process is a two-component Gibbs sampler, as above,
with π an improper prior having an almost surely
proper posterior. Under regularity assumptions, Eaton
shows that recurrence of the θ -chain implies the admis-
sibility of certain formal Bayes estimators correspond-
ing to π . Hobert and Robert [61] have developed this
research, introducing the x-chain as a useful tool. Spec-
tral techniques have proved to be a useful adjunct to

Foster-type criteria for studying recurrence. We hope
to develop our theory in these directions.

The analyses carried out in this paper hinge critically
on the existence of all marginal and conditional mo-
ments. These moments need not exist. Indeed, consider
the geometric density fθ (x) = θx(1 − θ),0 ≤ x < ∞,
and put a Beta(α,β) prior on θ , with α ≥ 1 being an in-
teger. The marginal distribution of x admits only α − 1
moments. For α > 1, the available moments are put to
good use in [25].

2. BACKGROUND

This section gives needed background. The two-
component Gibbs sampler is defined more carefully in
Section 2.1. Bounds on convergence using eigenvalues
are given in Section 2.2. Exponential families and con-
jugate priors are reviewed in Section 2.3. The six fam-
ilies with variance a quadratic function of the mean are
treated in Section 2.4. Finally, a brief review of orthog-
onal polynomials is in Section 2.5.

2.1 Two-Component Gibbs Samplers

Let (X,F ) be a measurable space equipped with
a σ -finite measure μ. Let (	,G) be a measurable
space equipped with a probability measure π(dθ). In
many classical situations the prior is given by a den-
sity g(θ) with respect to the Lebesgue measure dθ , and
so π(dθ) = g(θ) dθ . However, we also consider exam-
ples where the parameter θ is discrete, which cannot
be described in the fashion mentioned above. Thus, we
work with general prior probabilities π(dθ) through-
out. Let {fθ (x)}θ∈	 be a family of probability densities
with respect to μ. These define a probability measure
on X × 	 via

P(A × B) =
∫
B

∫
A

fθ (x)μ(dx)π(dθ),

A ∈ F , B ∈ G.

The marginal density on X is

m(x) =
∫
	

fθ(x)π(dθ)(
so

∫
X

m(x)μ(dx) = 1
)
.

We assume that 0 < m(x) < ∞ for every x ∈ X. The
posterior density with respect to π(dθ) is given by

π(θ |x) = fθ (x)/m(x).



GIBBS SAMPLING AND ORTHOGONAL POLYNOMIALS 155

The probability P splits with respect to m(dx) =
m(x)μ(dx) in the form

P(A × B) =
∫
A

∫
B

π(θ |x)π(dθ)m(dx),

A ∈ F , B ∈ G.

The systematic scan Gibbs sampler for drawing from
the distribution P proceeds as follows:

• Starting from (x, θ), first, draw x′ from fθ (·); sec-
ond, draw θ ′ from π(·|x′).

The output is (x′, θ ′). This generates a Markov
chain (x, θ) → (x′, θ ′) → ·· · having kernel

K(x, θ;x′, θ ′) = fθ(x
′)fθ ′(x′)/m(x′)

with respect to μ(dx′)π(dθ ′). A slight variant ex-
changes the order of the draws:

• Starting from (x, θ), first, draw θ ′ from π(·|x); sec-
ond, draw x′ from fθ ′(·).

The output is (x′, θ ′). The corresponding Markov
chain (x, θ) → (x′, θ ′) → ·· · has kernel

K̃(x, θ;x′, θ ′) = fθ ′(x)fθ ′(x′)/m(x)

with respect to μ(dx′)π(dθ ′). Under mild condi-
tions these two chains have stationary distribution P .

The “x-chain” [from x, draw θ ′ from π(θ ′|x) and
then x′ from fθ ′(x′)] has transition kernel

k(x, x′) =
∫
	

π(θ |x)fθ (x
′)π(dθ)

(2.1)

=
∫
	

fθ(x)fθ (x
′)

m(x)
π(dθ).

Note that
∫

k(x, x′)μ(dx′) = 1 so that k(x, x′) is a
probability density with respect to μ. Note further that
m(x)k(x, x′) = m(x′)k(x′, x) so that the x-chain has
m(dx) as a stationary distribution.

The “θ -chain” [from θ , draw x from fθ (x) and then
θ ′ from π(θ ′|x)] has transition density

k(θ, θ ′) =
∫
X

fθ (x)π(θ ′|x)μ(dx)

(2.2)

=
∫
X

fθ (x)fθ ′(x)

m(x)
μ(dx).

Note that
∫

k(θ, θ ′)π(dθ ′) = 1 and that k(θ, θ ′) has
π(dθ) as reversing measure.

EXAMPLE (Poisson/Exponential). Let X = {0,1,

2,3, . . .}, μ(dx) = counting measure, 	 = (0,∞),
fθ(x) = e−θ θx/x!. Take π(dθ) = e−θ dθ . Then

m(x) = ∫ ∞
0

e−θ θx

x! e−θ dθ = 1/2x+1. The posterior den-
sity with respect to π(dθ) is π(θ |x) = fθ (x)/m(x) =
2x+1e−θ θx/x!. Finally, the x-chain has kernel

k(x, x′) =
∫ ∞

0

2x+1θx+x′
e−3θ

x!x′! dθ

= 2x+1

3x+x′+1

(
x + x′

x

)
, 0 ≤ x, x′ < ∞,

whereas the θ -chain has kernel

k(θ, θ ′) = 2e−θ−θ ′ ∞∑
x=0

(2θθ ′)x

(x!)2 = 2e−θ−θ ′
I0

(√
8θθ ′)

with respect to π(dθ), where I0 is the classical mod-
ified Bessel function; see Feller [44], Section 2.7, for
background.

A second construction called the random scan chain
is frequently used. From (x, θ), pick a coordinate at
random and update it from the appropriate conditional
distribution. More formally, for g ∈ L2(P )

K̄g(x, θ) = 1
2

∫
	

g(x, θ ′)π(θ ′|x)π(dθ ′)
(2.3)

+ 1
2

∫
X

g(x′, θ)fθ (x
′)μ(dx′).

We note three things. First, K̄ sends L2(P ) →
L2(P ) and is reversible with respect to P . This is
the usual reason for using random scans. Second,
the right-hand side of (2.3) is the sum of a func-
tion of x alone and a function of θ alone. That is,
K̄ :L2(P ) → L2(m) + L2(π) [the range of K̄ is con-
tained in L2(m) + L2(π)]. Third, if g ∈ (L2(m) +
L2(π))⊥ [complement in L2(P )], then K̄g = 0 [Ker
K̄ ⊇ (L2(m) + L2(π))⊥]. Indeed, for any h ∈ L2(P ),
〈K̄g,h〉P = ∫

(K̄g)hdP = ∫
(K̄h)g dP = 0. Thus

K̄g = 0. We diagonalize random scan chains in Sec-
tion 3.

2.2 Bounds on Markov Chains

2.2.1 General results. We briefly recall well-known
results that will be applied to either our two-component
Gibbs sampler chains or the x- and θ -chains. Suppose
we are given a Markov chain described by its kernel
K(ξ, ξ ′) with respect to a measure μ̃(dξ ′) [e.g., ξ =
(x, θ), μ̃(dξ) = μ(dx)π(dθ) for the two-component
sampler, ξ = θ , μ̃(dθ) = π(dθ) for the θ -chain, etc.].
Suppose further that the chain has stationary measure
m(dξ) = m(ξ)μ̃(dξ) and write

K̂(ξ, ξ ′) = K(ξ, ξ ′)/m(ξ ′),
K̂�

ξ (ξ ′) = K̂�(ξ, ξ ′) = K�(ξ, ξ ′)/m(ξ ′)
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for the kernel and iterated kernel of the chain with
respect to the stationary measure m(dξ). We define
the chi-square distance between the distribution of the
chain started at ξ after � steps and its stationary mea-
sure by

χ2
ξ (�) =

∫
|K̂�

ξ (ξ ′) − 1|2m(dξ ′)

=
∫ |K�(ξ, ξ ′) − m(ξ ′)|2

m(ξ ′)
μ̃(dξ ′).

This quantity always yields an upper bound on the total
variation distance

‖K�
ξ − m‖TV = 1

2

∫
|K̂�

ξ (ξ ′) − 1|m(dξ ′)

= 1
2

∫
|K�(ξ, ξ ′) − m(ξ ′)|μ̃(dξ ′),

namely,

4‖K�
ξ − m‖2

TV ≤ χ2
ξ (�).(2.4)

Our analysis will be based on eigenvalue decompo-
sitions. Let us first assume that we are given a function
φ such that

Kφ(ξ) =
∫

K(ξ, ξ ′)φ(ξ ′)μ̃(dξ ′) = βφ(ξ),

m(φ) =
∫

φ(ξ)m(ξ)μ̃(dξ) = 0

for some (complex number) β . In words, φ is a gener-
alized eigenfunction with eigenvalue β . We say “gen-
eralized” here because we have not assumed here that
φ belongs to a specific L2 space [we only assume we
can compute Kφ and m(φ)]. The second condition [or-
thogonality to constants in L2(m)] will be automat-
ically satisfied when |β| < 1. Such an eigenfunction
yields a simple lower bound on the convergence of the
chain to its stationary measure.

LEMMA 2.1. Referring to the notation above, as-
sume that φ ∈ L2(m(dξ)) and

∫ |φ|2 dm = 1. Then

χ2
ξ (�) ≥ |φ(ξ)|2|β|2�.

Moreover, if φ is a bounded function, then

‖K�
ξ − m‖TV ≥ |φ(ξ)||β|�

2‖φ‖∞
.

PROOF. This follows from the well-known results

χ2
ξ (�) = sup

‖g‖2,m≤1
{|K�

ξ (g) − m(g)|2}(2.5)

and

‖K�
ξ − m‖TV = 1

2 sup
‖g‖∞≤1

{|K�
ξ (g) − m(g)|}.(2.6)

Here, Kl
ξ (g) denotes the expectation of g under the

density Kl(ξ, ·). For chi-square, use g = φ as a test
function. For total variation use g = φ/‖φ‖∞ as a
test function. More sophisticated lower bounds on to-
tal variation are based on the second moment method
(e.g., [99, 106]). �

To obtain upper bounds on the chi-square distance,
we need much stronger hypotheses. Namely, assume
that K is a self-adjoint operator on L2(m) and that
L2(m) admits an orthonormal basis of real eigenfunc-
tions ϕi with real eigenvalues βi ≥ 0, β0 = 1, ϕ0 ≡ 1,
βi ↓ 0 so that∫

K̂(ξ, ξ ′)ϕi(ξ
′)m(dξ ′) = βiϕi(ξ).

Assume further that K acting on L2(m) is Hilbert–
Schmidt (i.e.,

∑ |βi |2 < ∞). Then we have

K̂�(ξ, ξ ′) = ∑
i

β�
i ϕi(ξ)ϕi(ξ

′)

[convergence in L2(m × m)]
and

χ2
ξ (�) = ∑

i>0

β2�
i ϕ2

i (ξ).(2.7)

Useful references for this part of classical functional
analysis are [1, 94].

2.2.2 Application to the two-component Gibbs sam-
pler. All of the bounds in this paper are derived
via the following route: bound L1 by L2 and use
the explicit knowledge of eigenvalues and eigen-
functions to bound the sum in (2.7). This, however,
does not apply directly to the two-component Gibbs
sampler K (or K̃) because these chains are not re-
versible with respect to their stationary measure. For-
tunately, the x-chain and the θ -chain are reversible
and their analysis yields bounds on the two-component
chain thanks to the following elementary observa-
tion. The x-chain has kernel k(x, x′) with respect to
the measure μ(dx). It will also be useful to have
k̂(x, x′) = k(x, x′)/m(x′), the kernel with respect to
the probability m(dx) = m(x)μ(dx). For � ≥ 2, we
let k�

x(x
′) = k�(x, x′) = ∫

k(x, y)k�−1(y, x′)μ(dy) de-
note the density [w.r.t. μ(dx)] of the distribution of
the x-chain after l steps and set k̂�

x(x
′) = k̂�(x, x′) =∫

k̂(x, y)k̂�−1(y, x′)m(dy) [the density w.r.t. m(dx)].
Also

‖g‖p,P =
(∫

|g(ω)|pP (dω)

)1/p

for p ≥ 1.
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LEMMA 2.2. Referring to the K,K̃ two-
component chains and x-chain introduced in Sec-
tion 2.1, for any p ∈ [1,∞], we have

‖(K�
x,θ /f ) − 1‖p

p,P ≤
∫

‖k̂�−1
z − 1‖p

p,mfθ (z)μ(dz)

≤ sup
z

‖k̂�−1
z − 1‖p

p,m

and

‖(K̃�
x,θ /f ) − 1‖p

p,P ≤ ‖k̂�−1
x − 1‖p

p,m.

Similarly, for the θ -chain, we have

‖(K̃�
x,θ /f ) − 1‖p

p,P ≤
∫

‖k�−1
θ − 1‖p

p,ππ(θ | x)π(dθ)

≤ sup
θ

‖k�−1
θ − 1‖p

p,π

and

‖(Kl
x,θ /f ) − 1‖p

p,P ≤ ‖k�−1
θ − 1‖p

p,π .

PROOF. We only prove the results involving the x-
chain. The rest is similar. Recall that the bivariate chain
has transition density

K(x, θ;x′, θ ′) = fθ (x
′)fθ ′(x′)/m(x′).

By direct computation

K�(x, θ;x′, θ ′) =
∫

fθ(z)k
�−1(z, x′)fθ ′(x′)

m(x′)
μ(dz).

For the variant K̃ , the similar formula reads

K̃�(x, θ;x′, θ ′) =
∫

k�−1(x, z)
fθ ′(z)

m(z)
fθ ′(x′)μ(dz).

These two bivariate chains have stationary density
f (x, θ) = fθ (x) with respect to the measure μ(dx) ·
π(dθ). So, we write

K�(x, θ;x′, θ ′)
f (x′, θ ′)

− 1

=
∫ (

k̂�−1(z, x′) − 1
)
fθ (z)μ(dz)

and

K̃�(x, θ;x′, θ ′)
f (x′, θ ′)

− 1

=
∫ (

k̂�−1(x, z) − 1
)
fθ ′(z)μ(dz).

To prove the second inequality in the lemma (the proof
of the first is similar), write

‖(K̃�
x,θ /f ) − 1‖p

p,P

=
∫ ∫ ∣∣∣∣ ∫ (

k̂�−1(x, z) − 1
)
fθ ′(z)μ(dz)

∣∣∣∣p
· fθ ′(x′)μ(dx′)π(dθ ′)

≤
∫ ∫ ∫

|k̂�−1(x, z) − 1|p

· fθ ′(z)μ(dz)fθ ′(x′)μ(dx′)π(dθ ′)

=
∫

|k̂�−1(x, z) − 1|pm(z)μ(dz)

=
∫

|k̂�−1(x, z) − 1|pm(dz).

This gives the desired bound. �
To get lower bounds, we observe the following.

LEMMA 2.3. Let g be a function of x only [abusing
notation, g(x, θ) = g(x)]. Then

K̃g(x, θ) =
∫

k(x, x′)g(x′)μ(dx′).

If instead, g is a function of θ only, then

Kg(x, θ) =
∫

k(θ, θ ′)g(θ ′)π(dθ ′).

PROOF. Assume g(x, θ) = g(x). Then

K̃g(x, θ) =
∫ ∫

fθ ′(x)fθ ′(x′)
m(x)

g(x′)μ(dx′)π(dθ ′)

=
∫

k(x, x′)g(x′)μ(dx′).

The other case is similar. �
LEMMA 2.4. Let χ2

x,θ (�) and χ̃2
x,θ (�) be the chi-

square distances after � steps for the K-chain and the
K̃-chain, respectively, starting at (x, θ). Let χ2

x (�),
χ2

θ (�) be the chi-square distances for the x-chain
(starting at x) and the θ -chain (starting at θ ), respec-
tively. Then we have

χ2
θ (�) ≤ χ2

x,θ (�) ≤ χ2
θ (� − 1),

‖k�
θ − 1‖TV ≤ ‖K�

x,θ − f ‖TV ≤ ‖k�−1
θ − 1‖TV

and

χ2
x (�) ≤ χ̃2

x,θ (�) ≤ χ2
x (� − 1),

‖k�
x − m‖TV ≤ ‖K̃�

x,θ − f ‖TV ≤ ‖k�−1
x − m‖TV.

PROOF. This is immediate from (2.5)–(2.6) and
Lemma 2.3. �
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2.3 Exponential Families and Conjugate Priors

Three topics are covered in this section: exponential
families, conjugate priors for exponential families and
conjugate priors for location families.

2.3.1 Exponential families. Let μ be a σ -finite mea-
sure on the Borel sets of the real line R. Define 	 =
{θ ∈ R :

∫
exθμ(dx) < ∞}. Assume that 	 is non-

empty and open. Hölder’s inequality shows that 	 is
an interval. For θ ∈ 	, set

M(θ) = log
∫

exθμ(dx),

fθ (x) = exθ−M(θ).

The family of probability densities {fθ , θ ∈ 	} is the
exponential family through μ in its “natural parame-
trization.” Allowable differentiations yield the mean
m(θ) = ∫

xfθ (x)μ(dx) = M ′(θ) and the variance
σ 2(θ) = M ′′(θ).

Statisticians realized that many standard families can
be put in such form so that properties can be studied
in a unified way. Standard references for exponential
families include [8, 11, 66, 73, 74].

EXAMPLE. Let X = {0,1,2,3, . . .}, μ(x) = 1/x!.
Then 	 = R, and M(θ) = eθ ,

fθ (x) = exθ−eθ

x! , x = 0,1,2, . . . .

This is the Poisson(λ) distribution with λ = eθ .
This paper works with familiar exponential fami-

lies. Many exotic families have been studied. See [12,
79]. These lead to interesting problems when studied
in conjunction with the Gibbs sampler.

2.3.2 Conjugate priors for exponential families.
With notation as above, fix n0 > 0 and x0 in the in-
terior of the convex hull of the support of μ. Define a
prior density with respect to Lebesgue measure dθ by

πn0,x0(dθ) = z(n0, x0)e
n0x0θ−n0M(θ) dθ,

where z(n0, x0) is a normalizing constant shown to
be positive and finite in Diaconis and Ylvisaker [29]
which contains proofs of the assertions below. The pos-
terior is

π(dθ |x) = πn0+1,(n0x0+x)/(n0+1)(dθ).

Thus the family of conjugate priors is closed under
sampling. This is sometimes used as the definition of
conjugate prior. A central fact about conjugate priors is

E(m(θ)|x) = ax + b.(2.8)

This linear expectation property characterizes con-
jugate priors for families where μ has infinite support.
Section 3 shows that linear expectation implies that the
associated chain defined at (2.1) always has an eigen-
function of the form x − c with eigenvalue a, and c

equal to the mean of the marginal distribution.
Often, an exponential family is not parametrized by

the natural parameter θ , but in terms of the mean para-
meter m(θ). If we construct conjugate priors with re-
spect to this parametrization, then (2.8) does not hold
in general. However, for the six exponential families
having quadratic variance function (discussed in Sec-
tion 2.4 below), (2.8) holds even with the mean para-
metrization. In [19], this is shown to hold only for these
six families. See [15, 55] for more on this.

EXAMPLE. For the Poisson example above the
conjugate priors with respect to θ are of the form

z(n0, x0)e
n0x0θ−n0e

θ

dθ.

The mean parameter is λ = eθ . Since dθ = dλ/λ, the
priors transform to

z(n0, x0)λ
n0x0−1e−n0λ dλ.

The Poisson density parametrized by λ is given by

fλ(x) = ex logλ−λ

x! , x = 0,1,2, . . . .

Hence, the conjugate priors with respect to λ are of the
form

z̃(n0, x0)λ
n0x0e−n0λ dλ.

Here, the Jacobian of the transformation θ → m(θ)

blends in with the rest of the prior so that both para-
metrizations lead to the usual Gamma priors for the
Poisson density, which satisfy (2.8).

2.3.3 Conjugate priors for location families. Let μ

be Lebesgue measure on R or counting measure on N.
In this section we consider random variables of the
form Y = θ + ε, with θ having density π(θ) and ε hav-
ing density g(x) (both with respect to μ). This can also
be written as [densities w.r.t. μ(dx) × μ(dθ)]

fθ (x) = g(x − θ),

f (x, θ) = g(x − θ)π(θ).

In [30], a family of “conjugate priors” π is sug-
gested via posterior linearity. See [82] for further de-
velopments. The idea is to use the following well-
known fact: If X and Y are independent random vari-
ables with finite means and the same distribution, then
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E(X|X + Y) = (X + Y)/2. More generally, if Xr and
Xs are random variables which are independent with
Xr (resp. Xs ) having the distribution of the sum of r

(resp. s) independent copies of the same random vari-
able Z, then E(Xr |Xr + Xs) = r

r+s
(Xr + Xs). Here r

and s may be taken as any positive real numbers if the
underlying Z is infinitely divisible.

With this notation, take g as the density for Xr and
π as the density for Xs and call these a conjugate loca-
tion pair. Then the marginal density m(y) is the con-
volution of g and π .

EXAMPLE. Let g(x) = e−λλx/x! for x ∈ X =
{0,1,2, . . .}. Take 	 = X and let π(θ) = e−ηηθ/θ !.
Then m(x) = e−(λ+η)(λ + η)x/x! and

π(θ |x) =
(

x

θ

)(
η

λ + η

)θ(
λ

λ + η

)x−θ

,

0 ≤ θ ≤ x < ∞.

The Gibbs sampler (bivariate chain K) for this example
becomes:

• From x, choose θ from Binomial(x, η/(η + λ)).
• From θ , choose X = θ + ε with ε ∼ Poisson(λ).

The x-chain may be represented as Xn+1 = SXn +
εn+1 with Sk ∼ Binomial(k, η/(η + λ)) and ε ∼
Poisson(λ). This also represents the number of cus-
tomers on service in an M/M/∞ queue observed at
discrete times: If this is Xn at time n, then SXn is the
number served in the next time period and εn+1 is the
number of unserved new arrivals. The explicit diago-
nalization of the M/M/∞ chain, in continuous time,
using Charlier polynomials appears in [3].

This same chain has yet a different interpretation:
Let fη(j) = (η

j

)
pj (1 − p)η−j . Here 0 < p < 1 is

fixed and η ∈ {0,1,2, . . .} is a parameter. This model
arises in underreporting problems where the true sam-
ple size is unknown. See [85]. Let η have a Poisson(λ)

prior. The Gibbs sampler for the bivariate distribution
f (j, η) = (η

j

)
pj (1 − p)η−j e−λλη/η! goes as follows:

• From η, choose j from Bin(η,p).
• From j , choose η = j + ε with ε ∼ Poisson(λ(1 −

p)).

Up to a simple renaming of parameters, this is the same
chain discussed above. Similar “translations” hold
for any location problem where π(θ |x) has bounded
range.

Note finally that there are natural statistical families
and priors not of exponential form where the analysis
works out neatly. The hypergeometric distribution for

sampling from a finite population with a hypergeomet-
ric prior is developed in [28].

2.4 The Six Families

Morris [86, 87] has characterized exponential fam-
ilies where the variance σ 2(θ) is a quadratic func-
tion of the mean: σ 2(θ) = v0 + v1m(θ) + v2m

2(θ).
These six families have been characterized earlier by
Meixner [83] in the development of a unified theory
of orthogonal polynomials via generating functions. In
[56] the same families are characterized in a regres-
sion context: For Xi independent with a finite mean,
X̄ = 1

n

∑
Xi,S

2
n = 1

n−1
∑

(Xi − X̄)2, one has

E(S2
n|X̄ = x̄) = a + bx̄ + cx̄2

if and only if the distribution of Xi is one of the six
families. In [39, 40], the six families are character-
ized by a link between orthogonal polynomials and
martingales whereas [41, 92] makes a direct link to
Lie theory. Finally, Consonni and Veronese [19] find
the same six families in their study of conjugate pri-
ors: The conjugate priors in the natural parametriza-
tion given above transform into the same family in the
mean parametrization only for the six families. Walter
and Hamedani [105] construct orthogonal polynomials
for the six families for use in empirical Bayes estima-
tion. See also Pommeret [93].

Extensions are developed by Letac and Mora [76]
and Casalis [15] who give excellent surveys of the liter-
ature. Still most useful, Morris [86, 87] gives a unified
treatment of basic (and not so basic) properties such as
moments, unbiased estimation, orthogonal polynomi-
als and statistical properties. We give the six families
in their usual parametrization along with the conjugate
prior and formulae for the moments Eθ(X

k), Ex(θ
k)

of X and θ under dP = fθ (x)μ(dx)π(dθ), given the
value of the other. For each of these families, Eθ(X

k)

and Ex(θ
k) are polynomials of degree k in θ and x,

respectively. We only specify the leading coefficients
of these polynomials below. In fact, the leading coef-
ficients are all we require for our analysis. In the con-
ditional expectation formulae, k is an integer running
from 0 to ∞ unless specified otherwise. For a ∈ R and
n ∈ N ∪ {0}, we define

(a)n = a(a + 1) · · · (a + n − 1)

if n ≥ 1, (a)0 = 1.

While some of the following calculations are stan-
dard and well known, others are not, and since the de-
tails enter our main theorems, we give complete state-
ments.
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Binomial: X = {0, . . . , n}, μ counting measure, 	 =
(0,1):

fθ (x) =
(

n

x

)
θx(1 − θ)n−x, 0 < θ < 1,

π(dθ) = �(α + β)

�(α)�(β)
θα−1(1 − θ)β−1 dθ,

0 < α,β < ∞,

Eθ (X
k) = (n − k + 1)kθ

k +
k−1∑
j=0

aj θ
j ,

0 ≤ k ≤ n,

Ex(θ
k) = 1

(α + β + n)k
xk +

k−1∑
j=0

bjx
j .

Poisson: X = {0,1,2, . . .}, μ counting measure, 	 =
(0,∞):

fθ (x) = e−θ θx

x! , 0 < θ < ∞,

π(dθ) = θa−1e−θ/α

�(a)αa
dθ, 0 < α,a < ∞,

Eθ (X
k) = θk +

k−1∑
j=0

aj θ
j ,

Ex(θ
k) =

(
α

α + 1

)k

xk +
k−1∑
j=0

bjx
j .

Negative Binomial: X = {0,1,2, . . .}, μ counting mea-
sure, 	 = (0,1):

fθ (x) = �(x + r)

�(r)x! θx(1 − θ)r ,

0 < θ < 1, r > 0.

π(dθ) = �(α + β)

�(α)�(β)
θα−1(1 − θ)β−1 dθ,

0 < α, β < ∞.

Eθ (X
k) = (r)k

(
θ

1 − θ

)k

+
k−1∑
j=0

aj

(
θ

1 − θ

)j

,

Ex

((
θ

1 − θ

)k)
= (β + r − k)kx

k +
k−1∑
j=0

bjx
j ,

k < β + r.

Normal: X = 	 = R, μ Lebesgue measure:

fθ (x) = 1√
2πσ 2

e(−1/2)(x−θ)2/σ 2
,

0 < σ 2 < ∞
π(dθ) = 1√

2πτ 2
e(−1/2)(θ−v)2/τ 2

dθ,

−∞ < v < ∞, 0 < τ < ∞,

Eθ (X
k) = θk +

k−1∑
j=0

aj θ
j ,

Ex(θ
k) =

(
τ 2

τ 2 + σ 2

)k

xk +
k−1∑
j=0

bjx
j .

Gamma: X = 	 = (0,∞), μ Lebesgue measure:

fθ (x) = xa−1e−x/θ

θa�(a)
, 0 < a < ∞,

π(dθ) = cbθ−(b+1)e−c/θ

�(b)
dθ, 0 < b, c < ∞,

Eθ (X
k) = (a)kθ

k,

Ex(θ
k) = (a + b − k)kx

k +
k−1∑
j=0

bjx
j ,

0 ≤ k < a + b.

Hyperbolic: X = 	 = R, μ Lebesgue measure:

fθ (x) = 2r−2

πr(1 + θ2)r/2

· erx tan−1 θβ

(
r

2
+ irx

2
,

r

2
− irx

2

)
,

r > 0,

where β(a, b) = �(a)�(b)

�(a + b)
,

π(dθ) = �(ρ/2 − ρδi/2)�(ρ/2 + ρδi/2)

�(ρ/2)�(ρ/2 − 1/2)
√

π

· eρδ tan−1 θ

(1 + θ2)ρ/2 dθ,

−∞ < δ < ∞, ρ ≥ 1,

Eθ (X
k) = k!θk +

k−1∑
j=0

aj θ
j ,

Ex(θ
k) = 1

rk(r + ρ − k − 1)k
xk +

k−1∑
j=0

bjx
j ,

0 < k ≤ r + ρ − 1.

A unified way to prove the formulas involving
Eθ(X

k) follows from Morris [87], (3.4). This says, for
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any of the six families with m(θ) the mean parame-
ter and pk(x,m0) the monic, orthogonal polynomials
associated to the parameter θ0,

Eθ(pk(x,m0)) = bk

(
m(θ) − m(θ0)

)k
,

where, if the family has variance function σ 2(θ) =
v2m

2(θ) + v1m(θ) + v0,

bk =
k−1∏
i=0

(1 + iv2).

For example, for the Binomial(n, θ) family, m(θ) =
nθ , σ 2(θ) = nθ(1 − θ), so v2 = −1/n and

Eθ(pk(x,m0)) =
{

k−1∏
i=0

(n − i)

}
(θ − θ0)

k.

Comparing lead terms and using induction gives the
first binomial entry. The rest are similar; the values of
v2 are v2(Poisson) = 0, v2(NB) = 1/r , v2(Normal) =
0, v2(Gamma) = 1/r , v2(Hyperbolic) = 1. Presum-
ably, there is a unified way to get the Ex(θ

k) entries,
perhaps using [87], Theorem 5.4. This result shows that
we get polynomials in x but the lead coefficients do not
come out as easily. At any rate, they all follow from el-
ementary computations.

REMARKS. 1. The moment calculations above are
transformed into a singular value decomposition and
an explicit diagonalization of the univariate chains (x-
chain, θ -chain) in Section 3.

2. The first five families are very familiar, the sixth
family less so. As one motivation, consider the gener-
alized arc sine densities

fθ(y) = yθ−1(1 − y)(1−θ)−1

�(θ)�(1 − θ)
, 0 ≤ y, θ < 1.

Transform these to an exponential family via x =
log(y/(1 − y)), η = πθ − π/2. This has density

gη(x) = exη+log(cosη)

2 cosh((π/2)x)
,

−∞ < x < ∞, −π

2
< η <

π

2
.

The appearance of cosh explains the name hyperbolic.
This density appears in [44], page 503, as an example
of a density which is its own Fourier transform (like
the normal). Many further references are in [37, 86,
87]. In particular, g0(x) is the density of 2

π
log |C| with

C standard Cauchy. The mean of gη(x) is tan(η) = θ .
Parametrizing by the mean leads to the density shown

with r = 1. The average of r independent copies of in-
dependent variates with this density gives the density
with general r . The beta function is defined as usual;
β(a, b) = �(a)�(b)/�(a + b).

The conjugate prior for the mean parameter is of
Pearson Type IV. When δ = 0 this is a rescaled t den-
sity. For general δ the family is called the skew t in
[37] which contains a wealth of information. Under the
prior, the parameter θ has mean ρδ/(ρ − 2) and satis-
fies(

ρ − (k + 2)
)
E(θk+1) = kE(θk−1) + ρδE(θk),

1 ≤ k < ρ − 2.

This makes it simple to compute the Ex(θ
k) entry. Mo-

ments past ρ are infinite.
The marginal distribution m(x) can be computed

in closed form. Using Stirling’s formula in the form
|�(σ + it)| ∼ √

2π e−π |t |/2|t |σ−1/2 as |t | ↑ ∞, shows
that m(x) has tails asymptotic to c/xρ . It thus has only
finitely many moments, so the x-chain must be studied
by nonspectral methods. Of course, the additive ver-
sion of our setup has moments of all order. The relevant
orthogonal polynomials are Meixner–Pollaczek.

2.5 Some Background on Orthogonal Polynomials

A variety of orthogonal polynomials are used cru-
cially in the following sections. While we usually just
quote what we need from the extensive literature, this
section describes a simple example. Perhaps the best
introduction is in [18]. We will make frequent refer-
ence to [63] which is thorough and up-to-date. The
classical account [100] contains much that is hard to
find elsewhere. The on-line account [68] is very useful.
For pointers to the literature on orthogonal polynomi-
als and birth and death chains, see, for example, [104].

As an indication of what we need, consider the
Beta/Binomial example with a general Beta(α,β)

prior. Then the stationary distribution for the x-chain
on X = {0,1,2, . . . , n} is

m(x) =
(

n

x

)
(α)x(β)n−x

(α + β)n

where

(a)x = �(a + x)

�(a)
= a(a + 1) · · · (a + x − 1).

The choice α = β = 1 yields the uniform distribution
while α = β = 1/2 yields the discrete arc-sine density
from [43], Chapter 3,

m(x) =
(2x

x

) (2n−2x
n−x

)
22n

.
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The orthogonal polynomials for m are called Hahn
polynomials [see (2.10) below]. They are developed in
[63], Section 6.2, which refers to the very useful treat-
ment of Karlin and McGregor [67]. The polynomials
are given explicitly in [63], pages 178–179. Shifting
parameters by 1 to make the classical notation match
present notation, the orthogonal polynomials are

Qj(x) = 3F2

(−j, j + α + β − 1,−x

α,−n
1
)

,

0 ≤ j ≤ n.

Here

rFs

(
a1 · · ·ar

b1 · · ·bs
z

)
=

∞∑
�=0

(a1a2 · · ·ar)�

(b1b2 · · ·bs)�

z�

�!
(2.9)

with (a1 · · ·ar)� =
r∏

i=1

(ai)�.

These polynomials satisfy

Em(QjQ�) = (β)j (α + β + j − 1)n+1

(α + β + 2j − 1)
(2.10)

· j !(n − j)!
(α + β)n(α)jn!δjl.

Thus they are orthogonal polynomials for m. When
α = β = 1, these become the discrete Chebyshev poly-
nomials cited in Proposition 1.1. From our work in Sec-
tion 2.2, we see we only need to know Qj(x0) with x0
the starting position. This is often available in closed
form for special values, for example, for x0 = 0 and
x0 = n,

Qj(0) = 1,
(2.11)

Qj(n) = (−β − j)j

(α + 1)j
, 0 ≤ j ≤ n.

For general starting values, one may draw on the exten-
sive work on uniform asymptotics; see, for example,
[100], Chapter 8, or [5].

We note that [86], Section 8, gives an elegant self-
contained development of orthogonal polynomials for
the six families. Briefly, if fθ (x) = exθ−M(θ) is the den-
sity, then

pk(x, θ) = σ 2k

{
dk

dkm
fθ(x)

}/
fθ (x)

[derivatives with respect to the mean m(θ)]. If σ 2(θ) =
v2m

2(θ) + v1m(θ) + v0, then

Eθ(pnpk) = δnkakσ
2k with ak = k!

k−1∏
i=0

(1 + iv2).

We also find need for orthogonal polynomials for the
conjugate priors π(θ).

3. A SINGULAR VALUE DECOMPOSITION

The results of this section show that many of the
Gibbs sampler Markov chains associated to the six
families have polynomial eigenvectors, with explicitly
known eigenvalues. This includes the x-chain, θ -chain
and the random scan chain. Analysis of these chains is
in Sections 4 and 5. For a discussion of Markov op-
erators related to orthogonal polynomials, see, for ex-
ample, [6]. For closely related statistical literature, see
[13] and the references therein.

Throughout, notation is as in Section 2.1. We have
{fθ (x)}θ∈	 a family of probability densities on the real
line R with respect to a σ -finite measure μ(dx), for
θ ∈ 	 ⊆ R. Further, π(dθ) is a probability measure
on 	. These define a joint probability P on R × 	

with marginal density m(x) [w.r.t. μ(dx)] and poste-
rior density [w.r.t. the prior π(dθ)] given by π(θ |x) =
fθ (x)/m(x). The densities do not have to come from
exponential families in this section.

Let c = #suppm(x). This may be finite or infi-
nite. For simplicity, throughout this section, we assume
supp(π) is infinite. Moreover, we make the following
hypotheses:

(H1) For some α1, α2 > 0,
∫

eα1|x|+α2|θ |P(dx,

dθ) < ∞.
(H2) For 0 ≤ k < c, Eθ(X

k) is a polynomial in θ of
degree k with lead coefficient ηk > 0.

(H3) For 0 ≤ k < ∞, Ex(θ
k) is a polynomial in x

of degree k with lead coefficient μk > 0.

By (H1), L2(m(dx)) admits a unique monic, orthog-
onal basis of polynomials pk , 0 ≤ k < c, with pk of
degree k. Also, L2(π(dθ)) admits a unique monic, or-
thogonal basis of polynomials qk , 0 ≤ k < ∞, with qk

of degree k. As usual, η0 = μ0 = 1 and p0 ≡ q0 ≡ 1.

THEOREM 3.1. Assume (H1)–(H3). Then:

(a) The x-chain (2.1) has eigenvalues βk = ηkμk

with eigenvectors pk , 0 ≤ k < c.
(b) The θ -chain (2.2) has eigenvalues βk = ηkμk

with eigenvectors qk for 0 ≤ k < c, and eigenvalues
zero with eigenvectors qk for c ≤ k < ∞.

(c) The random scan chain (2.3) has spectral de-
composition given by

eigenvalues 1
2 ± 1

2
√

ηkμk,

eigenvectors pk(x) ±
√

ηk

μk

qk(θ), 0 ≤ k < c,
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eigenvalues 1
2 , eigenvectors qk, c ≤ k < ∞.

The proof of Theorem 3.1 is in the Appendix.

REMARK. The theorem holds with obvious mod-
ification if #supp(π) < ∞. This occurs for binomial
location problems. It will be used without further com-
ment in Section 5. Further, the arguments work to give
some eigenvalues with polynomial eigenvectors when
only finitely many moments are finite.

4. EXPONENTIAL FAMILY EXAMPLES

This section carries out the analysis of the x- and θ -
chains for the Beta/Binomial, Poisson/Gamma and nor-
mal families. The x- and θ -chains for the normal fam-
ily are essentially the same. Hence, this section con-
sists of five examples in all. For each, we set up the
results for general parameter values and carry out the
bounds in some natural special cases. The other three
families are not amenable to this analysis due to lack
of existence of all moments [which violates hypothe-
sis (H1) in Section 3]. However, they are analyzed by
probabilistic techniques such as coupling in [25].

4.1 Beta/Binomial

4.1.1 The x-chain for the Beta/Binomial. Fix α,
β > 0. On the state space X = {0,1,2, . . . , n}, let

k(x, x ′)

=
∫ 1

0

(
n

x′
)

θα+x+x′−1(1 − θ)β+2n−(x+x′)−1

· �(α + β + n)dθ

�(α + x)�(β + n − x)
(4.1)

=
(

n

x′
)

�(α + β + n)�(α + x + x′)
�(α + x)�(β + n − x)

· �(β + 2n − (x + x′))
�(α + β + 2n)

.

When α = β = 1 (uniform prior), k(x, x′) is given by
(1.1). For general α,β , the stationary distribution is the
Beta/Binomial:

m(x) =
(

n

x

)
(α)x(β)n−x

(α + β)n
,

where

(a)j = �(a + j)

�(a)
= a(a + 1) · · · (a + j − 1).

From our work in previous sections we obtain the fol-
lowing result.

PROPOSITION 4.1. For n = 1,2, . . . , and α,

β > 0, the Beta/Binomial x-chain (4.1) has:

(a) Eigenvalues β0 = 1 and βj = n(n−1)···(n−j+1)
(α+β+n)j

,1 ≤
j ≤ n.

(b) Eigenfunctions Qj , 0 ≤ j ≤ n, the Hahn polyno-
mials of Section 2.5.

(c) For any � ≥ 1 and any starting state x,

χ2
x (�) =

n∑
i=1

β2�
i Q2

i (x)zi

where zi = (α + β + 2i − 1)(α + β)n(α)i

(β)i(α + β + i − 1)n+1

(
n

i

)
.

We now specialize this to α = β = 1 and prove the
bounds announced in Proposition 1.1.

PROOF OF PROPOSITION 1.1. From (a), βi =
n(n−1)···(n−i+1)

(n+2)(n+3)···(n+i+1)
. From (2.11), Q2

i (n) = 1. By ele-
mentary manipulations, zi = βi(2i + 1). Thus

χ2
n(�) =

n∑
y=0

(k�(n, y) − m(y))2

m(y)

=
n∑

i=1

β2�+1
i (2i + 1).

We may bound βi ≤ βi
1 = (1 − 2

n+2)i , and so

χ2
n(�) =

n∑
i=1

β2�+1
i (2i + 1) ≤

n∑
i=1

β
i(2�+1)
1 (2i + 1).

Using
∑∞

1 xi = x/(1 − x),
∑∞

1 ixi = x/(1 − x)2, we
obtain

3β2�+1
1 ≤ χ2

n(�) ≤ 3β2�+1
1

(1 − β2�+1
1 )2

.

By Lemma 2.4, this gives (for the K̃ chain)

3β2�+1
1 ≤ χ̃2

n,θ (�) ≤ 3β2�−1
1

(1 − β2�−1
1 )2

.

The upper bound in total variation follows from (2.4).
For a lower bound in total variation, use the eigenfunc-
tion ϕ1(x) = x − n

2 . This is maximized at x = n and the
lower bound follows from Lemma 2.1. �

REMARK. Essentially, the same results hold for
any Beta(α,β) prior in the sense that, for fixed α,β ,
starting at n, order n steps are necessary and sufficient
for convergence. The computation gets more involved
if one starts from a different point than n. Mizan Rah-
man and Mourad Ismail have shown us how to evaluate
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the Hahn polynomials at n/2 when n is even and α = β

using [63], (1.4.12) (the odd-degree Hahn polynomials
vanish at n/2 and the three-term recurrence then easily
yields the values of the even-degree Hahn polynomials
at n/2). See Section 5.1 for a closely related example.

4.1.2 The θ -chain for the Beta/Binomial. Fix α,

β > 0. On the state space [0,1], let

k(θ, θ ′) =
n∑

j=0

(
n

j

)
θj (1 − θ)n−j

· �(α + β + n)

�(α + j)�(β + n − j)
(4.2)

· (θ ′)α+j−1(1 − θ ′)β+n−j−1.

This is a transition density with respect to Lebesgue
measure dθ ′ on [0,1]. It has stationary density

π(dθ) = �(α + β)

�(α)�(β)
θα−1(1 − θ)β−1 dθ.

REMARK. In this specific example, the prior π(dθ)

has a density g(θ) = �(α+β)
�(α)�(β)

θα−1(1 − θ)β−1 with re-
spect to the Lebesgue measure dθ . For ease of expo-
sition, we deviate from the general treatment in Sec-
tion 2.1, where k(θ, θ ′) is a transition density with re-
spect to π(dθ ′). Instead, we absorb g(θ ′) in the transi-
tion density, so that k(θ, θ ′) is a transition density with
respect to the Lebesgue measure dθ ′.

The relevant orthogonal polynomials are Jacobi
polynomials P

a,b
i , a = α − 1, b = β − 1, given

on [−1,1] in standard literature [68], 1.8. We make
the change of variables θ = 1−x

2 and write pi(θ) =
P

α−1,β−1
i (1 − 2θ). Then, we have∫ 1

0
pj (θ)pk(θ)π(θ) dθ = z−1

j δjk,(4.3)

where

zj = (2j + α + β − 1)�(α)�(β)�(j + α + β − 1)j !
�(α + β)�(j + α)�(j + β)

.

PROPOSITION 4.2. For α,β > 0, the θ -chain for
the Beta/Binomial (4.2) has:

(a) Eigenvalues β0 = 1, βj = n(n−1)···(n−j+1)
(α+β+n)j

,1 ≤
j ≤ n, βj = 0 for j > n.

(b) Eigenfunctions pj , the shifted Jacobi polynomi-
als.

(c) With zi from (4.3), for any � ≥ 1 and any starting
state θ ∈ [0,1],

χ2
θ (�) =

n∑
i=1

β2�
i p2

i (θ)zi .

The following proposition gives sharp chi-square
bounds, uniformly over α,β,n in two cases: (i) α ≥ β ,
starting from 0 (worst starting point), (ii) α = β , start-
ing from 1/2 (heuristically, the most favorable starting
point). The restriction α ≥ β is not really a restriction
because of the symmetry P

a,b
i (x) = (−1)iP

b,a
i (−x).

For α ≥ β > 1/2, it is known (e.g., [63], Lemma 4.2.1)
that

sup
[0,1]

|pi | = sup
[−1,1]

|P α−1,β−1
i | = pi(0) = (α)i

i! .

Hence, 0 is clearly the worst starting point from the
viewpoint of convergence in chi-square distance, that
is,

sup
θ∈[0,1]

{χ2
θ (�)} = χ2

0 (�).

PROPOSITION 4.3. For α ≥ β > 0, n > 0, set
N = log[(α + β)(α + 1)/(β + 1)]. The θ -chain for the
Beta/Binomial (4.2) satisfies:

(i) • χ2
0 (�) ≤ 7e−c, for � ≥ N+c

−2 logβ1
, c > 0.

• χ2
0 (�) ≥ 1

6ec, for � ≤ N−c
−2 logβ1

, c > 0.
(ii) Assuming α = β > 0,

• χ2
1/2(�) ≤ 13β2�

2 , for � ≥ 1
−2 logβ2

.

• χ2
1/2(�) ≥ 1

2β2�
2 , for � > 0.

Roughly speaking, part (i) says that, starting from 0,
�(α,β,n) steps are necessary and sufficient for conver-
gence in chi-square distance where

�(α,β,n) = log[(α + β)(α + 1)/(β + 1)]
−2 log(1 − (α + β)/(α + β + n))

.

Note that if α,n,n/α tend to infinity and β is fixed,

�(α,β,n) ∼ n logα

α
, β1 ∼ 1 − α

n
.

If α,n,n/α tend to infinity and α = β ,

�(α,α,n) ∼ n logα

4α
, β1 ∼ 1 − 2α

n
.

The result also says that, starting from 0, convergence
occurs abruptly (i.e., with cutoff) at �(α,β,n) as long
as α tends to infinity.

Part (ii) indicates a completely different behavior
starting from 1/2 (in the case α = β). There is no cutoff
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and convergence occurs at the exponential rate given
by β2 (β2 ∼ 1 − 4α

n
if n/α tends to infinity).

PROOF OF PROPOSITION 4.3(i). We have χ2
0 (�) =∑n

1 β2�
i pi(0)2zi and

β2�
i+1pi+1(0)2zi+1

β2�
i pi(0)2zi

=
(

n − i

α + β + n + i

)2�

· 2i + α + β + 1

2i + α + β − 1

i + α + β − 1

i + 1

i + α

i + β
(4.4)

≤ 5

6

(α + β)(α + 1)

β + 1

·
(

1 − α + β + 2

α + β + n + 1

)2�

.

The lead term in χ2
0 (�) is(
(α + β + 1)α

β

)
β2�

1 .

From (4.4), we get that for any

� ≥ 1

−2 logβ1
log

[
(α + β)(α + 1)/(β + 1)

]
we have

β2�
i+1pi+1(0)2zi+1

β2�
i pi(0)2zi

≤ 5/6.

Hence, for such �,

χ2
0 (�) ≤

(
(α + β + 1)α

β

)
β2�

1

( ∞∑
0

(5/6)k

)

= 6
(

(α + β + 1)α

β

)
β2�

1 .

With N = log[(α+β)(α+1)/(β +1)] as in the propo-
sition, we obtain

χ2
0 (�) ≤ 7e−c for � ≥ N + c

−2 logβ1
, c > 0;

χ2
0 (�) ≥ 1

6ec for � ≤ N − c

−2 logβ1
, c > 0. �

PROOF OF PROPOSITION 4.3(ii). When a = b, the
classical Jacobi polynomial P

a,b
k is given by

P
a,a
k (x) = (a + 1)k

(2a + 1)k
C

a+1/2
k (x)

where the Cν
k ’s are the ultraspherical polynomials. See

[63], (4.5.1). Now, [63], (4.5.16) gives Cν
n(0) = 0 if n

is odd and

Cν
n(0) = (2ν)n(−1)n/2

2n(n/2)!(ν + 1/2)n/2

if n is even. Going back to the shifted Jacobi’s, this
yields p2k+1(1/2) = 0 and

p2k(1/2) = (α)2k

(2α − 1)2k

C
α−1/2
2k (0)

= (α)2k

(2α − 1)2k

(2α − 1)2k(−1)k

22kk!(α)k

= (α + k)k(−1)k

22kk! .

We want to estimate

χ2
1/2(�) =

�n/2�∑
1

β2�
2i p2i (1/2)2z2i

and thus we compute

β2�
2(i+1)p2(i+1)(1/2)2z2(i+1)

β2�
2i p2i (1/2)2z2i

=
(

(n − 2i)(n − 2i − 1)

(2α + n + 2i)(2α + n + 2i + 1)

)2�

· 4i + 2α + 1

4i + 2α − 1

2i + 2α − 1

2i + 2α + 1

· 2i(2i + 1)(2α + 2i + 1)(2α + 2i)

(2i + α)2(2i + α + 1)2(4.5)

·
(

(α + 2i)(α + 2i + 1)

4(α + i)(i + 1)

)2

≤ 9

5
β2�

2 .

Hence

χ2
1/2(�) ≤ 10β2�

2 p2(1/2)2z2 for � ≥ 1

−2 logβ2
.

As

p2(1/2) = α + 1

4
and z2 = 4(2α + 3)

α(α + 1)2 ,

this gives χ2
1/2(�) ≥ 1

2β2�
2 and, assuming � ≥ 1

−2 logβ2
,

χ2
1/2(�) ≤ 13β2�

2 . �
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4.2 Poisson/Gamma

4.2.1 The x-chain for the Poisson/Gamma. Fix α,

a > 0. For x, y ∈ X = {0,1,2, . . .} = N, let

k(x, y) =
∫ ∞

0

e−λ(α+1)/αλa+x−1

�(a + x)(α/(α + 1))a+x

· e−λλy

y! dλ(4.6)

= �(a + x + y)(α/(2α + 1))a+x+y

�(a + x)(α/(α + 1))a+xy! .

The stationary distribution is the negative binomial

m(x) = (a)x

x!
(

1

α + 1

)a(
α

α + 1

)x

, x ∈ N.

When α = a = 1, the prior is a standard exponential,
an example given in Section 2.1. Then,

k(x, y) =
(

1

3

)x+y+1 (
x + y

x

)/(
1

2

)x+1

,

m(x) = 1/2x+1.

The orthogonal polynomials for the negative binomial
are Meixner polynomials [68], (1.9):

Mj(x) = 2F1

(−j − x

a
− α

)
.

These satisfy [68], (1.92),

∞∑
x=0

Mj(x)Mk(x)m(x) = (1 + α)j j !
(a)j

δjk.

Our work in previous sections, together with basic
properties of Meixner polynomials, gives the following
propositions.

PROPOSITION 4.4. For a,α > 0 the Poisson/
Gamma x-chain (4.6) has:

(a) Eigenvalues βj = (α/(1 + α))j , 0 ≤ j < ∞.

(b) Eigenfunctions Mj(x), the Meixner polynomi-
als.

(c) For any � ≥ 0 and any starting state x

χ2
x (�) =

∞∑
y=0

(k�(x, y) − m(y))2

m(y)

=
∞∑
i=1

β2�
i M2

i (x)zi, zi = (a)i

(1 + α)ii! .

PROPOSITION 4.5. For α = a = 1, starting at n,

χ2
n(�) ≤ 2−2c for � = log2(1 + n) + c, c > 0;

χ2
n(�) ≥ 22c for � = log2(n − 1) − c, c > 0.

PROOF. From the definitions, for all j and positive
integer x,

|Mj(x)| =
∣∣∣∣∣
j∧x∑
i=0

(−1)i
(

j

i

)
x(x − 1) · · · (x − i + 1)

∣∣∣∣∣
≤

j∑
i=0

(
j

i

)
xi = (1 + x)j .

Thus, for � ≥ log2(1 + n) + c,

χ2
n(�) =

∞∑
j=1

M2
j (n)2−j (2�+1)

≤
∞∑

j=1

(1 + n)2j 2−j (2�+1)

≤ (1 + n)22−(2�+1)

1 − (1 + n)22−(2�+1)

≤ 2−2c−1

1 − 2−2c−1 ≤ 2−2c.

The lower bound follows from using only the lead
term. Namely,

χ2
n(�) ≥ (1 − n)22−2�

≥ 22c for � = log2(n − 1) − c. �
REMARK. Note the contrast with the Beta/

Binomial example above. There, order n steps are nec-
essary and sufficient starting from n and there is no
cutoff. Here, log2 n steps are necessary and sufficient
and there is a cutoff. See [27] for further discussion of
cutoffs.

Jim Hobert has shown us a neat appearance of the
x-chain as branching process with immigration. Write
the transition density above as

k(x, y) = �(a + x + y)

�(a + x)y!
(

α + 1

2α + 1

)a+x(
α

2α + 1

)y

.

This is a negative binomial mass function with pa-
rameters θ = α

2α+1 and r = x + a. Hence, the x-chain
can be viewed as a branching process with immigra-
tion. Specifically, given that the population size at gen-
eration n is Xn = x, we have

Xn+1 =
x∑

i=1

Ni,n + Mn+1,
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where N1,n,N2,n, . . . ,Nx,n are i.i.d. negative binomi-
als with parameters θ = α

2α+1 and r = 1, and Mn+1,
which is independent of the Ni,n’s, has a negative bino-
mial distribution with parameters θ = α

2α+1 and r = a.
The Ni,n’s represent the number of offspring of the nth
generation and Mn+1 represents the immigration. This
branching process representation was used in [61] to
study admissibility.

4.2.2 The θ -chain for the Poisson/Gamma. Fix α,

a > 0. For θ, θ ′ ∈ 	 = (0,∞), let η = (α + 1)θ ′/α.
Note that π(dθ ′) = g(θ ′) dθ ′, where g(θ ′) =
e−θ ′/α(θ ′)a−1

�(a)αa . Hence, as in Section 4.1.2, we absorb
g(θ ′) in the transition density of the θ -chain. This gives

k(θ, θ ′) =
∞∑

j=0

e−θ θj

j !
e−θ ′(α+1)/α(θ ′)a+j−1

�(a + j)(α/(α + 1))a+j

= e−θ−θ ′
(θ ′)a−1

α/(α + 1)

∞∑
j=0

(θθ ′)j

j !�(a + j)

= e−θ−θ ′

α/(α + 1)

(
θ ′

θ

)(a−1)/2 ∞∑
j=0

(
√

θθ ′)2j+a−1

j !�(a + j)

(4.7)

= e−θ−θ ′

α/(1 + α)

(
θ ′

θ

)(a−1)/2

Ia−1(2
√

θθ ′)

= e−θ−(α+1)θ ′/α

α/(1 + α)

(
(α + 1)θ ′

αθ

)(a−1)/2

Ia−1

· (
2
√

(α + 1)θθ ′/α
)
.

Thus, k(θ, θ ′) is a transition density with respect to the
Lebesgue measure dθ ′, that is,∫

k(θ, θ ′) dθ ′ = 1.

Here Ia−1 is the modified Bessell function. For fixed θ ,
k(θ, θ ′) integrates to 1 as discussed in [44], pages 58–
59. The stationary distribution of this Markov chain is
the Gamma:

π(dθ) = e−θ/αθa−1

�(a)αa
dθ.

To simplify notation, we take α = 1 for the rest of
this section. The relevant polynomials are the Laguerre
polynomials ([68], Section 1.11)

Li(θ) = (a)i

i! 1F1

(−i

a
θ

)

= 1

i!
i∑

j=0

(−i)j

j ! (a + j)i−j θ
j .

Note that classical notation has the parameter a shifted
by 1 whereas we have labeled things to mesh with stan-
dard statistical notation. The orthogonality relation is∫ ∞

0
Li(θ)Lj (θ)π(θ) dθ = �(a + j)

j !�(a)
δij

= z−1
j δij .

The multilinear generating function formula ([63],
Theorem 4.7.5) gives

∞∑
i=0

Li(θ)2zit
i = e−2tθ/(1−t)

(1 − t)a

∞∑
0

1

j !(a)j

(
θ2t

1 − t2

)j

.

Combining results, we obtain the following statements.

PROPOSITION 4.6. For α = 1 and a > 0, the
Markov chain with kernel (4.7) has:

(a) Eigenvalues βj = 1
2j ,0 ≤ j < ∞.

(b) Eigenfunctions Lj , the Laguerre polynomials.
(c) For any � ≥ 1 and any starting state θ ,

χ2
θ (�) =

∞∑
j=1

β2�
j L2

j (θ)
j !�(a)

�(a + j)

= e−2−2�+1θ /(1−2−2�)

(1 − 2−2�)a

·
∞∑
0

1

j !(a)j

(
θ22−2�

1 − 2−4�

)j

− 1.

PROPOSITION 4.7. For α = 1 and a > 0, the
Markov chain with kernel (4.7) satisfies:

• For θ > 0, χ2
θ (�) ≤ e22−c if � ≥ 1

2(log2[2(1 + a +
θ2/a)] + c), c > 0.

• For θ ∈ (0, a/2) ∪ (2a,∞), χ2
θ (�) ≥ 2c if � ≤

1
2(log2[1

2(θ2/a + a)] − c), c > 0.

PROOF. For the upper bound, assuming � ≥ 1, we
write

χ2
θ (�) = (1 − 4−�)−ae−(2θ4−�)/(1−4−�)

·
∞∑
0

1

j !(a)j

(
θ24−�

1 − 4−�

)j

− 1

≤ exp((2θ2/a)4−�)

(1 − 4−�)a
− 1

≤ 2(θ2/a + a)4−�

(
exp(2(θ2/a)4−�)

(1 − 4−�)a+1

)
.

For � ≥ 1
2(log2[2(1+θ2/a +a)]+c), c > 0, we obtain

χ2
θ (�) ≤ e22−c.
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The stated lower bound does not easily follow
from the formula we just used for the upper bound.
Instead, we simply use the first term in χ2

θ (�) =∑
j≥1 β2�

j L2
j (θ)

j !�(a)
�(a+j)

, that is, a−1(θ − a)24−�. This
easily gives the desired result. �

REMARK. It is not easy to obtain sharp formulas
starting from θ near a. For example, starting at θ =
a, one gets a lower bound by using the second term
χ2

θ (�) = ∑
j≥1 β2�

j L2
j (θ)

j !�(a)
�(a+j)

(the first term vanishes

at θ = a). This gives χ2
a (�) ≥ [2a/(a + 1)]4−2�. When

a is large, this is significantly smaller than the upper
bound proved above.

4.3 The Gaussian Case

Here, the x-chain and the θ -chain are essentially
the same and indeed the same as the chain for the
additive models, so we just treat the x-chain. Let
X = R, fθ (x) = e−1/2(x−θ)2/σ 2

/
√

2πσ 2 and π(dθ) =
e−1/2(θ−ν)2/τ2

√
2πτ 2

dθ . The marginal density is Normal(v,

σ 2 + τ 2).
A stochastic description of the chain is

Xn+1 = aXn + εn+1
(4.8)

with a = τ 2

σ 2 + τ 2 , ε ∼ Normal
(

σ 2ν

σ 2 + τ 2 , σ 2
)
.

This is the basic autoregressive (AR1) process. Feller
([44], pages 97–99) describes it as the discrete-time
Ornstein–Uhlenbeck process. The diagonalization of
this Gaussian Markov chain has been derived by
other authors in various contexts. Goodman and Sokal
[50] give an explicit diagonalization of vector-valued
Gaussian autoregressive processes which specialize to
(a), (b) below. Donoho and Johnstone ([31],
Lemma 2.1) also specialize to (a), (b) below. Both sets
of authors give further references. Since it is so well
studied, we will be brief and treat the special case with
ν = 0, σ 2 + τ 2 = 1/2. Thus the stationary distribu-
tion is Normal(0,1/2). The orthogonal polynomials
are now Hermite polynomials ([68], 1.13). These are
given by

Hn(y) = (2y)n2F0

(−n/2,−(n − 1)/2
−− − 1

y2

)

= n!
[n/2]∑
k=0

(−1)k(2y)n−2k

k!(n − 2k)! .

They satisfy

1√
π

∫ ∞
−∞

e−y2
Hm(y)Hn(y) dy = 2nn!δmn.

There is also a multilinear generating function formula
which gives ([63], Example 4.7.3)

∞∑
0

Hn(x)2

2nn! tn = 1√
1 − t2

exp
(

2x2t

1 + t

)
.

PROPOSITION 4.8. For ν = 0, σ 2 + τ 2 = 1/2, the
Markov chain (4.8) has:

(a) Eigenvalues βj = (2τ 2)j (as σ 2 + τ 2 = 1/2, we
have 2τ 2 < 1).

(b) Eigenfunctions the Hermite polynomials Hj .
(c) For any starting state x and all � ≥ 1,

χ2
x (�) =

∞∑
k=1

(2τ 2)2k�H 2
k (x)

1

2kk!

= exp(2x2(2τ 2)2�/(1 + (2τ 2)2�))√
1 − (2τ 2)4�

− 1.

The next proposition turns the available chi-square
formula into sharp estimates when x is away from 0.
Starting from 0, the formula gives χ2

0 (�) = (1 −
(2τ 2)4�)−1/2 − 1. This shows convergence at the faster
exponential rate of β2 = (2τ 2)2 instead of β1 = 2τ 2.

PROPOSITION 4.9. For ν = 0, σ 2 + τ 2 = 1/2, x ∈
R, the Markov chain (4.8) satisfies:

χ2
x (�) ≤ 8e−c for � ≥ log(2(1 + x2)) + c

−2 log(2τ 2)
, c > 0,

χ2
x (�) ≥ x2ec

2(1 + x2)
for � ≤ log(2(1 + x2)) − c

−2 log(2τ 2)
,

c > 0,

χ2
0 (�) = (

1 − (2τ 2)4�)−1 − 1 ≥ (2τ 2)4�.

PROOF. For the upper bound, assuming

� ≥ 1

−2 log(2τ 2)

(
log

(
2(1 + x2)

) + c
)
, c > 0,

we have

(2τ 2)2� < 1/2, 2x2(2τ 2)2� < 1

and it follows that

χ2
x (�) = exp(2x2(2τ 2)2�/(1 + (2τ 2)2�))√

1 − (2τ 2)4�
− 1

≤ (
1 + 2(2τ 2)4�)(1 + 6x2(2τ 2)2�) − 1

≤ 8(1 + x2)(2τ 2)2�.
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For the lower bound, write

χ2
x (�) = exp(2x2(2τ 2)2�/(1 + (2τ 2)2�))√

1 − (2τ 2)4�
− 1

≥ exp(x2(2τ 2)2�) − 1

≥ x2(2τ 2)2�. �

5. LOCATION FAMILIES EXAMPLES

Sharp rates of convergence using spectral techniques
are not restricted to exponential families and conju-
gate priors. In this section, we show how similar analy-
ses are available for location families. Very different
examples are collected in Section 6. In this section
fθ(x) = g(x − θ) with g and π members of one of the
six families of Section 2.4. To picture the associated
Markov chains it is helpful to begin with the represen-
tation X = θ + ε. Here θ is distributed as π and ε is
distributed as g. The x-chain goes as follows: from x,
draw θ ′ from π(·|x) and then go to X′ = θ ′ + ε′ with
ε′ independently drawn from g. It has stationary dis-
tribution m(x)dx, the convolution of π and g. For the
θ -chain, starting at θ , set X′ = θ + ε and draw θ ′ from
π(·|x′). It has stationary distribution π . Observe that

Eθ(X
k) = Eθ

(
(θ + ε)k

)
=

k∑
j=0

(
k

j

)
θjE(εk−j ).

Thus (H2) of Section 3 is satisfied with ηk = 1. To
check the conjugate condition we may use results of
[87], Section 4. In present notation, Morris shows that
if pk is the monic orthogonal polynomial of degree k

for the distribution π and p′
k is the monic orthogonal

polynomial of degree k for the distribution m, then

Ex(pk(θ)) =
(

n1

n1 + n2

)k

bkp
′
k(x).

Here π is taken as the sum of n1 copies and ε the sum
of n2 copies of one of the six families and

bk =
k−1∏
i=0

1 + ic/n1

1 + ic/(n1 + n2)
,

where c is the coefficient of m2(θ) in σ 2(θ) = a +
bm(θ) + cm2(θ) for the family. Comparing lead terms
gives (H3) (in Section 3) with an explicit value of μk .
In the present setup, μk = βk is the kth eigenvalue.

We now make specific choices for each of the six
cases.

5.1 Binomial

For fixed p, 0 < p < 1, let π = Bin(n1,p), g =
Bin(n2,p). Then m = Bin(n1 + n2,p) and

π(θ |x) =
(n1

θ

) ( n2
x−θ

)(n1+n2
x

)
is hypergeometric. The θ -chain progresses as a popu-
lation process on 0 ≤ θ ≤ n1: from θ , there are ε new
births and the resulting population of size x = θ + ε

is thinned down by random sampling. The x-chain de-
noted by {Xk}k≥0 can be represented in an autoregres-
sive cast. More precisely,

Xk+1 = SXk
+ εk+1,(5.1)

where SXk
is a hypergeometric with parameters n1, n2,

Xk and εk+1 is drawn independently from Bin(n2,p).
For the binomial, the parameter c is c = −1 and the

eigenvalues of the x-chain are

βk = n1(n1 − 1) · · · (n1 − k + 1)

(n1 + n2)(n1 + n2 − 1) · · · (n1 + n2 − k + 1)
,

0 ≤ k ≤ n1 + n2 = N.

Note that βk = 0 for k ≥ n1 + 1. The orthogonal
polynomials are Krawtchouck polynomials ([68], 1.10;
[63], page 100):

kj (x) = 2F1

(−j,−x

−N

1

p

)
(5.2)

which satisfy

N∑
x=0

(
N

x

)
px(1 − p)N−xkj (x)k�(x)

=
(

N

j

)−1 (
1 − p

p

)j

δj�.

PROPOSITION 5.1. Consider the chain (5.1) on
{0, . . . , n1 + n2} with 0 < p < 1, starting at x = 0. Set
N = n1 + n2, q = p/(1 − p). Then we have

e−c ≤ χ2
0 (�) ≤ e−cee−c

whenever

� = log(qN) + c

−2 log(1 − n2/N)
, c ∈ (−∞,∞).

Note two cases of interest: (i) For p = 1/2, the
proposition shows that log(N)

−2 log(1−n2/N)
steps are neces-

sary and sufficient. There is a chi-square cutoff when N

tends to infinity. (ii) For p = 1/N , there is no cutoff.
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PROOF. From (2.9) and (5.2), we have k2
j (0) = 1

for all j and the chi-square distance becomes

χ2
0 (�) =

N∑
j=1

β2�
j

(
N

j

)
qj

with N = n1 + n2, q = p/(1 − p) and � ≥ 1. For j ≤
n1, the eigenvalues satisfy

βj =
j−1∏
i=0

(
1 − n2

N − i

)
≤

(
1 − n2

N

)j

= β
j
1 .

Hence, we obtain

χ2
0 (�) ≤

N∑
j=1

(
N

j

)
(qβ2�

1 )j

= (1 + qβ2�
1 )N − 1

≤ qNβ2�
1 (1 + qβ2�

1 )N−1.

This gives the desired result since we also have χ2
0 (�) ≥

Nqβ2�
1 . �

In general, it is not very easy to evaluate the poly-
nomials kj at x �= 0 to estimate χ2

x (�) and under-
stand what the role of the starting point is. However, if
p = 1/2 and x = n1 = N/2, then the recurrence equa-
tion ([63], (6.2.37)) shows that k2j+1(N/2) = 0 and

k2j (N/2) = (−1)j
(2j − 1)!

(N − 2j + 1)2j

.

Thus, for � ≥ 1,

χ2
N/2(�) =

�N/4�∑
j=1

β2�
2j

(
N

2j

)(
(2j − 1)!

(N − 2j + 1)2j

)2

=
�N/4�∑
j=1

β2�
2j

(2j − 1)!
2j (N − 2j + 1)2j

.

This is small for � = 1 if N is large enough. Indeed,
splitting the sum into two parts at N/8 easily yields

χ2
N/2(�) ≤ 3

2N
2−4� + N2−N�/2.

5.2 Poisson

Fix positive reals μ,n1, n2. Let π = Poisson(μn1),
g = Poisson(μn2). Then

m = Poisson
(
μ(n1 + n2)

)
and

π(θ |x) = Bin
(
x,

n1

n1 + n2

)
.

The x-chain is related to the M/M/∞ queue and the
θ -chain is related to Bayesian missing data examples
in Section 2.3.3. Here, the parameter c = 0 so that

βk =
(

n1

n1 + n2

)k

, 0 ≤ k < ∞.

The orthogonal polynomials are Charlier polynomials
([68], 1.12; [63], page 177):

Cj(x) = 2F0

(−j,−x

−− − 1

μ

)
,

∑ e−μμx

x! Cj(x)Ck(x) = j !μ−j δjk.

We carry out a probabilistic analysis of this problem in
[25].

5.3 Negative Binomial

Fix p with 0 < p < 1 and positive real n1, n2. Let
π = NB(n1,p), g = NB(n2,p). Then m = NB(n1 +
n2,p) and

π(θ |x) =
(

x

θ

)
�(n1 + n2)�(θ + n1)�(x − θ − n2)

�(x + n1 + n2)�(n1)�(n2)
,

0 ≤ θ ≤ x,

which is a negative hypergeometric. A simple example
has n1 = n2 = 1 (geometric distribution) so π(θ |x) =
1/(1 + x). The x-chain becomes: From x, choose θ

uniformly in 0 ≤ θ ≤ x and let X′ = θ + ε with ε geo-
metric. The parameter c = 1 so that

β0 = 1,

βk = n1(n1 + 1) · · · (n1 + k − 1)

(n1 + n2)(n1 + n2 + 1) · · · (n1 + n2 + k − 1)
,

1 ≤ k < ∞.

The orthogonal polynomials are Meixner polynomials
discussed in Section 4.2.

5.4 Normal

Fix reals μ and n1, n2, v > 0. Let π = Normal(n1μ,

n1v), g = Normal(n2μ,n2v). Then m = Normal((n1+
n2)μ, (n1 + n2)v) and π(θ |x) = Normal( n1

n1+n2
x,

n1n2
n1+n2

v). Here c = 0 and

βk =
(

n1

n1 + n2

)k

, 0 ≤ k < ∞.

The orthogonal polynomials are Hermite, discussed in
Section 4.3. Both the x- and θ -chains are classical au-
toregressive processes as described in Section 4.3.
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5.5 Gamma

Fix positive real n1, n2, α. Let π = Gamma(n1, α),

g = Gamma(n2, α). Then

m = Gamma(n1 + n2, α),

π(θ |x) = x · Beta(n1, n2).

A simple case to picture is α = n1 = n2 = 1. Then, the
x-chain may be described as follows: From x, choose θ

uniformly in (0, x) and set X′ = θ + ε with ε standard
exponential. This is simply a continuous version of the
examples of Section 5.3. The parameter c = 1 and so

β0 = 1,

βk = n1(n1 + 1) · · · (n1 + k − 1)

(n1 + n2)(n1 + n2 + 1) · · · (n1 + n2 + k − 1)
,

0 < k < ∞.

The orthogonal polynomials are Laguerre polynomials,
discussed in Section 4.2 above.

5.6 Hyperbolic

The density of the sixth family is given in Sec-
tion 2.3 in terms of parameters r > 0 and |θ | < π/2.
It has mean μ = r tan(θ) and variance μ2/r + r . See
[86], Section 5 or [37] for numerous facts and refer-
ences. Fix real μ and positive n1, n2. Let the density
π be hyperbolic with mean n1μ and r1 = n1(1 + μ2).
Let the density g be hyperbolic with mean n2μ and
r2 = n2(1 + μ2). Then m is hyperbolic with mean
(n1 + n2)μ and r = (n1 + n2)(1 + μ2). The condi-
tional density π(θ |x) is “unnamed and apparently has
not been studied” ([87], page 581).

For this family, the parameter c = 1 and thus

β0 = 1,

βk = n1(n1 + 1) · · · (n1 + k − 1)

(n1 + n2) · · · (n1 + n2 + k − 1)
.

The orthogonal polynomials are Meixner–Pollaczek
polynomials ([100], page 395; [68], 1.7; [63], page
171). These are given in the form

P λ
n (x,ϕ)

= (2λ)n

n! 2F1

(−n,λ + ix

2λ
1 − e−2iϕ

)
einϕ,

(5.3)
1

2π

∫ ∞
−∞

e(2ϕ−π)x |�(λ + ix)|2P λ
mP λ

n dx

= �(n + 2λ)

n!(2 sinϕ)2λ
δmn.

Here −∞ < x < ∞, λ > 0, 0 < ϕ < π . The change
of variables y = rx

2 , ϕ = π
2 + tan−1(θ) λ = r/2 trans-

forms the density e(2ϕ−π)x |�(λ + ix)|2 to a constant
multiple of the density fθ (x) of Section 2.4.

We carry out one simple calculation. Let π,g have
the density of 2

π
log |C|, with C standard Cauchy. Thus

π(dx) = g(x) dx = 1

2 cosh(πx/2)
dx.(5.4)

The marginal density is the density of 2
π

log |C1C2|,
that is,

m(x) = x

2 sinh(πx/2)
.

PROPOSITION 5.2. For the additive walk based on
(5.4):

(a) The eigenvalues are βk = 1
k+1 , 0 ≤ k < ∞.

(b) The eigenfunctions are the Meixner–Pollaczek
polynomials (5.3) with ϕ = π/2, λ = 1.

(c) χ2
x (�) = 2

∑∞
k=1(k + 1)−2�−1(P 1

k (x
2 , π

2 ))2.

PROOF. Using �(z + 1) = z�(z), �(z)�(1 − z) =
π

sin(πz)
, we check that

|�(1 + ix)|2 = �(1 + ix)�(1 − ix)

= (ix)�(ix)�(1 − ix)

= π(ix)

sinπ(ix)
= πx

sinh(πx)
.

The result now follows from routine simplification.
�

REMARK. Part (c) has been used to show that order
logx steps are necessary and sufficient for convergence
in unpublished joint work with Mourad Ismail.

6. OTHER MODELS, OTHER METHODS

Even in the limited context of bivariate Gibbs sam-
pling, there are other contexts in which the ingredients
above arise. These give many further examples where
present techniques lead to sharp results. This section
gives brief pointers to Lancaster families, alternating
projections, the multivariate case and to other tech-
niques for proving convergence.

6.1 Lancaster Families

There has been a healthy development of bivariate
distributions with given margins. The part of interest
here begins with the work of Lancaster, nicely sum-
marized in his book [72]. Relevant papers by Angelo
Koudou [69–71] summarize recent work. Briefly, let
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(X,μ), (Y, ν) be probability spaces with associated
L2(μ),L2(ν). Let σ be a measure on X×Y with mar-
gins μ and ν. Suppose the relevant conditional proba-
bilities exist, so

σ(dx, dy) = μ(dx)Kx(dy) = ν(dy)Ly(dx).

Say that σ is a Lancaster probability with respect to
the given sequences of orthonormal functions if there
exists a positive real sequence {ρn} such that, for all n,∫

pn(x)qm(y)σ (dx, dy) = ρnδmn.(6.5)

This equation is also equivalent to
∫

qn(y)Kx(dy) =
ρnpn(x) and to

∫
pn(x)Ky(dx) = ρnqn(y).

Koudou shows that, given σ , one can always find se-
quences of orthonormal functions such that σ is Lan-
caster for these sequences. He then characterizes those
sequences ρn such that the associated σ is absolutely
continuous with respect to μ × ν with

f = dσ

d(μ × ν)
= ∑

n

ρnpn(x)qn(y)(6.6)

in L2(μ × ν).

For such Lancaster densities (6.6), the equivalence
(6.5) says precisely that the x-chain for the Gibbs sam-
pler for f has {pn} as eigenvectors with eigenvalues
{ρ2

n} (cf. Section 3 above). For more on Lancaster fam-
ilies with marginals in the six exponential families, see
[7], Section 7, which makes fascinating connections
between these families and diagonal multivariate fam-
ilies.

The above does not require polynomial eigenvectors
and Griffiths [52] gives examples of triangular margins
and explicit nonpolynomial eigenfunctions. Here is an-
other. Let G be a compact Abelian group with charac-
ters {pn(x)} chosen orthonormal with respect to Haar
measure μ. For a probability density f on G, the loca-
tion problem

σ(dx, dy) = f (x − y)μ(dx)ν(dy)

has uniform margins, {pn} as eigenfunctions of the x-
chain and ρn = ∫

pn(x)f (x) dμ(x) as eigenvalues.
A main focus of Koudou and his co-authors is de-

lineating all of the extremal Lancaster sequences and
so, by Choquet’s theorem (every point in a compact
convex subset of a metrizable topological vector space
is a barycenter of a probability measure supported on
the extreme points; see [84], Chapter 11.2) all densi-
ties f with {pn}, {qn} as in (6.5). Of course, any of
these can be used with the Gibbs sampler and present

techniques. These characterizations are carried out for
a variety of classical orthogonal polynomials. In partic-
ular, Koudou gives a clear translation into probabilists’
language of Gasper’s complete determination of the ex-
tremals of the Lancaster families with equal Beta(α,β)

margins for α,β ≥ 1
2 . We give but one example.

EXAMPLE. Consider the uniform distribution on
the unit disk in R

2 given by

f (x, y) = 1

π
, 0 ≤ x2 + y2 ≤ 1.(6.7)

The conditional distribution of X given Y is uni-
form on [−√

1 − Y 2,
√

1 − Y 2]. Similarly, the con-
ditional distribution of Y given X is uniform on
[−√

1 − X2,
√

1 − X2]. The marginal density of X is

m(x) = 2

π

√
1 − x2, −1 ≤ x ≤ 1.

By symmetry, Y has the same marginal density. Since
for every k ≥ 0,

E(X2k | Y) = (1 − Y 2)k

2k + 1
,

E(Y 2k | X) = (1 − X2)k

2k + 1

and

E(X2k+1 | Y) = 0,

E(Y 2k+1 | X) = 0,

we conclude that the x-chain has polynomial eigen-
functions {pk(x)}k≥0 and eigenvalues {λk}k≥0 where
λ2k = 1

(2k+1)2 and λ2k+1 = 0, k ≥ 0. The polynomials
{pk}k≥0 are orthogonal polynomials corresponding to
the marginal density m. They are Chebyshev polyno-
mials of the second kind, given by the identity

pk(cos(θ)) = sin((k + 1)θ)

sin(θ)
, 0 ≤ θ ≤ π, k ≥ 0.

Using present theory we have the following theorem.

THEOREM 6.1. For the x-chain from the Gibbs
sampler for the density (6.7):

(a) χ2
x (l) = ∑∞

k=1
1

(2k+1)4l p
2
2k(x).

(b) For x = 0, χ2
x (l) = ∑∞

k=1
1

(2k+1)4l .
Thus

1

34l
≤ χ2

x (l) ≤
(

8l + 1

8l − 2

)
1

34l
.
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(c) For |x| = 1, χ2
x (l) = ∑∞

k=1
1

(2k+1)4l−2 .
Thus

1

34l−2 ≤ χ2
x (l) ≤

(
8l − 3

8l − 6

)
1

34l−2 .

One of the hallmarks of our examples is that they
are statistically natural. It is an open problem to give
natural probabilistic interpretations of a general Lan-
caster family. There are some natural examples. Eagle-
son [36] has shown that W1 + W2 and W2 + W3 are
Lancaster if W1,W2,W3 are independent and from one
of the six quadratic families. Natural Markov chains
with polynomial eigenfunctions have been extensively
studied in mathematical genetics literature. This work,
which perhaps begins with [42], was unified in [14].
See [38] for a textbook treatment. Models of Fisher–
Wright, Moran, Kimura, Karlin and McGregor are in-
cluded. While many models are either absorbing, non-
reversible, or have intractable stationary distributions,
there are also tractable new models to be found. See
the Stanford thesis work of Hua Zhou.

Interesting classes of reversible Markov chains with
explicit polynomial eigenfunctions appear in the work
of Hoare, Rahman and their collaborators [20, 58–
60]. These seem distinct from the present examples,
are grounded in physics problems (transfer of vibra-
tional energy between polyatomic molecules) and in-
volve some quite exotic eigenfunctions (9 − j sym-
bols). Their results are explict and it seems like a
worthwhile project to convert them into sharp rates of
convergence.

A rather different class of examples can be created
using autoregressive processes. For definiteness, work
on the real line R. Consider processes of form X0 = 0,
and for 1 ≤ n < ∞,

Xn+1 = an+1Xn + εn+1,

with {(ai, εi)}i≥1 independent and identically distrib-
uted. Under mild conditions on the distribution of
(ai, εi), the Markov chain Xn has a unique stationary
distribution m which can be represented as the proba-
bility distribution of

X∞ = ε0 + a0ε1 + a1a0ε2 + · · · .
The point here is that for any k such that moments exist

E(Xk
1|X0 = x) = E

(
(a1x + ε1)

k)
=

k∑
i=0

(
k

i

)
xiE(ai

1ε
k−i
1 ).

If, for example, the stationary distribution m has mo-
ments of all orders and is determined by those mo-
ments, then the Markov chain {Xn}∞n=0 is generated by
a compact operator with eigenvalues E(ai

1), 0 ≤ i <

∞, and polynomial eigenfunctions.
We have treated the Gaussian case in Section 4.5. At

the other extreme, take |a| < 1 constant and let εi take
values ±1 with probability 1/2. The fine properties of
π have been intensively studied as Bernoulli convolu-
tions. See [23] and the references there. For example,
if a = 1/2, then π is the usual uniform distribution
on [−1,1] and the polynomials are Chebyshev poly-
nomials. Unfortunately, for any value of a �= 0, in the
±1 case, the distribution π is known to be continuous
while the distribution of Xn is discrete and so does not
converge to π in L1 or L2. We do not know how to use
the eigenvalues to get quantitative rates of convergence
in one of the standard metrics for weak convergence.

As a second example take (a, ε) = (u,0) with proba-
bility p and (1 + u,−u) with probability 1 − p with u

uniform on (0,1) and p fixed in (0,1). This Markov
chain has a Beta(p,1 − p) stationary density. The
eigenvalues are 1/(k + 1), 1 ≤ k < ∞. It has polyno-
mial eigenfunctions. Alas, it is not reversible and again
we do not know how to use the spectral information
to get usual rates of convergence. See [23] or [75] for
more information about this so-called “donkey chain.”

Finally, we mention the work of Hassairi and Zarai
[57] which develops the orthogonal polynomials for
cubic (and other) exponential families such as the in-
verse Gaussian. They introduce a novel notion of 2-
orthogonality. It seems possible (and interesting) to use
their tools to handle the Gibbs sampler for conjugate
priors for cubic families.

6.2 Alternating Conditional Expectations

The alternating conditional expectations that under-
lie the Gibbs sampler arise in other parts of probabil-
ity and statistics. These include classical canonical cor-
relations, especially those abstracted by Dauxois and
Pousse [21]. This last paper contains a framework for
studying our problems where the associated operators
are not compact.

A nonlinear version of canonical correlations was
developed by Breiman and Jerry Friedman as the
A.C.E. algorithm. Buja [13] pointed out the connec-
tions to Lancaster families. He found several other
parallel developments, particularly in electrical engi-
neering ([13], Section 7–12). Many of these come with
novel, explicit examples which are grist for our mill.
Conversely, our development gives new examples for
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understanding the alternating conditional expectations
that are the central focus of [13].

There is a classical subject built around alternat-
ing projections and the work of von Neumann. See
Deutsch [22]. Let H1 and H2 be closed subspaces
of a Hilbert space H . Let P1, P2 be the orthogonal
projection onto H1, H2 and let PI be the orthogo-
nal projection onto H1 ∩ H2. von Neumann showed
that (P1P2)

n → PI as n tends to infinity. That is
‖(P1P2)

n(x) − PI (x)‖ → 0. In [24] we show that the
Gibbs sampler is a special case of von Neumann’s al-
gorithm; with H = L2(σ ),H1 = L2(μ),H2 = L2(ν)

using the notation of Section 6.1. We develop the tools
used to quantify rates of convergence for von Neu-
mann’s algorithm for use with the Gibbs sampler in
[24].

6.3 Multivariate Models

The present paper and its companion paper [25] have
discussed univariate models. There are a number of
models with x or θ multivariate where the associated
Markov chains have polynomial eigenfunctions. Some
analogs of the six exponential families are developed
in [15]. In Koudou and Pommeret [69], the Lancaster
theory for these families is elegantly developed. Their
work can be used to give the eigenvalues and eigen-
functions for the multivariate versions of the location
models in Section 5. In their work, families of mul-
tivariate polynomials depending on a parameter ma-
trix are given. For our examples, specific forms must
be chosen. In a series of papers, developed indepen-
dently of [69], Griffiths [51, 53] has developed such
specific bases and illuminated their properties. This
work is turned into sharp rates of convergence for two-
component multivariate Gibbs samplers in the Stanford
thesis work of Kshitij Khare and Hua Zhou.

An important special case, high-dimensional
Gaussian distributions, has been studied in [2, 50].
Here is a brief synopsis of these works. Let m(x) be
a p-dimensional normal density with mean μ and co-
variance � [i.e., Np(μ,�)]. A Markov chain with sta-
tionary density m may be written as

Xn+1 = AXn + Bv + Cεn+1.(6.8)

Here εn has a Np(0, I ) distribution, v = �−1μ, and the
matrices A,B,C have the form

A = −(D + L)−1LT ,

B = (D + L)−1,

C = (D + L)−1D1/2,

where D and L are the diagonal and lower triangular
parts of �−1. The chain (6.8) is reversible if and only
if A� = �AT . If this holds, A has real eigenvalues
(λ1, λ2, . . . , λp). In [50], Goodman and Sokal show
that the Markov chain (6.8) has eigenvalues λK and
eigenfunctions HK for K = (k1, k2, . . . , kp), ki ≥ 0,
with

λK =
p∏

i=1

λ
ki

i , HK(x) =
p∏

i=1

Hki
(zi),

where Z = P T �−1/2X and {Hk} are the usual
one-dimensional Hermite polynomials. Here
�−1/2A�1/2 = PDP T is the eigendecomposition of
�−1/2A�1/2. Goodman and Sokal show how a variety
of stochastic algorithms, including the systematic scan
Gibbs sampler for sampling from m, are covered by
this framework. Explicit rates of convergence for this
Markov chain can be found in the Stanford thesis work
of Kshitij Khare.

6.4 Conclusion

The present paper studies rates of convergence us-
ing spectral theory. In a companion paper [25] we de-
velop a stochastic approach which uses one eigenfunc-
tion combined with coupling. This is possible when the
Markov chains are stochastically monotone. We show
this is the case for all exponential families, with any
choice of prior, and for location families where the
density g(x) is totally positive of order 2. This lets
us give rates of convergence for the examples of Sec-
tion 4 when moments do not exist (negative binomial,
gamma, hyperbolic). In addition, location problems fall
into the setting of iterated random functions so that
backward iteration and coupling are available. See [17,
23] for extensive references.

APPENDIX: PROOF OF THEOREM 3.1

The proof will follow from the two dual lemmas be-
low which show that the expectation operators Eθ and
Ex each take one orthogonal polynomial family into
the other. For the Beta/Binomial example treated in the
Introduction and in Section 4.1, these operators relate
Hahn polynomials on {0, . . . , n} to Jacobi polynomials
on (0,1). These facts are of independent interest and
some have been observed before. See [62], (3.7) for the
correspondence between Hahn and Jacobi polynomials
and for a host of further references.

LEMMA A1. Eθ [pk(X)] = ηkqk(θ), 0 ≤ k < c.
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PROOF. For k = 0,Eθ [p0] = 1 = η0q0. If 0 < k <

c, then for 0 ≤ i < k, the unconditional expectation is
given by

E[θipk(X)] = E[pk(X)EX(θi)] = E[pk(X)p̂(X)]
with p̂ a polynomial of degree i < k. Since 0 ≤ i <

k < c, E[pk(X)p̂(X)] = 0 by orthogonality. Thus 0 =
E[θipk(X)] = E[θiEθ (pk(X))]. By assumption (H2),
η−1

k Eθ [pk(X)] is a monic polynomial of degree k in θ .
Since it is orthogonal to all polynomials of degree less
than k, we must have Eθ [pk(X)] = ηkqk(θ). �

The second lemma is dual to the first.

LEMMA A2. Ex[qk(θ)] = μkpk(x), 0 ≤ k < c. If
c < ∞,Ex(qk(θ)) = 0 for k ≥ c.

PROOF. The first part is proved as per Lemma
A1. If c < ∞, and k ≥ c, by the same argument
we have, for 0 ≤ j < c, E[pj (X)EX[qk(θ)]] = 0.
But {pj }0≤j<c form a basis for L2(m(dx)), and
Ex[qk(θ)] ∈ L2(m(dx)) since

E[(EXqk(θ))2] ≤ E[q2
k (θ)] < ∞.

It follows that Ex[qk(θ)] = 0. �
PROOF OF PART (a) OF THEOREM 3.1. Suppose

0 ≤ k < c. From the definitions, the x-chain operates
on pk as

Ex[Eθ(pk(X
′))] = Ex[ηkqk(θ)] = ηkμkpk(x)

with equalities from Lemmas A1, A2. Hence, ηkμk are
eigenvalues of the x-chain with pk as eigenfunctions.
This proves (a). �

PROOF OF PART (b). Suppose first 0 ≤ k < c.
Then, arguing as above, μkηk are eigenvalues of the θ -
chain with qk as eigenvectors. If c = ∞, we are done.
If c < ∞, then, for k ≥ c, Lemma A2 shows that qk is
an eigenfunction for the θ -chain with eigenvalue zero.

�
PROOF OF PART (c). From the development in

Section 2.1, the random scan chain K takes L2(P )

into L2(m) + L2(π) ⊆ L2(P ) and ker K ⊇ (L2(m) +
L2(π))⊥. We have

Kg(X, θ) = 1
2Ex[g(x, θ ′)] + 1

2Eθ [g(X′, θ)].
For 0 ≤ k < c, consider K acting on pk(x) +√
ηk

μk
qk(θ). The result is

1

2

(
pk(x) + Ex[qk(θ

′)]
√

ηk

μk

)

+ 1

2

(
Eθ [pk(x)] +

√
ηk

μk

qk(θ)

)

=
(

1

2
+ 1

2
√

ηkμk

)(
pk(x) +

√
ηk

μk

qk(θ)

)
.

Similarly,

K

(
pk −

√
ηk

μk

qk

)
(x, θ)

=
(

1

2
− 1

2
√

ηkμk

)(
pk(x) −

√
ηk

μk

qk(θ)

)
.

Suppose first that c < ∞. For k ≥ c, Lemma A2 shows
Exqk(θ) = 0 for all x. Thus Kqk(x, θ) = 1

2qk(θ). Fur-
ther

span
{
pk(x) ±

√
ηk

μk

qk(θ)

0 ≤ k < c, qk(θ) c ≤ k < ∞
}

= span{pk(x) 0 ≤ k < c, qk(θ), 0 ≤ k < ∞}
= L2(m) + L2(π).

It follows that K is diagonalizable with eigenval-
ues/eigenvectors

1
2 ± 1

2
√

μkηk, pk(x) ±
√

ηk

μk
qk(θ) for 0 ≤ k < c,

1
2 , qk(θ) for c ≤ k < ∞,

and Kg = 0 for g ∈ (L2(m) + L2(π))⊥.
Suppose next that c = ∞; then K is diagonalizable

with eigenvalues/eigenfunctions(
1

2
± √

ηkμk

)
, pk(x) ±

√
ηk

μk

qk(θ), 0 ≤ k < ∞.

Again, span {pk(x) ±
√

ηk

μk
qk(θ) 0 ≤ k < c} =

span {pk(x), qk(θ)} = L2(m) + L2(π) and Kg = 0
for g ∈ (L2(m) + L2(π))⊥. This completes the proof
of (c). �
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