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High-Breakdown Robust Multivariate
Methods
Mia Hubert, Peter J. Rousseeuw and Stefan Van Aelst

Abstract. When applying a statistical method in practice it often occurs
that some observations deviate from the usual assumptions. However, many
classical methods are sensitive to outliers. The goal of robust statistics is to
develop methods that are robust against the possibility that one or several
unannounced outliers may occur anywhere in the data. These methods then
allow to detect outlying observations by their residuals from a robust fit. We
focus on high-breakdown methods, which can deal with a substantial frac-
tion of outliers in the data. We give an overview of recent high-breakdown
robust methods for multivariate settings such as covariance estimation, multi-
ple and multivariate regression, discriminant analysis, principal components
and multivariate calibration.

Key words and phrases: Breakdown value, influence function, multivari-
ate statistics, outliers, partial least squares, principal components, regression,
robustness.

1. INTRODUCTION

Many multivariate datasets contain outliers, that is,
data points that deviate from the usual assumptions
and/or from the pattern suggested by the majority of the
data. Outliers are more likely to occur in datasets with
many observations and/or variables, and often they do
not show up by simple visual inspection.

The usual multivariate analysis techniques (e.g.,
principal components, discriminant analysis and mul-
tivariate regression) are based on empirical means, co-
variance and correlation matrices, and least squares fit-
ting. All of these can be strongly affected by even a few
outliers. When the data contain nasty outliers, typically
two things happen:
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• the multivariate estimates differ substantially from
the “right” answer, defined here as the estimates we
would have obtained without the outliers;

• the resulting fitted model does not allow to detect
the outliers by means of their residuals, Mahalanobis
distances or the widely used “leave-one-out” diag-
nostics.

The first consequence is fairly well known (although
the size of the effect is often underestimated). Unfor-
tunately, the second consequence is less well known,
and when stated many people find it hard to believe or
paradoxical. Common intuition says that outliers must
“stick out” from the classical fitted model, and indeed
some of them may do so. But the most harmful types
of outliers, especially if there are several of them, may
affect the estimated model so much “in their direction”
that they are now well-fitted by it.

Once this effect is understood, one sees that the fol-
lowing two problems are essentially equivalent:

• Robust estimation: find a “robust” fit, which is sim-
ilar to the fit we would have found without the out-
liers.

• Outlier detection: find all the outliers that matter.

Indeed, a solution to the first problem allows us to iden-
tify the outliers by their residuals, and so on, from the
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robust fit. Conversely, a solution to the second prob-
lem allows us to remove or downweight the outliers
followed by a classical fit, which yields a robust result.

Our research focuses on the first problem, and uses
its results to answer the second. We prefer this ap-
proach over the opposite direction because from a com-
binatorial viewpoint it is more feasible to search for
sufficiently many “good” data points than to find all the
“bad” data points.

It turns out that most of the currently available highly
robust multivariate estimators are difficult to compute,
which makes them unsuitable for the analysis of large
and/or high-dimensional datasets. Among the few ex-
ceptions is the minimum covariance determinant esti-
mator (MCD) of Rousseeuw (1984, 1985). The MCD
is a highly robust estimator of multivariate location
and scatter, that can be computed efficiently with the
FAST-MCD algorithm of Rousseeuw and Van Driessen
(1999).

Section 2 concentrates on robust estimation of loca-
tion and scatter. We first describe the MCD estimator
and discuss its main properties. Alternatives for the
MCD are explained briefly with relevant pointers to
the literature for more details. Section 3 does the same
for robust regression and mainly focuses on the least
trimmed squares (LTS) estimator (Rousseeuw, 1984),
which is an analog of MCD for multiple regression.
Since estimating the covariance matrix is the corner-
stone of many multivariate statistical methods, robust
scatter estimators have also been used to develop robust
and computationally efficient multivariate techniques.
The paper then goes on to describe robust methods for
multivariate regression (Section 4), classification (Sec-
tion 5), principal component analysis (Section 6), prin-
cipal component regression (Section 7), partial least
squares regression (Section 8) and other settings (Sec-
tion 9). Section 10 concludes with pointers to available
software for the described techniques.

2. MULTIVARIATE LOCATION AND SCATTER

2.1 The Need for Robustness

In the multivariate location and scatter setting we as-
sume that the data are stored in an n × p data matrix
X = (x1, . . . ,xn)

′ with xi = (xi1, . . . , xip)′ the ith ob-
servation. Hence n stands for the number of objects and
p for the number of variables.

To illustrate the effect of outliers we consider the
following engineering problem, taken from Rousseeuw
and Van Driessen (1999). Philips Mecoma (The Nether-
lands) produces diaphragm parts for television sets.

These are thin metal plates, molded by a press. When
starting a new production line, p = 9 characteristics
were measured for n = 677 parts. The aim is to gain in-
sight in the production process and to find out whether
abnormalities have occurred. A classical approach is to
compute the Mahalanobis distance

MD(xi ) =
√

(xi − μ̂0)
′�̂−1

0 (xi − μ̂0)(1)

of each measurement xi . Here μ̂0 is the arithmetic
mean and �̂0 is the classical covariance matrix. The
distance MD(xi ) should tell us how far away xi is from
the center of the cloud, relative to the size of the cloud.

In Figure 1 we plotted the classical Mahalanobis dis-
tance versus the index i, which corresponds to the pro-
duction sequence. The horizontal line is at the usual

cutoff value
√

χ2
9,0.975 = 4.36. Figure 1 suggests that

most observations are consistent with the classical as-
sumption that the data come from a multivariate nor-
mal distribution, except for a few isolated outliers. This
should not surprise us, even in the first experimental
run of a new production line, because the Mahalanobis
distances are known to suffer from the masking effect.
That is, even if there were a group of outliers (here,
deformed diaphragm parts), they would affect μ̂0 and
�̂0 in such a way that they get small Mahalanobis dis-
tances MD(xi ) and thus become invisible in Figure 1.
To get a reliable analysis of these data we need robust
estimators μ̂ and �̂ that can resist possible outliers. For
this purpose we will use the MCD estimates described
below.

2.2 Description of the MCD

The MCD method looks for the h observations (out
of n) whose classical covariance matrix has the lowest
possible determinant. The MCD estimate of location is
then the average of these h points, whereas the MCD
estimate of scatter is a multiple of their covariance ma-
trix. The MCD location and scatter estimates are affine
equivariant, which means that they behave properly un-
der affine transformations of the data. That is, for an
n × p dataset X the MCD estimates (μ̂, �̂) satisfy

μ̂(XA + 1nv′) = μ̂(X)A + v,(2)

�̂(XA + 1nv′) = A′�̂(X)A,(3)

for all p × 1 vectors v and all nonsingular p ×p matri-
ces A. The vector 1n is (1,1, . . . ,1)′ with n elements.
Affine equivariance is a natural property of the under-
lying model and makes the analysis independent of the
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FIG. 1. Mahalanobis distances of the Philips data.

measurement scales of the variables as well as transla-
tions or rotations of the data.

A useful measure of robustness is the finite-sample
breakdown value (Donoho and Huber, 1983). The
breakdown value ε∗

n(μ̂,X) of an estimator μ̂ at the
dataset X is the smallest amount of contamination that
can have an arbitrarily large effect on μ̂. Consider all
possible contaminated datasets X̃ obtained by replac-
ing any m of the original observations by arbitrary
points. Then the breakdown value of a location estima-
tor μ̂ is the smallest fraction m/n of outliers that can
take the estimate over all bounds:

ε∗
n(μ̂,X)

(4)

:= min
m

{
m

n
; sup

X̃

‖μ̂(X̃) − μ̂(X)‖ = ∞
}
.

For many estimators ε∗
n(μ̂,X) varies only slightly with

X and n, so that we can denote its limiting value (for
n → ∞) by ε∗(μ̂). Similarly, the breakdown value of a
covariance matrix estimator �̂ is defined as the small-
est fraction of outliers that can take either the largest
eigenvalue λ1(�̂) to infinity or the smallest eigenvalue
λp(�̂) to zero. The MCD estimates (μ̂, �̂) of mul-
tivariate location and scatter have breakdown value
ε∗
n(μ̂) = ε∗

n(�̂) ≈ (n − h)/n. The MCD has its high-
est possible breakdown value (ε∗ = 50%) when h =
[(n + p + 1)/2] (see Lopuhaä and Rousseeuw, 1991).

Note that no affine equivariant estimator can have a
breakdown value above 50%. For a recent discussion
of the importance of equivariance in breakdown con-
siderations, see Davies and Gather (2005).

An efficient algorithm to compute the MCD is the
FAST-MCD algorithm explained in Appendix A.1. By
default FAST-MCD computes a one-step weighted es-
timate given by

μ̂1 =
(

n∑
i=1

wixi

)/(
n∑

i=1

wi

)
,(5)

�̂1 = dh,n

(
n∑

i=1

wi(xi − μ̂1)(xi − μ̂1)
′
)

(6)

·
(

n∑
i=1

wi

)−1

,

where

wi =
{

1, if d
(μ̂MCD,�̂MCD)

(i) ≤
√

χ2
p,0.975,

0, otherwise,

with μ̂MCD and �̂MCD the raw MCD estimates. The
number dh,n in (6) is a correction factor (Pison,
Van Aelst and Willems, 2002) to obtain unbiased and
consistent estimates when the data come from a multi-
variate normal distribution.

This one-step weighted estimator has the same
breakdown value as the initial MCD estimator but a
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much better statistical efficiency. In practice we often
do not need the maximal breakdown value. For ex-
ample, Hampel et al. (1986, pages 27–28) write that
10% of outliers is quite common. We typically use
h = 0.75n so that ε∗ = 25%, which is sufficiently ro-
bust for most applications and has a high statistical ef-
ficiency. For example, with h = 0.75n the asymptotic
efficiencies of the weighted MCD location and scatter
estimators in 10 dimensions are 94% and 88%, respec-
tively (Croux and Haesbroeck, 1999).

2.3 Examples

Let us now reanalyze the Philips data. For each
observation xi we now compute the robust distance
(Rousseeuw and Leroy, 1987) given by

RD(xi ) =
√

(xi − μ̂)′�̂−1
(xi − μ̂),(7)

where (μ̂, �̂) are the MCD location and scatter esti-
mates. Recall that the Mahalanobis distances in Fig-
ure 1 indicated no groups of outliers. On the other
hand, the robust distances RD(xi ) in Figure 2 show
a strongly deviating group of outliers, ranging from
index 491 to index 565. Something happened in the
production process, which was not visible from the
classical Mahalanobis distances due to the masking ef-
fect. Furthermore, Figure 2 also shows a remarkable
change after the first 100 measurements. Both phenom-
ena were investigated and interpreted by the engineers
at Philips.

The second dataset came from a group of Cal Tech
astronomers working on the Digitized Palomar Sky
Survey (see Odewahn et al., 1998). They made a sur-
vey of celestial objects (light sources) by recording
nine characteristics (such as magnitude, area, image
moments) in each of three bands: blue, red and near-
infrared. The database contains measurements for 27
variables on 137,256 celestial objects. Based on ex-
ploratory data analysis Rousseeuw and Van Driessen
(1999) selected six of the variables (two from each
band). The classical Mahalanobis distances revealed a
set of outliers which turned out to be objects for which
at least one measurement fell outside its physically
possible range. Therefore, the data was cleaned by re-
moving all objects with physically impossible mea-
surements, leading to a cleaned dataset of size 132,402.
The Mahalanobis distances of the cleaned data are
shown in Figure 3(a).

This plot (and a Q–Q plot) suggests that the dis-

tances approximately come from the
√

χ2
6 distribu-

tion, as would be the case if the data came from a
homogeneous population. Figure 3(b) shows the ro-
bust distances computed with the FAST-MCD algo-
rithm. In contrast to the innocent-looking Mahalanobis
distances, these robust distances reveal the presence
of two groups. There is a majority with RD(xi ) ≤√

χ2
6,0.975 and a group with RD(xi ) between 8 and 16.

Based on these results the astronomers noted that the

FIG. 2. Robust distances of the Philips data.
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FIG. 3. Cleaned digitized Palomar data: (a) Mahalanobis distances; (b) robust distances.

lower group are mainly stars while the upper group are
mainly galaxies.

2.4 Other robust estimators of multivariate
location and scatter

The breakdown point is not the only important ro-
bustness measure. Another key concept is the influence
function, which measures the effect on an estimator of
adding a small mass at a specific point. (See Hampel et
al., 1986 for details.) Robust estimators ideally have a
bounded influence function, which means that a small
contamination at any point can only have a small ef-
fect on the estimator. M-estimators (Maronna, 1976;
Huber, 1981) were the first class of bounded influence
estimators for multivariate location and scatter. Also
the MCD and other estimators mentioned below have a
bounded influence function. The first high-breakdown
location and scatter estimator was proposed by Stahel
(1981) and Donoho (1982). The Stahel–Donoho esti-
mates are a weighted mean and covariance, like (5)–
(6), where the weight wi of an observation xi depends
on its outlyingness, given by

ui = sup
‖v‖=1

|x′
iv − medj (x′

j v)|
madj (x′

j v)
.

The estimator has good robustness properties but is
computationally very intensive, which limits its use
(Tyler, 1994; Maronna and Yohai, 1995). The Stahel–
Donoho estimator measures the outlyingness by look-
ing at all univariate projections of the data and as such
is related to projection pursuit methods as studied in

Friedman and Tukey (1974), Huber (1985) and Croux
and Ruiz-Gazen (2005). Another highly robust esti-
mator of location and scatter based on projections has
been proposed by Maronna, Stahel and Yohai (1992).

Together with the MCD, Rousseeuw (1984, 1985)
also introduced the minimum volume ellipsoid (MVE)
estimator which looks for the minimal volume ellip-
soid covering at least half the data points. However, the
MVE has efficiency zero due to its low rate of conver-
gence. Rigorous asymptotic results for the MCD and
the MVE are given by Butler, Davies and Jhun (1993)
and Davies (1992a). To improve the finite-sample ef-
ficiency of MVE and MCD a one-step weighted esti-
mator (5)–(6) can be computed. The breakdown value
and asymptotic properties of one-step weighted estima-
tors have been obtained by Lopuhaä and Rousseeuw
(1991) and Lopuhaä (1999). Alternatively, a one-step
M-estimator starting from MVE or MCD can be com-
puted as proposed by Davies (1992b).

Another approach to improve the efficiency of MVE
or MCD is to use a smoother objective function. An
important class of robust estimators of multivariate lo-
cation and scatter are S-estimators (Rousseeuw and
Leroy, 1987; Davies, 1987), defined as the solution
(μ̂, �̂) which minimizes det(�) under the constraint

1

n

n∑
i=1

ρ
(√

(xi − μ)′�−1(xi − μ)
) ≤ b(8)

over all vectors μ and all p × p positive definite sym-
metric matrices �. Setting b = EF [ρ(‖X)‖] assures
consistency at the model distribution F . The function
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ρ is chosen by the statistician and is often taken to be
Tukey’s biweight ρ-function

ρ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2

2
− x4

2c2 + x6

6c4 , if |x| ≤ c,

c2

6
, if |x| ≥ c.

(9)

The constant c determines the breakdown value which
is given by ε∗ = 6b/c2. The properties of S-estimators
have been investigated by Lopuhaä (1989). Related
classes include CM-estimators (Kent and Tyler, 1996),
MM-estimators (Tatsuoka and Tyler, 2000) and τ -es-
timators Lopuhaä (1991). Positive-breakdown estima-
tors of location and scatter can also be used to construct
formal outlier identification rules; see, for example,
Becker and Gather (1999).

To extend the notion of ranking to higher dimen-
sions, Tukey introduced the halfspace depth. Depth-
based estimators have been proposed and studied by
Donoho and Gasko (1992), Rousseeuw, Ruts and
Tukey (1999a), Liu, Parelius and Singh (1999), Zuo
and Serfling (2000a, 2000b) and Zuo, Cui and He
(2004).

Robust estimation and outlier detection in higher di-
mensions has been studied by Rocke (1996) and Rocke
and Woodruff (1996). For very high-dimensional data,
Maronna and Zamar (2002) and Alqallaf et al. (2002)
proposed computationally efficient robust estimators of
multivariate location and covariance that are not affine
equivariant any more. Chen and Victoria-Feser (2002)

address robust covariance matrix estimation with miss-
ing data.

3. MULTIPLE REGRESSION

3.1 Motivation

The multiple regression model assumes that also a
response variable y is measured, which can be ex-
plained as an affine combination of the x-variables.
More precisely, the model says that for all observations
(xi , yi) with i = 1, . . . , n it holds that

yi = θ1xi1 + · · · + θpxip + θp+1 + εi,
(10)

i = 1, . . . , n,

where the errors εi are assumed to be i.i.d. with
zero mean and constant variance σ 2. The vector β =
(θ1, . . . , θp)′ is called the slope, and α = θp+1 the in-
tercept. Denote xi = (xi1, . . . , xip)′ and θ = (β ′, α)′ =
(θ1, . . . , θp, θp+1)

′.
The classical least squares method to estimate θ and

σ is extremely sensitive to regression outliers, that is,
observations that do not obey the linear pattern formed
by the majority of the data. In regression we can dis-
tinguish between different types of points. This is il-
lustrated in Figure 4 for simple regression. Leverage
points are observations (xi , yi) whose xi are outlying;
that is, xi deviates from the majority in x-space. We
call such an observation (xi , yi) a good leverage point
if (xi , yi) follows the linear pattern of the majority,

FIG. 4. Simple regression data with different types of outliers.
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such as points 2 and 21. If, on the other hand, (xi , yi)

does not follow this linear pattern, we call it a bad
leverage point, like 4, 7 and 12. An observation whose
xi belongs to the majority in x-space but where (xi , yi)

deviates from the linear pattern is called a vertical out-
lier, like the points 6, 13 and 17. A regression dataset
can thus have up to four types of points: regular ob-
servations, vertical outliers, good leverage points and
bad leverage points. Leverage points attract the least
squares solution toward them, so bad leverage points
are often not apparent in a classical regression analy-
sis.

In low dimensions, as in this example, visual inspec-
tion can be used to detect outliers and leverage points,
but in higher dimensions this is not an option anymore.
Therefore, we need robust and computationally effi-
cient estimators that yield a reliable analysis of regres-
sion data. We consider the least trimmed squares es-
timator (LTS) proposed by Rousseeuw (1984) for this
purpose.

For a dataset Z = {(xi , yi); i = 1, . . . , n} and for any
θ denote the corresponding residuals by ri = ri(θ) =
yi − β ′xi − α = yi − θ ′ui with ui = (x′

i ,1)′. Then the

LTS estimator is defined as the θ̂ which minimizes
h∑

i=1

(r2)i:n,(11)

where (r2)1:n ≤ (r2)2:n ≤ · · · ≤ (r2)n:n are the or-
dered squared residuals (note that the residuals are first
squared and then ordered). This is equivalent to find-
ing the h-subset with smallest least squares objective
function, which resembles the definition of the MCD.
The LTS estimate is then the least squares fit to these
h points. The LTS estimates are regression, scale and
affine equivariant. That is, for any X = (x1, . . . ,xn)

′
and y = (y1, . . . , yn)

′ it holds that

θ̂(X,y + Xv + 1nc) = θ̂(X,y) + (v′, c)′

θ̂(X, cy) = cθ̂(X,y),
(12)

θ̂(XA′ + 1nv′,y) = (
β̂

′
(X,y)A−1, α(X,y)

− β̂
′
(X,y)A−1v

)′
,

for any vector v, any constant c and any nonsingular
p × p matrix A.

The breakdown value of a regression estimator θ̂
at a dataset Z is the smallest fraction of outliers that
can have an arbitrarily large effect on θ̂ . Formally, it
is defined by (4) where X is replaced by (X,y). For
h = [(n + p + 1)/2] the LTS breakdown value equals

ε∗(LTS) ≈ 50%, whereas for larger h we have that
ε∗
n(LTS) ≈ (n − h)/n. The usual choice h ≈ 0.75n

yields ε∗(LTS) = 25%.
When using LTS regression, the standard deviation

of the errors can be estimated by

σ̂ = ch,n

√√√√ 1

h

h∑
i=1

(r2)i:n,(13)

where ri are the residuals from the LTS fit, and ch,n

makes σ̂ consistent and unbiased at Gaussian error dis-
tributions (Pison, Van Aelst and Willems, 2002). Note
that the LTS scale estimator σ̂ is itself highly robust.
Therefore, we can identify regression outliers by their
standardized LTS residuals ri/σ̂ .

To compute the LTS in an efficient way, Rousseeuw
and Van Driessen (2006) developed the FAST-LTS al-
gorithm outlined in Appendix A.2. Similarly to the
FAST-MCD algorithm, FAST-LTS returns weighted
least squares estimates, given by

θ̂1 =
(

n∑
i=1

wiuiu′
i

)−1(
n∑

i=1

wiuiyi

)
,(14)

σ̂1 = dh,n

√√√√∑n
i=1 wiri(θ̂1)2∑n

i=1 wi

,(15)

where ui = (x′
i ,1)′. The weights are

wi =
{

1, if |ri(θ̂LTS)/σ̂LTS| ≤
√

χ2
1,0.975,

0, otherwise.

where θ̂LTS and σ̂LTS are the raw LTS estimates. As
before, dh,n is a finite-sample correction factor. These
weighted estimates have the same breakdown value
as the initial LTS estimates and a much better sta-
tistical efficiency. Moreover, from the weighted least
squares estimates all the usual inferential output such
as t-statistics, F -statistics an R2 statistic and the cor-
responding p-values can be obtained (Rousseeuw and
Leroy, 1987). These p-values are approximate since
they assume that the data with wi = 1 come from the
model (10) whereas the data with wi = 0 do not, and
we usually do not know whether that is true.

In Figure 4 we see that the LTS line obtained by
FAST-LTS yields a robust fit that is not attracted by the
leverage points on the right-hand side, and hence fol-
lows the pattern of the majority of the data. Of course,
the LTS method is most useful when there are several
x-variables.

To detect leverage points in higher dimensions we
must detect outlying xi in x-space. For this purpose we
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FIG. 5. Regression outlier map of the data in Figure 4.

will use the robust distances RDi based on the one-
step weighted MCD of the previous section. On the
other hand, we can see whether a point (xi , yi) lies near
the majority pattern by looking at its standardized LTS
residual ri/σ̂ . Rousseeuw and van Zomeren (1990)
proposed an outlier map which plots robust residu-
als ri/σ̂ versus robust distances RD(xi ), and indicates
the corresponding cutoffs by horizontal and vertical
lines. It automatically classifies the observations into
the four types of data points that can occur in a regres-
sion dataset. Figure 5 is the outlier map of the data in
Figure 4.

To illustrate this plot, we again consider the data-
base of the Digitized Palomar Sky Survey. Follow-
ing Rousseeuw and Van Driessen (2006), we now use
the subset of 56,744 stars (not galaxies) for which
all the characteristics in the blue color (the F band)
are available. The response variable MaperF is re-
gressed against the other eight characteristics of the
color band F. These characteristics describe the size
of a light source and the shape of the spatial bright-
ness distribution in a source. Figure 6(a) plots the stan-
dardized LS residuals versus the classical Mahalanobis
distances. Some isolated outliers in the y-direction as
well as in x-space were not plotted to get a better view
of the majority of the data. Observations for which
the standardized absolute LS residual exceeds the cut-
off

√
χ2

1,0.975 are considered to be regression outliers,
whereas the other observations are thought to obey

the linear model. Similarly, observations for which

MD(xi ) exceeds the cutoff
√

χ2
8,0.975 are considered to

be leverage points. Figure 6(a) shows that most data

points lie between the horizontal cutoffs at ±
√

χ2
1,0.975

which suggests that most data follow the same linear
trend. On the other hand, the outlier map based on LTS
residuals and robust distances RD(xi ) shown in Fig-
ure 6(b) tells a different story. This plot reveals a rather
large group of observations with large robust residuals
and large robust distances. Hence, these observations
are bad leverage points. This group turned out to be gi-
ant stars, which are known to behave differently from
other stars.

3.2 Other robust regression methods

The development of robust regression often paral-
leled that of robust estimators of multivariate loca-
tion and scatter, and in fact more attention has been
dedicated to the regression setting. Robust regression
also started with M-estimators (Huber, 1973, 1981),
later followed by R-estimators (Jurecková, 1971) and
L-estimators (Koenker and Portnoy, 1987) that all have
breakdown value zero because of their vulnerability to
bad leverage points.

The next step was the development of generalized
M-estimators (GM-estimators) that bound the influ-
ence of outlying xi by giving them a small weight
(see, e.g., Krasker and Welsch, 1982; Maronna and
Yohai, 1981). Therefore, GM-estimators are often
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FIG. 6. Digitized Palomar Sky Survey data: regression of MaperF on eight regressors. (a) Plot of LS residual versus Mahalanobis distance
MD(xi ); (b) outlier map of LTS residual versus robust distance RD(xi ).

called bounded influence methods, and they are more
stable than M-, L- or R-estimators. See Hampel et al.
(1986, Chapter 6) for an overview. Unfortunately, the
breakdown value of GM-estimators with a monotone
score function still goes down to zero for increasing
p (Maronna, Burtos and Yohai, 1979). GM-estimators
with a redescending score function can have a dimen-
sion-independent positive breakdown value (see He,
Simpson and Wang, 2000). Note that for a small frac-
tion of outliers in the data GM-estimators are robust,
and they are computationally fast. For a discussion
of the differences between bounded-influence estima-
tors and high-breakdown methods see the recent book
by Maronna, Martin and Yohai (2006).

The first high-breakdown regression methods were
least median of squares (LMS), LTS and the repeated
median. The origins of LMS go back to Tukey (An-
drews et al., 1972), who proposed a univariate estima-
tor based on the shortest half of the sample and called
it the shorth. Hampel (1975, page 380) modified and
generalized it to regression and stated that the result-
ing estimator has a 50% breakdown value. He called it
the shordth and considered it of special mathematical
interest. Later, Rousseeuw (1984) provided theory, al-
gorithms and programs for this estimator, as well as
applications (see also Rousseeuw and Leroy, 1987).
However, LMS has an abnormally slow convergence
rate and hence its asymptotic efficiency is zero. In con-
trast, LTS is asymptotically normal and can be com-
puted much faster. The other high-breakdown regres-
sion method was Siegel’s repeated median technique

(Siegel, 1982), which has good properties in the simple
regression case (p = 2) but is no longer affine equivari-
ant in multiple regression (p ≥ 3).

As for multiple location and scatter, the efficiency
of a high-breakdown regression estimator can be im-
proved by computing one-step weighted least squares
estimates (14)–(15) or by computing a one-step M-es-
timator as done in Rousseeuw (1984). In order to
combine these advantages with those of the bounded
influence approach, it was later proposed by Simpson,
Ruppert and Carroll (1992), Coakley and Hettmansper-
ger (1993) and Simpson and Yohai (1998) to compute
a one-step GM-estimator starting from LTS.

Tests and variable selection for robust regression
were developed by Markatou and He (1994), Marka-
tou and Hettmansperger (1990), Ronchetti and Staudte
(1994) and Ronchetti, Field and Blanchard (1997). For
high-breakdown methods, variable selection by all sub-
sets regression becomes infeasible. One way out is
to apply the robust method to all variables, yielding
weights, and then to apply the classical selection meth-
ods for weighted least squares. Alternatively, a robust
R2 measure (Croux and Dehon, 2003) or a robust pe-
nalized selection criterion (Müller and Welsh, 2006)
can be used in a forward or backward selection strat-
egy.

Another approach to improve the efficiency of the
LTS is to replace its objective function by a smoother
alternative. Similarly as in (8), S-estimators of regres-
sion (Rousseeuw and Yohai, 1984) are defined as the
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solution (θ̂ , σ̂ ) that minimizes σ̂ subject to the con-
straint

1

n

n∑
i=1

ρ

(
yi − θ ′xi

σ

)
≤ b.(16)

The constant b usually equals E�[ρ(Y )] to assure con-
sistency at the model with normal error distribution,
and as before ρ is often taken to be Tukey’s biweight
ρ function (9). Salibian-Barrera and Yohai (2006) re-
cently constructed an efficient algorithm to compute
regression S-estimators. Related classes of efficient
high-breakdown estimators include MM-estimators
(Yohai, 1987), τ -estimators (Yohai and Zamar, 1988), a
new type of R-estimators (Hössjer, 1994), generalized
S-estimators (Croux, Rousseeuw and Hössjer, 1994),
CM-estimators (Mendes and Tyler, 1996) and gener-
alized τ -estimators (Ferretti et al., 1999). Inference
for these estimators is usually based on their asymp-
totic distribution at the central model. Alternatively,
for MM-estimators Salibian-Barrera and Zamar (2002)
developed a fast and robust bootstrap procedure that
yields reliable nonparametric robust inference.

To extend the good properties of the univariate me-
dian to regression, Rousseeuw and Hubert (1999) in-
troduced the notions of regression depth and deepest
regression. The deepest regression estimator has been
studied by Rousseeuw, Van Aelst and Hubert (1999b),
Van Aelst and Rousseeuw (2000), Van Aelst et al.
(2002) and Bai and He (2000).

Another important robustness measure, besides the
breakdown value and the influence function, is the
maxbias curve. The maxbias is the maximum possible
bias of an estimator caused by a fixed fraction ε of con-
tamination. The maxbias curve plots the maxbias of an
estimator as a function of the fraction ε = m/n of con-
tamination. Maxbias curves of robust regression esti-
mators have been studied in Martin, Yohai and Zamar
(1989), He and Simpson (1993), Croux, Rousseeuw
and Hössjer (1994), Adrover and Zamar (2004) and
Berrendero and Zamar (2001). Projection estimators
for regression (Maronna and Yohai, 1993) combine a
low maxbias with high breakdown value and bounded
influence but they are difficult to compute.

Unbalanced binary regressors that contain, for ex-
ample, 90% of zeroes and 10% of ones might be ig-
nored by standard robust regression methods. Robust
methods for regression models that include categori-
cal or binary regressors have been developed by Hubert
and Rousseeuw (1996) and Maronna and Yohai (2000).
Robust estimators for orthogonal regression and error-
in-variables models have been considered by Zamar
(1989, 1992) and Maronna (2005).

4. MULTIVARIATE REGRESSION

The regression model can be extended to the case
where we have more than one response variable. For
p-variate predictors xi = (xi1, . . . , xip)′ and q-variate
responses yi = (yi1, . . . , yiq)

′ the multivariate regres-
sion model is given by

yi = B ′xi + α + εi ,(17)

where B is the p × q slope matrix, α is the q-dimen-
sional intercept vector, and the errors εi = (εi1, . . . , εiq)

′
are i.i.d. with zero mean and with Cov(ε) = �ε a pos-
itive definite matrix of size q . Note that for q = 1 we
obtain the multiple regression model of the previous
section. On the other hand, putting p = 1 and xi = 1
yields the multivariate location and scatter model of
Section 2. It is well known that the least squares solu-
tion can be written as

B̂ = �̂
−1
xx �̂xy,

α̂ = μ̂y − B̂
′
μ̂x,(18)

�̂ε = �̂yy − B̂
′
�̂xxB̂,

where

μ̂ =
(

μ̂x

μ̂y

)
and �̂ =

(
�̂xx �̂xy

�̂yx �̂yy

)

are the empirical mean and covariance matrix of the
joint (x,y) variables.

Vertical outliers and bad leverage points highly influ-
ence the least squares estimates in multivariate regres-
sion, and may make the results completely unreliable.
Therefore, robust alternatives have been developed.

Rousseeuw et al. (2004) proposed to use the MCD
estimates for the center μ and scatter matrix � in (18).
The resulting estimates are called MCD regression es-
timates. It has been shown that the MCD regression es-
timates are regression, y-affine and x-affine equivari-
ant. With X = (x1, . . . ,xn)

′, Y = (y1, . . . ,yn)
′ and θ̂ =

(B̂
′
, α̂)′ this means that

θ̂(X,Y + XD + 1nw′)
= θ̂(X,Y) + (D′,w)′,

θ̂(X,YC + 1nw′)
= θ̂(X,Y)C + (O′

pq,w)′,(19)

θ̂(XA′ + 1nv′,Y)

= (B̂
′
(X,Y)A−1, α̂(X,Y)

− B̂
′
(X,Y)A−1v)′,
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where D is any p × q matrix, A is any nonsingular
p × p matrix, C is any nonsingular q × q matrix, v is
any p-dimensional vector and w is any q-dimensional
vector. Here Opq is the p × q matrix consisting of ze-
roes.

MCD regression inherits the breakdown value of the
MCD estimator, thus ε∗

n(θ̂) ≈ (n − h)/n. To obtain
a better efficiency, the one-step weighted MCD esti-
mates are used in (18) and followed by the regres-
sion weighting step described below. For any fit θ̂
denote the corresponding q-dimensional residuals by

ri (θ̂) = yi − B̂
′
xi − α̂. Then the weighted regression

estimates are given by

θ̂1 =
(

n∑
i=1

wiuiu′
i

)−1(
n∑

i=1

wiuiy′
i

)
,(20)

�̂
1
ε = d1

(
n∑

i=1

wi

)−1(
n∑

i=1

wiri (θ̂1)ri (θ̂1)
′
)
,(21)

where ui = (x′
i ,1)′ and d1 is a consistency factor. The

weights wi are given by

wi =
{

1, if d(ri (θ̂MCD)) ≤
√

χ2
q,0.975,

0, otherwise,

with d(ri (θ̂MCD)) =
√

ri (θ̂MCD)′(�̂ε)−1ri (θ̂MCD) the
robust distances of the residuals, corresponding to

the initial MCD regression estimates θ̂MCD and �̂ε .
Note that these weighted regression estimates (20)–
(21) have the same breakdown value as the initial MCD
regression estimates.

To illustrate MCD regression we analyze a dataset
from Shell’s polymer laboratory, described in Roussee-
uw et al. (2004). The dataset consists of n = 217 ob-
servations with p = 4 predictor variables and q = 3 re-
sponse variables. The predictor variables describe the
chemical characteristics of a piece of foam, whereas
the response variables measure its physical properties
such as tensile strength. The physical properties of the
foam are determined by the chemical composition used
in the production process. Multivariate regression is
used to establish a relationship between the chemical
inputs and the resulting physical properties of the foam.
After an initial exploratory study of the variables, a ro-
bust multivariate MCD regression was used.

To detect leverage points and outliers the outlier map
of Rousseeuw and van Zomeren (1990) has been ex-
tended to multivariate regression. In multivariate re-
gression the robust distances of the residuals ri (θ̂1)

are plotted versus the robust distances of the xi . Fig-
ure 7 is the outlier map of the Shell foam data. Obser-
vations 215 and 110 lie far from both the horizontal
cutoff line at

√
χ2

3,0.975 = 3.06 and the vertical cutoff

line at
√

χ2
4,0.975 = 3.34. These two observations can

FIG. 7. Regression outlier map of the foam data.
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FIG. 8. Regression outlier map of the corrected foam data.

thus be classified as bad leverage points. Several ob-
servations lie substantially above the horizontal cutoff
but not to the right of the vertical cutoff, which means
that they are vertical outliers (their residuals are outly-
ing but their x-values are not).

Based on this list of special points the scientists who
had made the measurements found out that a fraction
of the observations in Figure 7 were made with a differ-
ent production technique and hence belong to a differ-
ent population with other characteristics. These include
the observations 210, 212 and 215. We therefore re-
move these observations from the data, and retain only
observations from the intended population.

Running the method again yields the outlier map
in Figure 8. Observation 110 is still a bad leverage
point, and also several of the vertical outliers remain.
No chemical/physical mechanism was found to explain
why these points are outliers, leaving open the possibil-
ity of some large measurement errors. But the detection
of these outliers at least provides us with the option to
choose whether or not to allow them to affect the final
result.

Since MCD regression is mainly intended for re-
gression data with random carriers, Agulló, Croux and
Van Aelst (2006) developed an alternative robust mul-
tivariate regression method which can be seen as an
extension of LTS to the multivariate setting. This mul-
tivariate least trimmed squares estimator (MLTS) can

also be used in cases where the carriers are fixed. The
MLTS looks for a subset of size h such that the deter-
minant of the covariance matrix of its residuals corre-
sponding to its least squares fit is minimal. Similarly as
for MCD regression, the MLTS has breakdown value
ε∗
n(θMLTS) ≈ (n − h)/n and the equivariance proper-

ties (19) are satisfied. The MLTS can be computed
quickly with an algorithm similar to that in Appen-
dix A.1. To improve the efficiency while keeping the
breakdown value, a one-step weighted MLTS estima-
tor can be computed using expressions (20)–(21). Al-
ternatively, Van Aelst and Willems (2005) introduced
multivariate regression S-estimators and extended the
fast robust bootstrap methodology of Salibian-Barrera
and Zamar (2002) to this setting while García Ben,
Martínez and Yohai (2006) proposed τ -estimators for
multivariate regression.

5. CLASSIFICATION

The goal of classification, also known as discrimi-
nant analysis or supervised learning, is to obtain rules
that describe the separation between known groups of
observations. Moreover, it allows to classify new ob-
servations into one of the groups. We denote the num-
ber of groups by l and assume that we can describe our
experiment in each population πj by a p-dimensional
random variable Xj with density function fj . We write
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pj for the membership probability, that is, the proba-
bility for an observation to come from πj . The max-
imum likelihood rule then classifies an observation
x into πk if ln(pkfk(x)) is the maximum of the set
{ln(pjfj (x)); j = 1, . . . , l}. If we assume that the den-
sity fj for each group is Gaussian with mean μj and
covariance matrix �j , then it can be seen that the max-
imum likelihood rule is equivalent to maximizing the
discriminant scores d

Q
j (x) with

d
Q
j (x) = −1

2 ln|�j |
− 1

2(x − μj )
′�−1

j (x − μj )(22)

+ ln(pj ).

That is, x is allocated to πk if d
Q
k (x) > d

Q
j (x) for all

j = 1, . . . , l (see, e.g., Johnson and Wichern, 1998).
In practice μj , �j and pj have to be estimated. Clas-

sical quadratic discriminant analysis (CQDA) uses the
group’s mean and empirical covariance matrix to es-
timate μj and �j . The membership probabilities are
usually estimated by the relative frequencies of the ob-
servations in each group, hence p̂j = nj/n with nj the
number of observations in group j .

A robust quadratic discriminant analysis (RQDA) is
derived by using robust estimators of μj , �j and pj . In
particular, we can apply the weighted MCD estimator
of location and scatter in each group. As a byproduct
of this robust procedure, outliers (within each group)
can be distinguished from the regular observations. Fi-
nally, the membership probabilities can be robustly es-
timated as the relative frequency of regular observa-
tions in each group. For an outline of this approach,
see Hubert and Van Driessen (2004).

When the groups are assumed to have a common
covariance matrix �, the quadratic scores (22) can be
simplified to

dL
j (x) = μ′

j�
−1x − 1

2μ′
j�

−1μj + ln(pj )(23)

since the terms −1
2 ln|�| and −1

2x′�−1x do not depend
on j . The resulting scores (23) are linear in x, hence the
maximum likelihood rule belongs to the class of linear
discriminant analysis. It is well known that if we have
only two populations (l = 2) with a common covari-
ance structure and if both groups have equal member-
ship probabilities, this rule coincides with Fisher’s lin-
ear discriminant rule. Robust linear discriminant analy-
sis based on the MCD estimator or S-estimators has
been studied in Hawkins and McLachlan (1997), He
and Fung (2000), Croux and Dehon (2001) and Hubert
and Van Driessen (2004). The latter paper computes μ̂j

and �̂j by weighted MCD and then defines the pooled
covariance matrix �̂ = (

∑l
j=1 nj �̂j )/n.

We consider a dataset that contains the spectra of
three different cultivars of the same fruit (cantaloupe—
Cucumis melo L. Cantaloupensis). The cultivars (named
D, M and HA) have sizes 490, 106 and 500, and all
spectra were measured in 256 wavelengths. The dataset
thus contains 1096 observations and 256 variables.
First, a robust principal component analysis (as de-
scribed in the next section) was applied to reduce the
dimension of the data space, and the first two com-
ponents were retained. For a more detailed description
and analysis of these data, see Hubert and Van Driessen
(2004).

The data were divided randomly in a training set and
a validation set, containing 60% and 40% of the obser-
vations. Figure 9 shows the training data. In this figure
cultivar D is marked with crosses, cultivar M with cir-
cles and cultivar HA with diamonds. We see that culti-
var HA has a cluster of outliers that are far away from
the other observations. As it turns out, these outliers
were caused by a change in the illumination system.
To classify the data, we will use model (23) with a
common covariance matrix �. Figure 9(a) shows the
classical tolerance ellipses for the groups, given by

(x − μ̂j )
′ �̂−1

(x − μ̂j ) = χ2
2,0.975. Note how strongly

the classical covariance estimator of the common � is
influenced by the outlying subgroup of cultivar HA. On
the other hand, Figure 9(b) shows the same data with
the corresponding robust tolerance ellipses.

The effect on the resulting classical linear discrim-
inant rules is dramatic for cultivar M. It appears that
all the observations are badly classified because they
would have to belong to a region that lies completely
outside the boundary of this figure! The robust discrim-
inant analysis does a better job. The tolerance ellipses
are not affected by the outliers and the resulting dis-
criminant lines split up the different groups more accu-
rately. The misclassification rates are 17% for cultivar
D, 95% for cultivar M and 6% for cultivar HA. The
misclassification rate of cultivar M remains very high.
This is due to the intrinsic overlap between the three
groups, and the fact that cultivar M has few data points
compared to the others. (When we impose that all three
groups are equally important by setting the member-
ship probabilities equal to 1/3, we obtain a better clas-
sification of cultivar M with 46% of errors.)

This example thus clearly shows that outliers can
have a huge effect on the classical discriminant rules,
whereas the robust version fares better.
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FIG. 9. (a) Classical tolerance ellipses for the fruit data with common covariance matrix; (b) robust tolerance ellipses.
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FIG. 10. Score plot and 97.5% tolerance ellipse of the Hawkins–Bradu–Kass data obtained with (a) CPCA; (b) MCD.

6. PRINCIPAL COMPONENT ANALYSIS

6.1 Classical PCA

Principal component analysis is a popular statisti-
cal method which tries to explain the covariance struc-
ture of data by means of a small number of compo-
nents. These components are linear combinations of
the original variables, and often allow for an interpreta-
tion and a better understanding of the different sources
of variation. Because PCA is concerned with data re-
duction, it is widely used for the analysis of high-
dimensional data which are frequently encountered in
chemometrics, computer vision, engineering, genetics,
and other domains. PCA is then often the first step of
the data analysis, followed by discriminant analysis,
cluster analysis, or other multivariate techniques (see,
e.g., Hubert and Engelen, 2004). It is thus important to
find those components that contain most of the infor-
mation.

In the classical approach, the first component corre-
sponds to the direction in which the projected observa-
tions have the largest variance. The second component
is then orthogonal to the first and again maximizes
the variance of the projected data points. Continuing
in this way produces all the principal components,
which correspond to the eigenvectors of the empiri-
cal covariance matrix. Unfortunately, both the classi-
cal variance (which is being maximized) and the clas-
sical covariance matrix (which is being decomposed)

are very sensitive to anomalous observations. Con-
sequently, the first components are often pulled to-
ward outlying points, and may not capture the variation
of the regular observations. Therefore, data reduction
based on classical PCA (CPCA) becomes unreliable if
outliers are present in the data.

To illustrate this, let us consider a small artificial
dataset in p = 4 dimensions. The Hawkins–Bradu–
Kass dataset (see, e.g., Rousseeuw and Leroy, 1987)
consists of n = 75 observations in which two groups
of outliers were created, labeled 1–10 and 11–14. The
first two eigenvalues explain already 98% of the to-
tal variation, so we select k = 2. The CPCA scores
plot is depicted in Figure 10(a). In this figure we can
clearly distinguish the two groups of outliers, but we
see several other undesirable effects. We first observe
that, although the scores have zero mean, the regular
data points lie far from zero. This stems from the fact
that the mean of the data points is a bad estimate of
the true center of the data in the presence of outliers. It
is clearly shifted toward the outlying group, and con-
sequently the origin even falls outside the cloud of the
regular data points. On the plot we have also super-
imposed the 97.5% tolerance ellipse. We see that the
outliers 1–10 are within the tolerance ellipse, and thus
do not stand out based on their Mahalanobis distance.
The ellipse has stretched itself to accommodate these
outliers.
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6.2 Robust PCA

The goal of robust PCA methods is to obtain prin-
cipal components that are not influenced much by
outliers. A first group of methods is obtained by re-
placing the classical covariance matrix by a robust
covariance estimator. Maronna (1976) and Campbell
(1980) proposed using affine equivariant M-estimators
of scatter for this purpose, but these cannot resist
many outliers. Croux and Haesbroeck (2000) used
positive-breakdown estimators of scatter such as the
MCD and S-estimators. Recently, Salibian-Barrera,
Van Aelst and Willems (2006) proposed using S- or
MM-estimators of scatter and developed a fast robust
bootstrap procedure for inference and to assess the
stability of the PCA solution. Let us reconsider the
Hawkins–Bradu–Kass data in p = 4 dimensions. Ro-
bust PCA using the weighted MCD estimator yields the
score plot in Figure 10(b). We now see that the center
is correctly estimated in the middle of the regular ob-
servations. The 97.5% tolerance ellipse nicely encloses
these points and excludes all 14 outliers.

Unfortunately, the use of these affine equivariant co-
variance estimators is limited to small to moderate
dimensions. To see why, consider, for example, the
MCD estimator. If p denotes the number of variables
in our dataset, the MCD estimator can only be com-
puted if p < h; otherwise the covariance matrix of
any h-subset has zero determinant. Since h < n, p can
never be larger than n. A second problem is the com-
putation of these robust estimators in high dimensions.
Today’s fastest algorithms (Woodruff and Rocke, 1994;
Rousseeuw and Van Driessen, 1999) can handle up
to about 100 dimensions, whereas there are fields like
chemometrics, which need to analyze data with dimen-
sions in the thousands.

A second approach to robust PCA uses projection
pursuit (PP) techniques. These methods maximize a
robust measure of spread to obtain consecutive direc-
tions on which the data points are projected. In Hu-
bert, Rousseeuw and Verboven (2002) a PP algorithm
is presented, based on the ideas of Li and Chen (1985)
and Croux and Ruiz-Gazen (1996, 2005). It has been
successfully applied in several studies, for example, to
detect outliers in large microarray data (Model et al.,
2002). Asymptotic results about this approach are pre-
sented in Cui, He and Ng (2003).

Hubert, Rousseeuw and Vanden Branden (2005) pro-
posed a robust PCA method, called ROBPCA, which
combines ideas of both projection pursuit and ro-
bust covariance estimation. The PP part is used for

the initial dimension reduction. Some ideas based on
the MCD estimator are then applied to this lower-
dimensional data space. Simulations in Hubert,
Rousseeuw and Vanden Branden (2005) have shown
that this combined approach yields more accurate es-
timates than the raw PP algorithm. An outline of the
ROBPCA algorithm is given in Appendix A.3.

The ROBPCA method applied to a dataset Xn,p

yields robust principal components which can be
collected in a loading matrix Pp,k with orthogonal
columns, and a robust center μ̂x . From here on the
subscripts to a matrix serve to recall its size; fore ex-
ample, Xn,p is an n × p matrix and Pp,k is p × k.
(Note that it is possible to robustly scale the variables
first by dividing them by a robust scale estimate; see,
e.g., Rousseeuw and Croux, 1993.) The robust scores
are the k × 1 column vectors

ti = (Pp,k)
′(xi − μ̂x).

The orthogonal distance measures the distance be-
tween an observation and its projection in the k-dimen-
sional PCA subspace:

ODi = ‖xi − μ̂x − Pp,kti‖.(24)

Let L denote the diagonal matrix which contains the
eigenvalues lj of the MCD scatter matrix, sorted from
largest to smallest. The score distance of xi with re-
spect to μ̂x,P and L is then defined as

SDi =
√

(xi − μ̂x)
′Pp,kL−1

k,k(Pp,k)′(xi − μ̂x)

=
√√√√√ k∑

j=1

t2
ij

lj
.

All the above mentioned methods are translation and
orthogonal equivariant, that is, (2)–(3) hold for any
vector v and any p × p matrix A with AA′ = I. To
be precise, let μ̂x and P denote the robust center and
loading matrix of the original observations xi . Then
the robust center and loadings of the transformed data
Axi + v are equal to Aμ̂x + v and AP. The scores (and
distances) remain the same after this transformation,
since

ti (Axi + v) = P′A′(Axi + v − (Aμ̂x + v)
)

= P′(xi − μ̂x) = ti(xi ).

We also mention the robust LTS-subspace estima-
tor and its generalizations, introduced and discussed
in Rousseeuw and Leroy (1987) and Maronna (2005).
The idea behind these approaches consists in minimiz-
ing a robust scale of the orthogonal distances, similar to
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FIG. 11. (a) Different types of outliers when a three-dimensional dataset is projected on a robust two-dimensional PCA-subspace; (b) the
corresponding PCA outlier map.

the LTS estimator and S-estimators in regression. For
functional data, a fast PCA method is introduced in Lo-
cantore et al. (1999).

6.3 Outlier Map

The result of the PCA analysis can be represented by
means of the outlier map given in Hubert, Rousseeuw
and Vanden Branden (2005). As in regression, this
figure highlights the outliers and classifies them into
several types. In general, an outlier is an observation
which does not obey the pattern of the majority of the
data. In the context of PCA, this means that an out-
lier either lies far from the subspace spanned by the k

eigenvectors, and/or that the projected observation lies
far from the bulk of the data within this subspace. This
can be expressed by means of the orthogonal and the
score distances. These two distances define four types
of observations, as illustrated in Figure 11(a). Regu-
lar observations have a small orthogonal and a small
score distance. Bad leverage points, such as observa-

tions 2 and 3, have a large orthogonal distance and a
large score distance. They typically have a large influ-
ence on classical PCA, as the eigenvectors will be tilted
toward them. When points have a large score distance
but a small orthogonal distance, we call them good
leverage points. Observations 1 and 4 in Figure 7(a)
can be classified into this category. Finally, orthogonal
outliers have a large orthogonal distance, but a small
score distance, as, for example, case 5. They cannot be
distinguished from the regular observations once they
are projected onto the PCA subspace, but they lie far
from this subspace.

The outlier map in Figure 11(b) displays the ODi

versus the SDi . In this plot, lines are drawn to distin-
guish the observations with a small and a large OD, and
with a small and a large SD. For the latter distances, the

cutoff value c =
√

χ2
k,0.975 is used. For the orthogonal

distances, the approach of Box (1954) is followed. The
squared orthogonal distances can be approximated by
a scaled χ2 distribution which in its turn can be ap-
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FIG. 12. PCA outlier map of the glass dataset based on three principal components, computed with (a) CPCA; (b) ROBPCA.

proximated by a normal distribution using the Wilson–
Hilferty transformation. The mean and variance of this
normal distribution are then estimated by applying the
univariate MCD to the OD2/3

i .

6.4 Example

We illustrate the PCA outlier map on a dataset con-
sisting of spectra of 180 archaeological glass pieces
over p = 750 wavelengths (Lemberge et al., 2000).
The measurements were performed using a Jeol JSM
6300 scanning electron microscope equipped with an
energy-dispersive Si(Li) X-ray detection system. Three
principal components were retained for CPCA and
ROBPCA, yielding the outlier maps in Figure 12. In
Figure 12(a) we see that CPCA does not find big out-
liers. On the other hand the ROBPCA plot in Fig-
ure 12(b) clearly distinguishes two major groups in the
data, as well as a smaller group of bad leverage points,
a few orthogonal outliers, and the isolated case 180
in between the two major groups. A high-breakdown
method such as ROBPCA detects the smaller group
with cases 143–179 as a set of outliers. Later, it turned
out that the window of the detector system had been
cleaned before the last 38 spectra were measured. As
a result less X-ray radiation was absorbed, resulting in
higher X-ray intensities. The other bad leverage points
(57–63) and (74–76) are samples with a large concen-
tration of calcic. The orthogonal outliers (22, 23 and
30) are borderline cases, although it turned out that

they have larger measurements at the channels 215–
245. This might indicate a larger concentration of phos-
phorus.

7. PRINCIPAL COMPONENT REGRESSION

Principal component regression is typically used for
linear regression models (10) or (17) where the num-
ber of independent variables p is very large or where
the regressors are highly correlated (this is known as
multicollinearity). An important application of PCR is
multivariate calibration in chemometrics, which pre-
dicts constituent concentrations of a material based
on its spectrum. This spectrum can be obtained via
several techniques such as fluorescence spectrometry,
near-infrared spectrometry (NIR), nuclear magnetic
resonance (NMR), ultraviolet spectrometry (UV), en-
ergy dispersive X-ray fluorescence spectrometry (ED-
XRF), and so on. Since a spectrum typically ranges
over a large number of wavelengths, it is a high-
dimensional vector with hundreds of components. The
number of concentrations, on the other hand, is usu-
ally limited to at most, say, five. In the univariate ap-
proach, only one concentration at a time is modeled
and analyzed. The more general problem assumes that
the number of response variables q is larger than 1,
which means that several concentrations are to be esti-
mated together. This model has the advantage that the
covariance structure between the concentrations is also
taken into account, which is appropriate when the con-
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centrations are known to be strongly correlated with
each other.

Classical PCR (CPCR) starts by replacing the large
number of explanatory variables Xj by a small num-
ber of loading vectors, which correspond to the first
(classical) principal components of Xn,p . Then the re-
sponse variables Yj are regressed on these components
using least squares regression. It is thus a two-step pro-
cedure, which starts by computing scores ti for every
data point. Then the yi are regressed on the ti .

The robust PCR method proposed by Hubert and
Verboven (2003) combines robust PCA for high-
dimensional x-data with a robust multivariate regres-
sion technique such as MCD regression described in
Section 4. The robust scores ti obtained with ROBPCA
thus serve as the explanatory variables in the regression
model (10) or (17).

The RPCR method inherits the y-affine equivariance
[the second equation in (19)] from the MCD regres-
sion method. RPCR is also x-translation equivariant
and x-orthogonally equivariant, that is, the estimates
satisfy the third equation in (19) for any orthogonal
matrix A. These properties follow in a straightforward
way from the orthogonal equivariance of the ROBPCA
method. Robust PCR methods which are based on non-
equivariant PCA estimators, such as those proposed in
Pell (2000), are not x-equivariant.

An important issue in PCR is selecting the number
of principal components, for which several methods
have been proposed. A popular approach minimizes the
root mean squared error of cross-validation criterion

RMSECVk which, for one response variable (q = 1),
equals

RMSECVk =
√√√√1

n

n∑
i=1

(yi − ŷ−i,k)2(25)

with ŷ−i,k the predicted value for observation i, where
i was left out of the dataset when performing the PCR
method with k principal components. The goal of the
RMSECVk statistic is twofold. It yields an estimate of
the root mean squared prediction error E(y − ŷ)2 when
k components are used in the model, whereas the curve
of RMSECVk for k = 1, . . . , kmax is a popular graphi-
cal tool to choose the optimal number of components.

This RMSECVk statistic is, however, not suited at
contaminated datasets because it also includes the pre-
diction error of the outliers in (25). Therefore Hu-
bert and Verboven (2003) proposed a robust RMSECV
measure. These R-RMSECVk values were rather time
consuming, because for every choice of k they re-
quired the whole RPCR procedure to be performed n

times. Faster algorithms for cross-validation have re-
cently been developed (Engelen and Hubert, 2005).
They avoid the complete recomputation of resampling
methods such as the MCD when one observation is re-
moved from the dataset.

To illustrate RPCR we analyze the Biscuit Dough
dataset of Osborne et al. (1984), preprocessed as
in Hubert, Rousseeuw and Verboven (2002). This
dataset consists of 40 NIR spectra of biscuit dough
with measurements every 2 nanometers, from 1200

FIG. 13. Robust R-RMSECVk curve for the Biscuit Dough dataset.
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FIG. 14. Second loading vector and calibration vector of sucrose for the Biscuit Dough dataset, computed with (a) CPCR; (b) RPCR.

nm up to 2400 nm. The responses are the percent-
ages of four constituents in the biscuit dough: y1 =
fat, y2 = flour, y3 = sucrose and y4 = water. Because
there is a significant correlation among the responses,
a multivariate regression is performed. The robust
R-RMSECVk curve is plotted in Figure 13 and sug-
gests to select k = 2 components.

Differences between CPCR and RPCR show up in
the loading vectors and in the calibration vectors. Fig-
ure 14 shows the second loading vector and the second

calibration vector for y3 (sucrose). For instance, CPCR
and RPCR give quite different results between wave-
lengths 1390 and 1440 (the so-called C-H bend).

Next, we can construct outlier maps as in Sections 4
and 6.3. ROBPCA yields the PCA outlier map dis-
played in Figure 15(a). We see that there are no lever-
age points but there are some orthogonal outliers, the
largest being 23, 7 and 20. The result of the regression
step is shown in Figure 15(b). It plots the robust dis-
tances of the residuals (or the standardized residuals

FIG. 15. (a) PCA outlier map when applying RPCR to the Biscuit Dough dataset; (b) corresponding regression outlier map.
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if q = 1) versus the score distances. RPCR shows that
observation 21 has an extremely high residual distance.
Other vertical outliers are 23, 7, 20 and 24, whereas
there are a few borderline cases.

8. PARTIAL LEAST SQUARES REGRESSION

Partial least squares regression (PLSR) is similar
to PCR. Its goal is to estimate regression coefficients
in a linear model with a large number of x-variables
which are highly correlated. In the first step of PCR,
the scores were obtained by extracting the main in-
formation present in the x-variables by performing a
principal component analysis on them, without using
any information about the y-variables. In contrast, the
PLSR scores are computed by maximizing a covari-
ance criterion between the x- and y-variables. Hence,
this technique uses the responses already from the start.

More precisely, let X̃n,p and Ỹn,q denote the mean-
centered data matrices, with x̃i = xi − x̄ and ỹi = yi −
ȳ. The normalized PLS weight vectors ra and qa (with
‖ra‖ = ‖qa‖ = 1) are then defined as the vectors that
maximize

cov(Ỹqa, X̃ra) = q′
a

Ỹ′X̃
n − 1

ra = q′
a�̂yxra(26)

for each a = 1, . . . , k, where �̂
′
yx = �̂xy = X̃′Ỹ

n−1 is the
empirical cross-covariance matrix between the x- and
the y-variables. The elements of the scores t̃i are then
defined as linear combinations of the mean-centered
data: t̃ia = x̃′

ira , or equivalently T̃n,k = X̃n,pRp,k

with Rp,k = (r1, . . . , rk).
The computation of the PLS weight vectors can

be performed using the SIMPLS algorithm (de Jong,
1993), which is described in Appendix A.4.

Hubert and Vanden Branden (2003) developed
the robust method RSIMPLS. It starts by applying
ROBPCA on the x- and y-variables in order to replace
�̂xy and �̂x by robust estimates, and then proceeds
analogously to the SIMPLS algorithm. Similarly to
RPCR, a robust regression method (ROBPCA regres-
sion) is performed in the second stage. Vanden Bran-
den and Hubert (2004) proved that for low-dimensional
data the RSIMPLS approach yields bounded influence
functions for the weight vectors ra and qa and for the
regression estimates. Also the breakdown value is in-
herited from the MCD estimator.

The robustness of RSIMPLS is illustrated on the
octane dataset (Esbensen, Schönkopf and Midtgaard,
1994), consisting of NIR absorbance spectra over p =
226 wavelengths ranging from 1102 nm to 1552 nm

with measurements every two nanometers. For each
of the n = 39 production gasoline samples the octane
number y was measured, so q = 1. It is known that the
octane dataset contains six outliers (25, 26, 36–39) to
which alcohol was added. From the RMSECV values
(Engelen et al., 2004) it follows that k = 2 components
should be retained.

The SIMPLS outlier map is Figure 16(a). We see that
the classical analysis only detects the outlying spec-
trum 26, which does not even stick out much above the
border line. The robust score outlier map is displayed
in Figure 16(b). Here we immediately spot the six sam-
ples with added alcohol. The robust regression outlier
map in Figure 16(d) shows that the outliers are good
leverage points, whereas SIMPLS again only reveals
spectrum 26.

Note that canonical correlation analysis tries to max-
imize the correlation between linear combinations of
the x- and the y-variables, instead of the covariance
in (26). Robust methods for canonical correlation are
presented in Croux and Dehon (2002).

9. SOME OTHER MULTIVARIATE FRAMEWORKS

Apart from the frameworks covered in the previ-
ous sections, there is also work in other multivari-
ate settings. These methods cannot be described in
detail here due to lack of space, but here are some
pointers to the literature. In the framework of multi-
variate location and scatter, an MCD-based alternative
to the Hotelling test was provided by Willems et al.
(2002) and a technique based on robust distances was
applied to the control of electrical power systems in
Mili et al. (1996). High-breakdown regression tech-
niques were extended to computer vision settings (e.g.,
Meer et al., 1991; Stewart, 1995). For generalized lin-
ear models, robust approaches have been proposed by
Cantoni and Ronchetti (2001), Künsch, Stefanski and
Carroll (1989), Markatou, Basu and Lindsay (1998),
Müller and Neykov (2003) and Rousseeuw and Christ-
mann (2003). A high-breakdown method for mixed lin-
ear models has been proposed by Copt and Victoria-
Feser (2006). Robust nonlinear regression methods
have been studied by Stromberg (1993), Stromberg and
Ruppert (1992) and Mizera (2002), who considered
a depth-based approach. Boente, Pires and Rodrigues
(2002) introduced robust estimators for common prin-
cipal components. Robust methods were proposed for
factor analysis (Pison et al., 2003) and independent
component analysis (Brys, Hubert and Rousseeuw,
2005). Croux et al. (2003) fitted general multiplicative
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FIG. 16. (a) Score outlier map of the octane dataset using the SIMPLS results; (b) based on RSIMPLS; (c) regression outlier map based on
SIMPLS; (d) based on RSIMPLS.

models such as FANOVA. Robust clustering methods
have been investigated by Kaufman and Rousseeuw
(1990), Cuesta-Albertos, Gordaliza and Matrán (1997)
and Hardin and Rocke (2004). Robustness in time se-
ries analysis and econometrics has been studied by
Martin and Yohai (1986), Bustos and Yohai (1986),
Muler and Yohai (2002), Franses, Kloek and Lucas
(1999), van Dijk, Franses and Lucas (1999a, 1999b)
and Lucas and Franses (1998). Of course, this short list
is far from complete.

10. AVAILABILITY

Stand-alone programs carrying out FAST-MCD and
FAST-LTS can be downloaded from the website http:
//www.agoras.ua.ac.be, as well as Matlab versions.
The FAST-MCD algorithm is available in the pack-
age S-PLUS (as the built-in function cov.mcd), in R
(as part of the packages rrcov, robust and robustbase),
and in SAS/IML Version 7. It is also included in SAS
Version 9 (in PROC ROBUSTREG). These packages
all provide the one-step weighted MCD estimates. The

http://www.agoras.ua.ac.be
http://www.agoras.ua.ac.be
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LTS is available in S-PLUS as the built-in function
ltsreg, which uses a slower algorithm and has a low
default breakdown value. The FAST-LTS algorithm is
available in R (as part of rrcov and robustbase) and in
SAS/IML Version 7. In SAS Version 9 it is incorpo-
rated in PROC ROBUSTREG.

Matlab functions for most of the procedures men-
tioned in this paper (MCD, LTS, MCD-regression,
RQDA, ROBPCA, RPCR and RSIMPLS) are part
of LIBRA, a Matlab LIBrary for Robust Analysis
(Verboven and Hubert, 2005) which can be down-
loaded from http://wis.kuleuven.be/stat/robust. Several
of these functions are also available in the PLS toolbox
of Eigenvector Research (www.eigenvector.com).

APPENDIX

A.1 The FAST-MCD Algorithm

Rousseeuw and Van Driessen (1999) developed
the FAST-MCD algorithm to efficiently compute the
MCD. The key component is the C-step:

THEOREM. Take X = {x1, . . . ,xn} and let H1 ⊂
{1, . . . , n} be an h-subset, that is, |H1| = h. Put μ̂1 :=
1
h

∑
i∈H1

xi and �̂1 := 1
h

∑
i∈H1

(xi − μ̂1)(xi − μ̂1)
′. If

det(�̂1) �= 0, define the relative distances

d1(i) :=
√

(xi − μ̂1)
′�̂−1

1 (xi − μ̂1)

for i = 1, . . . , n.

Now take H2 such that {d1(i); i ∈ H2} := {(d1)1:n, . . . ,
(d1)h:n} where (d1)1:n ≤ (d1)2:n ≤ · · · ≤ (d1)n:n are the
ordered distances, and compute μ̂2 and �̂2 based on
H2. Then

det(�̂2) ≤ det(�̂1)

with equality if and only if μ̂2 = μ̂1 and �̂2 = �̂1.

If det(�̂1) > 0, the C-step yields �̂2 with det(�̂2) ≤
det(�̂1). Note that the C stands for “concentration”
since �̂2 is more concentrated (has a lower determi-
nant) than �̂1. The condition det(�̂1) �= 0 in the C-step
theorem is no real restriction because if det(�̂1) = 0
we already have the minimal objective value.

In the algorithm the C-step works as follows. Given
(μ̂old, �̂old):

1. compute the distances dold(i) for i = 1, . . . , n

2. sort these distances, which yields a permutation π

for which dold(π(1)) ≤ dold(π(2)) ≤ · · · ≤
dold(π(n))

3. put Hnew := {π(1),π(2), . . . , π(h)}
4. compute μ̂new := ave(Hnew) and �̂new :=

cov(Hnew).

For a fixed number of dimensions p, the C-step takes
only O(n) time [because Hnew can be determined in
O(n) operations without fully sorting all the dold(i) dis-
tances].

C-steps can be iterated until det(�̂new) = 0 or
det(�̂new) = det(�̂old). The sequence of determinants
obtained in this way must converge in a finite number
of steps because there are only finitely many h-subsets.
However, there is no guarantee that the final value
det(�̂new) of the iteration process is the global min-
imum of the MCD objective function. Therefore an
approximate MCD solution can be obtained by tak-
ing many initial choices of H1, applying C-steps to
each and keeping the solution with lowest determi-
nant. For more discussion on resampling algorithms,
see Hawkins and Olive (2002).

To construct an initial subset H1, a random (p + 1)-
subset J is drawn and μ̂0 := ave(J ) and �̂0 := cov(J )

are computed. [If det(�̂0) = 0, then J can be ex-
tended by adding observations until det(�̂0) > 0.]
Then, for i = 1, . . . , n the distances d2

0 (i) := (xi −
μ̂0)

′�̂−1
0 (Xi − μ̂0) are computed and sorted into

d0(π(1)) ≤ · · · ≤ d0(π(n)), which leads to H1 :=
{π(1), . . . , π(h)}. This method yields better initial sub-
sets than drawing random h-subsets directly, because
the probability of drawing an outlier-free subset is
much higher when drawing (p + 1)-subsets than with
h-subsets.

The FAST-MCD algorithm contains several compu-
tational improvements. Since each C-step involves the
calculation of a covariance matrix, its determinant and
the corresponding distances, using fewer C-steps con-
siderably improves the speed of the algorithm. It turns
out that after two C-steps, many runs that will lead
to the global minimum already have a considerably
smaller determinant. Therefore, the number of C-steps
is reduced by applying only two C-steps on each ini-
tial subset and selecting the 10 different subsets with
lowest determinants. Only for these 10 subsets, further
C-steps are taken until convergence.

This procedure is very fast for small sample sizes n,
but when n grows the computation time increases due
to the n distances that need to be calculated in each
C-step. For large n FAST-MCD uses a partitioning of
the dataset, which avoids doing all the calculations in
the entire data. In any case, let μ̂opt and �̂opt denote the

http://wis.kuleuven.be/stat/robust
www.eigenvector.com


ROBUST MULTIVARIATE STATISTICS 115

mean and covariance matrix of the h-subset with low-
est covariance determinant. Then the algorithm returns

μ̂MCD = μ̂opt and �̂MCD = ch,n�̂opt,

where ch,n is the product of a consistency factor and
a finite-sample correction factor (Pison, Van Aelst and
Willems, 2002). Note that the FAST-MCD algorithm is
itself affine equivariant.

A.2 The FAST-LTS Algorithm

The basic component of the LTS algorithm is again
the C-step, which now says that starting from an initial
h-subset H1 or an initial fit θ̂1, we can construct a new
h-subset H2 by taking the h observations with small-
est absolute residuals |ri(θ̂1)|. Applying LS to H2 then
yields a new fit θ̂2 which is guaranteed to have a lower
objective function (11).

To construct the initial h-subsets the algorithm starts
from randomly drawn (p + 1)-subsets. For each (p +
1)-subset the coefficients θ0 of the hyperplane through
the points in the subset are calculated. [If a (p + 1)-
subset does not define a unique hyperplane, then it is
extended by adding more observations until it does.]
The corresponding initial h-subset is then formed by
the h points closest to the hyperplane (i.e., with small-
est residuals). As was the case for the MCD, also here
this approach yields much better initial fits than would
be the case if random h-subsets were drawn directly.

Let θ̂opt denote the least squares fit of the optimal h-
subset found by the whole resampling procedure; then
FAST-LTS returns

θ̂LTS = θ̂opt

and

σ̂LTS = ch,n

√√√√ 1

h

h∑
i=1

(r(θ̂opt)2)i:n.

A.3 The ROBPCA Algorithm

First, the data are preprocessed by reducing their
data space to the subspace spanned by the n observa-
tions. This is done by a singular value decomposition
of Xn,p . As a result, the data are represented using at
most n − 1 = rank(X̃n,p) variables without loss of in-
formation.

In the second step of the ROBPCA algorithm, a mea-
sure of outlyingness is computed for each data point.
This is obtained by projecting the high-dimensional
data points on many univariate directions. On every di-
rection the univariate MCD estimator of location and

scale is computed, and for every data point its stan-
dardized distance to that center is measured. Finally
for each data point its largest distance over all the di-
rections is considered. The h data points with smallest
outlyingness are kept, and from the covariance matrix
�h of this h-subset we select the number k of principal
components to retain.

The last stage of ROBPCA consists of projecting the
data points onto the k-dimensional subspace spanned
by the largest eigenvectors of �h and of computing
their center and shape using the weighted MCD esti-
mator. The eigenvectors of this scatter matrix then de-
termine the robust principal components, and the loca-
tion estimate serves as a robust center.

A.4 The SIMPLS Algorithm

The solution of the maximization problem (26) is
found by taking r1 and q1 as the first left and right
singular eigenvectors of �̂xy . The other PLSR weight
vectors ra and qa for a = 2, . . . , k are obtained by im-
posing an orthogonality constraint to the elements of
the scores. If we require that

∑n
i=1 tiatib = 0 for a �= b,

a deflation of the cross-covariance matrix �̂xy provides
the solutions for the other PLSR weight vectors. This
deflation is carried out by first calculating the x-loading
pa = �̂xra/(r′

a�̂xra) with �̂x the empirical variance–
covariance matrix of the x-variables. Next an ortho-
normal base {v1, . . . ,va} of {p1, . . . ,pa} is constructed
and �̂xy is deflated as

�̂
a

xy = �̂
a−1
xy − va(v′

a�̂
a−1
xy )

with �̂
1
xy = �̂xy . In general the PLSR weight vectors

ra and qa are obtained as the left and right singular
vectors of �̂

a

xy .
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