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Permutation Methods: A Basis for
Exact Inference
Michael D. Ernst

Abstract. The use of permutation methods for exact inference dates back
to Fisher in 1935. Since then, the practicality of such methods has increased
steadily with computing power. They can now easily be employed in many
situations without concern for computing difficulties. We discuss the reason-
ing behind these methods and describe situations when they are exact and
distribution-free. We illustrate their use in several examples.
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1. INTRODUCTION

Textbooks commonly used for a first course in non-
parametrics have rarely included permutation meth-
ods in any depth. The books by Bradley (1968) and
Lehmann (1975) contain excellent introductions to the
ideas of permutation methods, but both are limited by
the computing power of the day and the former is no
longer in print. A more recent book by Higgins (2004)
incorporates permutation methods nicely.

The basic idea behind permutation methods is to
generate a reference distribution by recalculating a sta-
tistic for many permutations of the data. Fisher (1936)
wrote that “the statistician does not carry out this very
simple and very tedious process, but his conclusions
have no justification beyond the fact that they agree
with those which could have been arrived at by this
elementary method.” Today, with fast computers, there
is little reason for the statistician not to carry out this
“very tedious process.”

The probability basis for statistical inference in these
procedures depends on the situation, but can largely
be grouped into two probability models: where avail-
able subjects are randomly assigned to treatments and
where subjects are randomly sampled from some pop-
ulation(s). Lehmann (1975) called the former situation
the randomization modeland the latter thepopulation
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model. Edgington (1995) pointed out that the proce-
dures used under the randomization model are com-
monly called randomization testsor randomization
intervals, while the same procedures used under the
population model are calledpermutation testsor per-
mutation intervals. Unfortunately, this distinction is
often overlooked, and the terms “randomization” and
“permutation” are often used interchangeably. While
the distinction in terminology may not be that impor-
tant, understanding the underlying probability model
is important. In addition to the terminology for each
probability model, we also use the term “permutation
methods” to generically refer to the methods under ei-
ther model, as we have in the title of this paper.

In Section 2, we describe the idea of exact inference
and argue why it is desirable. In Sections 3 and 4, we
describe the rationale behind permutation methods un-
der the randomization model and the population model,
and show several examples of their use. In Section 5
we briefly discuss more complicated designs and give
an example.

2. EXACT INFERENCE

The possibility of making an error is inherent to
any statistical inference procedure. These procedures
are generally constructed to control and quantify the
probability of an error through significance levels and
confidence coefficients. Approximate inference meth-
ods succeed at controlling errors with varying degrees
of success. Exact inference methods guarantee control
of the relevant errors. These methods are at their most
useful when they can control the errors under relatively
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broad assumptions. We illustrate this idea with the one-
sample Student’st-test and interval, which are exact
only under very restrictive assumptions.

2.1 Hypothesis Tests

Hypothesis tests involve Type I errors (rejecting a
true null hypothesis) and Type II errors (failing to re-
ject a false null hypothesis). We try to control the prob-
ability of a Type I error by choosing an appropriate
significance level. What is important to understand is
that the probability of a Type I error does not necessar-
ily equal the chosen significance level. For example,
suppose thatY1, Y2, . . . , Yn are a random sample from
a normal distribution with meanµ and we wish to test
the null hypothesisH0 :µ = µ0 versus the alternative
hypothesisH1 :µ �= µ0. If we use a significance level
of α, we rejectH0 when

|T | =
∣∣∣∣ Ȳ − µ0

SY /
√

n

∣∣∣∣ ≥ t

(
1− α

2
, n − 1

)
,

whereȲ = ∑n
i=1 Yi/n, S2

Y = ∑n
i=1(Yi − Ȳ )2/(n − 1)

andt (1 − α/2, n − 1) is the 1− α/2 percentile of the
t distribution with n − 1 degrees of freedom. Since
T has at distribution withn − 1 degrees of freedom
underH0, it follows that

P(Type I error) = P
(|T | ≥ t (1−α/2, n−1)|H0

) = α.

In other words, the probability of a Type I error is ex-
actly equal to the significance level we have chosen.
However, if the random sample does not come from
a normal distribution, thenT does not have at distri-
bution andP(Type I error) can differ fromα, some-
times substantially, and so we really do not have as
much control ofP(Type I error) as the chosen value
of α leads us to believe. A hypothesis test for which
P(Type I error) = α is called anexact test. The one-
samplet-test is guaranteed to be an exact test only
when the data come from a normal distribution.

2.2 Confidence Intervals

For confidence intervals, we specify the confidence
coefficient 1− α with the desire that it accurately
reflect the true coverage probability. In our previous
example, the coverage probability of the one-sample
t interval is

P

(
Ȳ − t
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2
, n − 1

)
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≤ µ ≤ Ȳ + t
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2
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SY√

n

)
= 1− α

only when the data come from a normal distribution. If
the data do not come from a normal distribution, then
the true coverage probability can be different from the
chosen confidence coefficient. A confidence interval is
called anexact confidence intervalif the true coverage
probability is equal to the confidence coefficient. The
one-samplet interval is guaranteed to be exact only
when the data come from a normal distribution.

3. THE RANDOMIZATION MODEL

The sole basis for inference in the randomization
model is the random assignment of available subjects
to treatment groups. It is not necessary to have random
sampling from some population with a specified dis-
tribution. Strictly speaking, normal theory methods are
not appropriate since their distribution theory depends
on random sampling. The consequence of this is that
any inferences in the randomization model are limited
to the subjects in the study.

3.1 The Randomization Distribution

Suppose that a new treatment for postsurgical re-
covery is being compared to a standard treatment by
observing the recovery times (in days) of the patients
on each treatment. Of theN subjects available for the
study,n are randomly assigned to receive the new treat-
ment, while the remainingm = N −n receive the stan-
dard treatment. The null and alternative hypotheses of
interest are

H0: There is no difference between the treatments,

H1: The new treatment decreases recovery times.

Denote the recovery times for the standard and new
treatments byX1,X2, . . . ,Xm andY1, Y2, . . . , Yn, re-
spectively. To measure the difference between the treat-
ments, we might calculate the difference in mean
recovery times between the two groups,T = Ȳ − X̄.
We wish to determine if this difference is extreme
enough in some reference distribution to suggest that
the new treatment decreases recovery times.

To illustrate, consider the first row of Table 1, which
displays the recovery times forn = 4 subjects on the
new treatment andm = 3 subjects on the standard
treatment. The difference in their mean recovery times
is Ȳ − X̄ = −9 days, indicating a possible decrease in
recovery times.

If the null hypothesis is true and there is no differ-
ence between the treatments, then the recovery time
for each subject will be the sameregardless of which
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TABLE 1
All possible randomizations of seven recovery times(days) to two treatment groups of sizes

n = 4 andm = 3

Randomization

New Standard Difference Sum of Sum of Difference
No. treatment treatment in means new standard in medians

� 1 19 22 25 26 23 33 40 −9.00 92 96 −9.5
2 22 23 25 26 19 33 40 −6.67 96 92 −9.0
3 22 33 25 26 19 23 40 −0.83 106 82 2.5
4 22 25 26 40 19 23 33 3.25 113 75 2.5
5 19 23 25 26 22 33 40 −8.42 93 95 −9.0
6 19 25 26 33 22 23 40 −2.58 103 85 2.5
7 19 25 26 40 22 23 33 1.50 110 78 2.5
8 19 22 23 26 25 33 40 −10.17 90 98 −10.5
9 19 22 26 33 23 25 40 −4.33 100 88 −1.0

10 19 22 26 40 23 25 33 −0.25 107 81 −1.0
11 19 22 23 25 26 33 40 −10.75 89 99 −10.5
12 19 22 25 33 23 26 40 −4.92 99 89 −2.5
13 19 22 25 40 23 26 33 −0.83 106 82 −2.5
14 23 25 26 33 19 22 40 −0.25 107 81 3.5
15 22 23 26 33 19 25 40 −2.00 104 84 −0.5
16 22 23 25 33 19 26 40 −2.58 103 85 −2.0
17 19 23 26 33 22 25 40 −3.75 101 87 −0.5
18 19 23 25 33 22 26 40 −4.33 100 88 −2.0
19 19 22 23 33 25 26 40 −6.08 97 91 −3.5
20 23 25 26 40 19 22 33 3.83 114 74 3.5
21 22 23 26 40 19 25 33 2.08 111 77 −0.5
22 22 23 25 40 19 26 33 1.50 110 78 −2.0
23 19 23 26 40 22 25 33 0.33 108 80 −0.5
24 19 23 25 40 22 26 33 −0.25 107 81 −2.0
25 19 22 23 40 25 26 33 −2.00 104 84 −3.5
26 25 26 33 40 19 22 23 9.67 124 64 7.5
27 22 26 33 40 19 23 25 7.92 121 67 6.5
28 22 25 33 40 19 23 26 7.33 120 68 6.0
29 19 26 33 40 22 23 25 6.17 118 70 6.5
30 19 25 33 40 22 23 26 5.58 117 71 6.0
31 19 22 33 40 23 25 26 3.83 114 74 2.5
32 23 26 33 40 19 22 25 8.50 122 66 7.5
33 23 25 33 40 19 22 26 7.92 121 67 7.0
34 22 23 33 40 19 25 26 6.17 118 70 3.0
35 19 23 33 40 22 25 26 4.42 115 73 3.0

treatment is received. For example, the subject in Ta-
ble 1 who recovered in 19 days on the new treatment
would have recovered in the same amount of time on
the standard treatment if there is no treatment effect.

So the recovery times are not random (because the
subjects were not chosen randomly); only their assign-
ment to the treatments is random. Therefore, the ba-
sis for building a probability distribution for̄Y − X̄

comes from the randomization of the available sub-
jects to the treatments. This randomization results in
n subjects getting the new treatment andm subjects
getting the standard treatment, but this is just one of

(N
n

)
equally likely randomizations that could have oc-

curred. A probability distribution for̄Y − X̄, called the
randomization distribution, can be constructed by cal-
culatingȲ −X̄ for each of the possible randomizations.
Table 1 lists all

(7
4

) = 35 possible randomizations of
the seven observed recovery times into groups of sizes
n = 4 andm = 3, and the difference in means for each
randomization. The probability underH0 of any one
of these randomizations is 1/35. Figure 1 displays the
randomization distribution of the difference in means,
with the observed difference marked with a solid trian-
gle (�).
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FIG. 1. The randomization distribution of the difference in means
from Table1.

3.2 The Randomization p Value

Thep value of therandomization testof H0 can be
calculated as the probability of getting a test statistic
as extreme as, or more extreme than (in favor ofH1),
the observed test statistict∗. Since all of the

(N
n

)
ran-

domizations are equally likely underH0, the p value
is

p = P(T ≤ t∗|H0) =
∑(N

n)
i=1 I (ti ≤ t∗)(N

n

) ,

whereti is the value of the test statisticT = Ȳ − X̄ for
theith randomization andI (·) is the indicator function.
In Table 1, the observed test statistic ist∗ = −9, so
thep value isp = P(Ȳ − X̄ ≤ −9) = 3/35≈ 0.0857.
This is represented in Figure 2 by the darker portion of
the distribution. There is only moderate evidence of a
treatment effect.

It is clear from the discreteness of the randomiza-
tion distribution that thep value must be a multiple of
1/

(N
n

)
, although not every multiple is possible. In our

example, we can see from Figure 1 that the achievable
p values arek/35, wherek = 1, 2, 3, 4, 5, 6, 7, 9, 10,
12, 14, 16, 19, 20, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34,
35. If we choose a significance level ofα = k/

(N
n

)
that

FIG. 2. The randomization distribution of the difference in medi-
ans from Table1.

is one of the achievablep values, then

P(Type I error) = P(p ≤ α|H0)

= P

( (N
n)∑

i=1

I (ti ≤ t∗) ≤ k
∣∣∣H0

)

= k(N
n

) = α.

That is, the randomization test ofH0 is an exact test.
If α is not chosen as one of the achievablep values,
but k/

(N
n

)
is the largest achievablep value less thanα,

thenP(Type I error) = k/
(N
n

)
< α and the randomiza-

tion test is conservative. Either way, the test is guaran-
teed to control the probability of a Type I error under
very minimal conditions: randomization of the subjects
to treatments.

3.3 Other Test Statistics

We could, of course, choose a test statistic other than
T = Ȳ − X̄ to measure the effectiveness of the new
treatment, such as the difference in group medians or
trimmed means. The randomization distribution of the
difference in group medians is shown in Figure 2 [with
the observed value marked with a solid triangle (�)]
and results in the samep value of 3/35.

We could also use the sum of the responses in one of
the treatment groups as a test statistic. Small values of
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the new treatment sum or large values of the standard
treatment sum would indicate improvement by the new
treatment. These are shown in Table 1. By rewriting
Ȳ − X̄ as

Ȳ − X̄ = m + n

mn

n∑
j=1

Yj − 1

m

(
m∑

i=1

Xi +
n∑

j=1

Yj

)

and noting that
∑m

i=1 Xi + ∑n
j=1 Yj is fixed over all(N

n

)
randomizations, it can be seen thatȲ − X̄ is a

monotone function of
∑n

j=1 Yj and the ordering of the(N
n

)
test statistics is preserved. Therefore,

∑n
j=1 Yj is

an equivalent test statistic tōY −X̄. Similarly,
∑m

i=1 Xi

is also an equivalent test statistic. It can also be shown
that the two-sample pooledt statistic is a monotone
function ofȲ − X̄ and, therefore, is another equivalent
test statistic.

Because of their equivalence, the sum of the re-
sponses from one treatment group is often used rather
than thet statistic or the difference in means since it is
computationally more efficient. This becomes impor-
tant since the number of randomizations

(N
n

)
quickly

becomes large asm andn increase.
Another test statistic that could be used is the sum

of the ranks of the responses in one group after the re-
sponses from both groups are ranked from 1 toN . Of
course, this is just the Wilcoxon rank-sum test. This il-
lustrates how rank tests are just one type of permutation
method.

3.4 Estimation of the Treatment Effect

If we are willing to assume that the new treat-
ment has a constant additive effect above and beyond
the standard treatment, we can estimate this treatment
effect by inverting the randomization test. Suppose
that the new treatment increases the recovery times
by �. Then if we shift the responses in the new treat-
ment group by�, these shifted responses,Y1 − �,

Y2 −�, . . . , Yn −�, should be similar in magnitude to
the standard treatment responses,X1,X2, . . . ,Xm, and
the randomization test on these two sets of responses
should not rejectH0.

An interval estimate of� can be constructed by con-
sidering all values of� for which the randomization
test does not rejectH0. For our one-sided alternative
hypothesis, this will be a one-sided confidence inter-
val. Let T� be the test statistic calculated using the
new treatment responses that are shifted by� and let
t∗� be its observed value. Furthermore, letp1(�) =
P(T� ≤ t∗�) and p2(�) = P(T� ≥ t∗�) be the areas

in the left and right tails of the randomization distrib-
ution of T�, respectively, and let�L = minp2(�)>α �

and�U = maxp1(�)>α �. In other words,�L and�U

are the amounts of shift that would make the right and
left tail p values forT� approximately equal toα.
Then (−∞,�U) and (�L,∞) are each one-sided
(1− α)100% randomization confidence intervals
for �, and (�L,�U) is a two-sided(1 − 2α)100%
randomization confidence interval for�.

If α is chosen as one of the achievablep values in the
randomization distribution ofT , then these confidence
intervals are exact. Otherwise, they are conservative in-
tervals where the true coverage probability is at least as
large as the chosen confidence coefficient.

Finding the endpoints of these intervals involves a
tedious and laborious search that requires the recompu-
tation of the randomization distribution ofT� for each
value of� that is tried. Garthwaite (1996) described
an efficient method for constructing confidence inter-
vals from randomization tests, but this method is not
implemented in any commercial software.

In our example, a(1 − 2/35)100%≈ 94.29% one-
sided confidence interval for the effect of the new treat-
ment that is consistent with our one-sided alternative
hypothesis is(−∞,2). In other words, we are about
94.29% confident that the new treatment either de-
creases recovery time or increases it by at most 2 days.
Notice that this interval includes zero and therefore
agrees with the results of the randomization test where
thep value wasp = 3/35> α.

4. THE POPULATION MODEL

Inferences in the population model are based on ran-
dom samples from populations. Random sampling is
generally more difficult to accomplish than random as-
signment of subjects, but the advantage is that the con-
clusions can be generalized to the populations.

4.1 Permutation Tests and Intervals

Consider the situation in which we have two inde-
pendent random samples from two populations. Let
X1,X2, . . . ,Xm be a random sample from a population
with c.d.f. F and letY1, Y2, . . . , Yn be a random sam-
ple from a second population with c.d.f.G. We wish to
test the hypotheses

H0 :F = G,

H1 :F �= G.

The mechanics of constructing apermutation testfor
the population model are identical to those of the ran-
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domization test in Section 3, although the reasoning
behind it, first discussed by Pitman (1937a), is differ-
ent. If H0 is true, then allN = m + n of the random
variables could have reasonably come from either of
the identical populations, and so the sample we ob-
tained could have been any one of the

(N
n

)
possible di-

visions of these random variables into two groups of
sizesm andn. Conditional on the observed values of
the random variables, each of the

(N
n

)
divisions of these

random variables is equally likely. We calculate an ap-
propriate test statisticT for each of these rearrange-
ments of the observed values to obtain thepermutation
distributionof T , which is used to calculate ap value
for the test.

The permutation test in the population model is a
conditional test since it generates the permutation dis-
tribution conditional on the observed values of the
random variables (unlike the randomization model
where the observed values were not random, only their
treatment assignments). The test is also conditionally
distribution-free since, conditional on the observed
data, the permutation distribution ofT does not de-
pend on the population distributionsF andG. Finally,
the permutation test is conditionally exact for the same
reasons that the randomization test is exact, but it is
also unconditionally exact since the probability of a
Type I error is controlled for all possible samples from
F andG.

As an example, consider the data in Table 2, which
displays measurements on the wing length and an-
tennae length of two species of small flies that be-
long to an insect family termed “biting midges” that
were discovered in the jungles of Central and South

TABLE 2
Wing length(WL) and antennae length(AL), in

millimeters, of 9 Amerohelea fasciata(Af )
midges and6 Amerohelea pseudofasciata(Apf)

midges

Af Apf

WL AL WL AL

1.72 1.24 1.78 1.14
1.64 1.38 1.86 1.20
1.74 1.36 1.96 1.30
1.70 1.40 2.00 1.26
1.82 1.38 2.00 1.28
1.82 1.48 1.96 1.18
1.90 1.38
1.82 1.54
2.08 1.56

America. These very similar species were discovered
by biologists Grogan and Wirth (1981), who dubbed
them A. fasciata(Af ) and A. pseudofasciata(Apf ).
The biologists took detailed measurements of impor-
tant morphological features of the midges in an attempt
to distinguish between the two species.

If we consider the data in Table 2 as random sam-
ples of sizes 9 and 6 from the two populations of
midges, then constructing the permutation distribution
for either measurement will consist of calculating the
test statistic (T = sum of the measurements of the Af
midges) for all

(15
6

) = 5005 possible divisions of the
measurements into two samples of sizes 9 and 6. Fig-
ures 3 and 4 show the permutation distributions for the
wing and antennae measurements, respectively, with
the observed value of the test statistic,t∗, marked with
a solid triangle (�).

If we are using a two-sided alternative, the question
arises about how to calculate thep value. These distrib-
utions are not symmetric and so there is no justification
for doubling the probability in one tail. If we let

t̄ = 1(N
n

)
(N

n)∑
i=1

ti

be the mean of the permutation distribution, then we

FIG. 3. The permutation distribution of the sum of wing lengths
of the Af midges in Table2.
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FIG. 4. The permutation distribution of the sum of antennae
lengths of the Af midges in Table2.

can define the two-sidedp value as

p = P
(|T − t̄ | ≥ |t∗ − t̄ |∣∣H0

)

= 1(N
n

)
(N

n)∑
i=1

I (|ti − t̄ | ≥ |t∗ − t̄ |).

This is the probability of getting a test statistic as far, or
farther, from the mean of the permutation distribution
as the observed one. In Figures 3 and 4,t̄ is marked
with a plus (+) and the darker portions of the distribu-
tion represent thep value. For the wing measurements,
the p value is 0.0719, and for the antennae measure-
ments, it is 0.0022. These species differ significantly
in mean antennae length and marginally in mean wing
length.

If we can assume that the distributionsF and G

differ by a shift in location, that is,G(x) =
F(x − �), then we can estimate� with apermutation
confidence intervalby inverting the permutation test
in the same manner as in Section 3.4. A 94.90% con-
fidence interval for the mean difference (Af− Apf )
in wing length is(−0.250,0.010) and a 94.94% con-
fidence interval for the mean difference in antennae
length is (0.087,0.286). Notice that even with these
rather small sample sizes, the discreteness of the per-
mutation distribution has diminished enough to get
achievable values of the confidence coefficient that are
quite close to rather arbitrary values such as 95%.

4.2 Monte Carlo Sampling

Computation of the permutation distribution of a
test statistic involves careful enumeration of all

(N
n

)
divisions of the observations. This poses two compu-
tational challenges. First, the sheer number of calcu-
lations required becomes very large as the samples
become only moderate in size. There are over 155 mil-
lion ways to divide 30 observations into two groups
of size 15, and over 5.5 trillion ways to divide them
into three groups of size 10. Second, enumerating each
unique division of the data is not easily programmed
and requires specialized software. The distributions in
Figures 3 and 4 were produced with StatXact (Cytel
Software Corporation, 2003), which uses efficient al-
gorithms to calculate the permutation distribution of a
variety of test statistics in many situations.

One easy and very practical solution to both these
problems is to use Monte Carlo sampling from the
permutation distribution to estimate the exactp value.
Since thep value is simply the proportion of test statis-
tic as extreme or more extreme than the observed value,
we can naturally estimate this by randomly choosing
test statistics from the permutation distribution and cal-
culating the sample proportion that are as extreme or
more extreme than the observed value. This is easily
accomplished by repeatedly and randomly dividing the
N observations into groups of sizem andn and cal-
culating the test statistic. A few thousand test statistics
from the permutation distribution usually are sufficient
to get an accurate estimate of the exactp value and
sampling can be done with or without replacement (al-
though with replacement is much easier). IfM test sta-
tistics, ti , i = 1, . . . ,M , are randomly sampled from
the permutation distribution, a one-sided Monte Carlo
p value for a test that rejects for large values oft is

p̂ = 1+ ∑M
i=1 I (ti ≥ t∗)
M + 1

.

Including the observed valuet∗, there are a total of
M + 1 test statistics. Since the observed value will
always be “as extreme” as itself, the Monte Carlo
p value will be no smaller than 1/(M + 1). This is
consistent with the exactp value, which must be at
least 1/

(N
n

)
. The idea of sampling from the permuta-

tion distribution was first proposed by Dwass (1957).
The test remains exact and conditionally distribution-
free, the only penalty being a small loss of efficiency.
Jöckel (1986) showed that this loss of efficiency de-
creases asM increases and he gave a lower bound for
the loss of efficiency as a function ofM .
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To illustrate, consider the data in Table 2 again. If we
consider the two measurements on each midge, wing
length and antennae length, as a bivariate observation,
then we have two samples of vectors,X1, . . . ,X9, and
Y1, . . . ,Y6. We could test whether the mean vectors
of the two groups differ significantly, rather than doing
individual tests for wing length and antennae length.
One measure of the difference in mean vectors is the
two-sample HotellingT 2 statistic

T 2 = (X̄ − Ȳ)′
[

SX

9
+ SY

6

]−1

(X̄ − Ȳ),

where X̄ and Ȳ are the sample mean vectors and
SX and SY are the sample covariance matrices.
StatXact does not currently calculateT 2, so we will use
Monte Carlo sampling. This can be programmed eas-
ily in many software packages and was done here in R
(Ihaka and Gentleman, 1996). We repeatedly divide the
15 bivariate vectors randomly into groups of 9 and 6
and calculateT 2. Figure 5 shows a histogram of a ran-
dom sample ofM = 999 values ofT 2 from its permu-
tation distribution. The observed value ofT 2 = 72.4 is
larger than any of theseM = 999 values, so the Monte
Carlop value isp̂ = 1/(999+ 1) = 0.001.

Of coursep̂ will vary depending on the Monte Carlo
sample. It is simply the proportion of successes in
M + 1 independent trials where the true probability of

FIG. 5. A histogram of a random sample ofM = 999 test sta-
tistics from the permutation distribution of Hotelling’s T 2 for the
data in Table2.

success isp. Therefore,p̂ is an unbiased estimator of
the exactp value and we can use it to construct a con-
fidence interval forp, either with a large sample ap-
proximation or directly from the binomial distribution.
A 99.9% confidence interval for the exactp value for
Hotelling’sT 2 based on the Monte Carlo results above
is (0.0000005,0.0099538), which was calculated di-
rectly from the binomial distribution. Clearly, there is
a significant difference in the mean vectors of wing and
antennae measurements for the Af and Apf midges. If
the confidence interval for the exactp value had been
more ambiguous and included our significance level,
we could simply take a larger Monte Carlo sample to
get a more accurate estimate of the exactp value. For
all practical purposes, we can get as accurate an esti-
mate of the exactp value as desired.

5. MORE COMPLICATED DESIGNS

We have described in detail the rationale and me-
chanics involved in permutation methods, in particular
for the two group problem. While the rationale differs
for the randomization and population models, the me-
chanics are generally the same. Permutation methods
are very flexible and may be applied in many other
situations simply by identifying rearrangements of the
data that are equally likely under the null hypothe-
sis (or unequally likely, but with known probabilities).
The test statistic can also be chosen to suit the situ-
ation, depending on what kind of alternative is of in-
terest. We leave it to the reader to investigate how
permutation methods might be applied in other sit-
uations, but we note a few references that consider
some common situations: paired data (Fisher, 1935,
Section 21; Ernst and Schucany, 1999), the correlation
coefficient (Pitman, 1937b), simple linear regression
(Manly, 1997, Section 8.1), multiple linear regression
(Kennedy and Cade, 1996) and randomized complete
block designs (Pitman, 1938).

5.1 The One-Way Layout

We conclude by considering the one-way layout with
k independent groups and we discuss, in particular,
an approach to multiple comparisons that controls the
Type I error rate. Suppose thatN subjects are random-
ized tok treatment groups of sizeni , i = 1,2, . . . , k,
and their responsesYij , j = 1,2, . . . , ni , are recorded.
We wish to test the hypotheses

H0: There is no difference between the treatments,

H1: At least one treatment differs from the others.
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TABLE 3
Reading speeds for14 subjects randomly

assigned to three typeface styles

Typeface style

1 2 3

135 175 105
91 130 147

111 514 159
87 283 107

122 194

Ȳi 109.2 275.5 142.4

There are
( N
n1 n2 ··· nk

)
possible randomizations of theN

subjects to thek groups and these are equally likely
underH0. For each of these randomizations we calcu-
late a test statistic, like the analysis of varianceF sta-
tistic, or equivalentlyT = ∑k

i=1 niȲ
2
i , where Ȳi =∑ni

j=1 Yij /ni is the mean of theith group. Large values
of T favor the alternative hypothesis, so thep value is
the proportion of test statistics greater than or equal to
the observed value.

To illustrate, we consider an example from Bradley
(1968), who investigated whether reading speed is af-
fected by the typeface style of the text. Fifteen sub-
jects were randomly assigned to one of three different
typeface styles and their reading speeds are recorded
in Table 3 along with the group means. One subject
was unable to complete the exercise for reasons un-
related to the experiment, so one group has four sub-
jects. The data are displayed in Figure 6. There are( 14
5 4 5

) = 252,252 test statistics in the randomization
distribution ofT . Figure 7 shows a histogram of a ran-
dom sample ofM = 9999 test statistics from this dis-
tribution with the observed valuet∗ = 464,613 marked
with a solid triangle (�). With 114 test statistics greater
than t∗, the Monte Carlop value is p̂ = (1 + 114)/
(9999+ 1) = 0.0115. A 99.9% confidence interval for
the exactp value is(0.0083,0.0154).

5.2 Multiple Comparisons

Clearly, there is a difference between the treatments,
so we would like to know which treatments are sig-
nificantly different while controlling the probability of
making a Type I error. There are a total of

(k
2

)
treatment

comparisons that can be made. Two treatments will be
called significantly different if their means differ by
more than the critical valueCα . We have committed
a Type I error if we find any one of the comparisons to
be significant whenH0 is true. To control this error, we

FIG. 6. Reading speeds for the14 subjects in Table3.

FIG. 7. A histogram of a random sample ofM = 9999 test sta-
tistics from the permutation distribution ofT = ∑k

i=1 ni Ȳ
2
i for the

data in Table3.
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need to findCα such that

P

(
max

1≤i<j≤k
|Ȳi − Ȳj | ≥ Cα

∣∣∣H0

)
= α.

UnderH0, all
( N
n1 n2 ··· nk

)
possible randomizations are

equally likely and so this probability is simply the pro-
portion of the randomizations for which at least one
difference in treatment means (the largest one) is con-
sidered significant. By choosingCα so that this proba-
bility is α, we control the probability of a Type I error
and obtain an exact multiple comparison procedure.
We determineCα by calculating the largest difference
in treatment means for each randomization and finding
the 1− α quantile of this distribution.

In our example, there are three mean comparisons:
|Ȳ1 − Ȳ2| = 166.3, |Ȳ1 − Ȳ3| = 33.2 and |Ȳ2 −
Ȳ3| = 133.1. A Monte Carlo estimate ofCα can be
obtained by calculating the largest difference in treat-
ment means from a random sample of randomizations.
Based onM = 9999 randomizations, our estimate for
α = 0.05 is Ĉ0.05 = 142.5, which indicates that treat-
ments 1 and 2 are the only treatments that are signifi-
cantly different.

This procedure can easily be modified if only cer-
tain comparisons are of interest or for one-sided com-
parisons. The key is to findCα so that the probability
underH0 of finding a significant difference isα.
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