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Abstract. Today’s Internet is a massive, distributed network which contin-
ues to explode in size as e-commerce and related activities grow. The hetero-
geneous and largely unregulated structure of the Internet renders tasks such
as dynamic routing, optimized service provision, service level verification
and detection of anomalous/malicious behavior extremely challenging. The
problem is compounded by the fact that one cannot rely on the cooperation
of individual servers and routers to aid in the collection of network traffic
measurements vital for these tasks. In many ways, network monitoring and
inference problems bear a strong resemblance to other “inverse problems”
in which key aspects of a system are not directly observable. Familiar sig-
nal processing or statistical problems such as tomographic image reconstruc-
tion and phylogenetic tree identification have interesting connections to those
arising in networking. This article introduces network tomography, a new
field which we believe will benefit greatly from the wealth of statistical the-
ory and algorithms. It focuses especially on recent developments in the field
including the application of pseudo-likelihood methods and tree estimation
formulations.

Key words and phrases: Network tomography, pseudo-likelihood, topology
identification, tree estimation.

1. INTRODUCTION works can monitor local traffic conditions and iden-
tify congestion points and performance bottlenecks,
very few networks are completely isolated. The user-
perceived performance of a network thus depends
heavily on the performance of an internetwork, and
monitoring this internetwork is extremely challenging.

—_— Diverse subnetwork ownership and the decentralized,
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No network is an island, entire of itself; every net-
work is a piece of an internetwork, a part of the main
(with apologies to John DonnBgvotions XVII. Med-
itation). Although administrators of small-scale net-
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Despite this state of affairs, accurate, timely and in this paper (see Section 5 for a summary of future di-
localized estimates of network performance charac-rections). If existing traffic is being used to sample the
teristics are vital ingredients in efficient network op- state of the network, care must be taken that the tem-
eration. With performance estimates in hand, more poral and spatial structure of the traffic process does
sophisticated and ambitious traffic control protocols not bias the sample. If probes are used, then the act
and dynamic routing algorithms can be designed. of measurement must not significantly distort the net-
Quality-of-service guarantees can be provided if avail- work state. Design of the measurement methodology
able bandwidth can be gauged; the resulting service-must take into account the limitations of the network.
level agreements can be verified. Detecting anomalousAs an example, the clock synchronization required for
or malicious behavior becomes a more achievable taskmeasurement of one-way packet delay is extremely dif-

Usually we cannot directly measure the aspects of ficult.
the system that we need to make informed decisions. Once measurement has been accomplished, statis-
However, we can frequently make useful measure-tical inference techniques can be applied to determine
ments that do not require special cooperation from in- performance attributes that cannot be directly observed.
ternal network devices and do not inordinately impact When attempting to infer a network performance mea-
network load. Sophisticated methods of active network sure, measurement methodology and statistical infer-
probing or passive traffic monitoring can generate ence strategy must be considejeitly. In work thus
network statistics that indirectly relate to the perfor- far in this area, a broad array of statistical techniques
mance measures we require. Subsequently, we carnas been employed: complexity-reducing hierarchical
apply inference techniques, derived in the context of statistical models; moment- and likelihood-based esti-
other statistical inverse problems, to extract the hiddenmation; expectation—maximization and Markov chain

information of interest. Monte Carlo algorithms. However, the field is still in
This article surveys the field of inferential net- the embryonic phase, and we believe that it can benefit
work monitoring ornetwork tomographyhighlight- greatly from the wealth of extant statistical theory and

ing challenges and open problems, and identifying key algorithms.
issues that must be addressed. It builds upon the sig- In this article, we focus exclusively on inferential
nal processing survey paper by Coates, Hero, Nowaknetwork monitoring techniques that require minimal
and Yu (2002b) and focuses on recent developmentscooperation from network elements that cannot be
in the field. The task of inferential network monitor- directly controlled. Numerous tools exist for active
ing demands the estimation of a potentially very large and passive measurement of networks fsg&//www.
number of spatially distributed parameters. To suc- caida.org/toolsfor a survey). The tools measure and
cessfully address such large-scale estimation tasksreport internetwork attributes such as bandwidth, con-
researchers adopt models that are as simple as possiectivity and delay, but they do not attempt to use
ble but do not introduce significant estimation error. the recorded information to infer any performance at-
Such models are not suitable for intricate analysis of tributes that have not been directly measured. The ma-
network queuing dynamics and fine time-scale traf- jority of the tools depend on accurate reporting by all
fic behavior, but they are often sufficient for infer- network elements traversed during measurement.
ence of performance characteristics. The approach The article commences by reviewing the area of
shifts the focus from detailed queuing analysis and internetwork inference and tomography, and provides
traffic modeling (Kelly, Zachary and Ziedins, 1996; a simple, generalized formulation of the network to-
Chao, Miyazawa and Pinedo, 1999) to careful design mography problem. In Section 3 we describe a pseudo-
of measurement techniques and large-scale inferencdikelihood approach to network tomography that ad-
strategies. dresses some of the scalability limitations of existing
Measurement may be passive (monitoring traffic techniques. We consider the problem of determining
flows and sampling extant traffic) or active (gener- the connectivity structure or topology of a network and
ating probe traffic). In either case, statistical models relate this task to the problem of hierarchical cluster-
should be developed for the measurement process, anthg. We introduce new likelihood-based hierarchical
the temporal and spatial dependence of measurementslustering methods and results for identifying network
should be assessed. These are active areas of researtbpology. Finally, we identify open problems and pro-
in network tomography that we do not directly address vide our vision of future challenges.
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2. NETWORK TOMOGRAPHY 1994; Vardi, 1996; Tebaldi and West, 1998; Cao,
Davis, Vander Wiel and Yu, 2000a; Cao, Vander Wiel,
Yu and Zhu, 2000b; Liang and Yu, 2003b).

Large-scale network inference problems can be clas- In link-level parameter estimation, the traffic mea-
sified according to the type of data acquisition and surements typically consist of counts of packets trans-
the performance parameters of interest. To discussmitted and/or received between source and destination
these distinctions, we require some basic definitions. nodes or time delays between packet transmissions and
Consider the network depicted in Figure 1. Each node receptions. The goal is to estimate the loss rate or the
represents a computer terminal, router or subnetworkqueuing delay on each link. The measured time delays
(consisting of multiple computers/routers). A connec- are due to both propagation delays and router process-
tion between two nodes is calleghath Each path con-  ing delays along the path. The path delay is the sum of
sists of one or morénks—direct connections with no  the delays on the links that comprise the path; the link
intermediate nodes. The links may be unidirectional or delay comprises both the propagation delay on that link
bidirectional, depending on the level of abstraction and and the queuing delay at the routers that lie along that
the problem context. Each link can represent a chain of|ink. A packet is dropped if it does not successfully
physicallinks connected by intermediate routers. Mes- reach the input buffer of the destination node. Link
sages are transmitted by sendpagketsof bits froma  delays and occurrences of dropped packets are inher-
sourcenode to adestinationnode along a path which  ently random. Random link delays can be caused by
generally passes through several other nodes. router output buffer delays, router packet servicing de-

Broadly speaking, large-scale network inference in- jays and propagation delay variability. Dropped pack-
volves estimating network performance parameterSets on a link are usually due to overload of the finite
based on traffic measurements at a limited subsetoytput buffer of one of the routers encountered when
of the nodes. Vardi (1996) was one of the first re- yrayersing the link, but may also be caused by equip-
searchers to rigorously study this sort of problem ment downtime due to maintenance or power failures.
and he coined the termetwork tomographydue 10 Random link delays and packet losses become particu-
the similarity between network inference and med- |1y sypstantial when there is a large amount of cross-
ical tomography. Two forms of network tomography  ( affic competing for service by routers along a path.
have been address_ed in the recent literature: (1) link- |, path-level traffic intensity estimation, the measu-
level parameter estimation based on end-to-end, pathyements consist of counts of packets that pass through
level traffic measurementshifp://gaia.cs.umass.edu/  ,qes in the network. In privately owned networks, the
ming Caceres, Duffield, Horowitz and Towsley, 1999; ¢qjiection of such measurements is relatively straight-
Ratnasamy and McCanne, 1999; Coates and Nowak¢,nyard. Based on these measurements, the goal is to
2000; Harfoush, Bestavros and Byers, 2000; Duffield, ggtimate how much traffic originated from a specified
Lo Presti, Paxson and Towsley, 2001; Shih and Hero, ,,4e and was destined for a specified receiver. The
2001; Ziotopolous, Hero and Wasserman, 2001; LO ., yhination of the traffic intensities of all these origin—
Presti, Duffield, Horowitz and Towsley, 2002; Tsan_g, destination pairs forms therigin—destination traffic
Coates and Nowak, 2003) and (2) sender—recelvermatrix In this problem not only are the node-level

path-level_ raffic intensity estimation b_ased on link- measurements inherently random, but the parameter
level traffic measurements (Vanderbei and Iannone,to be estimated (the origin—destination traffic matrix)
must itself be treated not as a fixed parameter, but as
a random vector. Randomness arises from the traffic
generation itself, rather than perturbations or measure-
ment noise.

The inherent randomness in both link-level and path-
level measurements motivates the adoption of statis-
tical methodologies for large-scale network inference
and tomography. Many network tomography problems
can be roughly approximated by the (not necessarily
4 5 6 7 Gaussian) linear model

2.1 Network Tomography Basics

FiGc. 1. An arbitrary virtual multicast tree with four receivers Q) Y, =AX, +e,
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where Y, is a vector of measurements (e.g., packet 3. PSEUDO-LIKELIHOOD APPROACHES
counts or end-to-end delays) recorded at a given time
atanumber of different measurement sitess arout- raphy, there is a trade-off between statistical effi-

ing matrix, e is a noise vector an¥, is a vector of X )
. ciency (accuracy) and computational overhead. In the
time-dependent packet parameters (e.g., mean delays

logarithms of packet transmission probabilities over a '?a'tlStn rlesgz arr(;:hr;ers ha\gle derersnsed ;[hti exttrrenmercompu-
link or the random origin—destination traffic vector). In ational burden posed by some ot the tomographic
some cases the vectdy is a random vector with an un- problems, developing suboptimal but lightweight al-

derlying parameterized distributiofi(X;|0,) (see the gorithms, including a fast recursive algorithm for link
example in Section 3.1), and it is the parametrs delay distribution inference in a multicast framework

that interest us. Typically, but not alwayA, is a bi- (Lo Presti et _aI_., 2002). an_d a methoq-of-moments a_p-
nary matrix (thei, jth element is equal to 1 or 0) that proach for origin—destination matrix m_ference (Vardi,
captures the topology of the network. In this paper, we 1996). More ahccurz;]lte bUtI COFtT)'IpU'[a'[IOHT.”y dburd(eln;j
consider the problems of using the observati¥ngo SOMe approacnes have aiso been explored, Inciud-
estimated, (see Section 3.1X, (see Section 3.2) ok ing maximum-likelihood methods (Coates and Nowak,
(see Section 4). 2000; Tsang, Coates and Nowak, 2003; Cao et al.,

What sets the large-scale network inference prob- 20.026‘)’ but in general they are too intensive compu-
lem (1) apart from other network inference problems is {@tionally for any network of reasonable scale. ~
the potentially very large dimension @ which can More recently, we proposed a unified pseudo-likeli-
range from a half a dozen rows and columns for a N00d approach (Liang and Yu, 2003a, b) that eases
few packet parameters and a few measurement sited1® computational burden but maintains good statis-
in a small local area network, to thousands or tens of tic@l €fficiency. The idea of modifying likelihood is

thousands of rows and columns for a moderate num-N°t néw, and many modified likelihood models have

ber of parameters and measurements sites in the InP€en proposed, for example, pseudo-likelihood for

ternet. The associated high-dimensional problems ofMarkov random fields by Besag (1974, 1975), par-
estimatingX, are specific examples dfiverse prob- tial Ilkellhqod fqr hazar_ds regression _by Cox (1975)
lems Inverse problems have a very extensive literature @1d quasi-maximum likelihood for finance models
(OSullivan, 1986). Solution methods for such inverse Py White (1994). In this section, we decribe the
problems depend on the nature of the neisad theA pseudo—llkellhoqd approgch. We exp_Ior(_e two concrete
matrix, and typically require iterative algorithms since €xa@mples: (1) internal link delay distribution infer-
they cannot be solved directly. In general,is not ence .th_rough r_nult_lcast end-to-e_nd_measurements and
full rank, so that identifiability concerns arise. Either (2) origin—destination (OD) matrix inference through
one must be content to resolve only linear combina- link traffic counts (the OD matrix specifies the volume
tions of the parameters or one must employ statistical Of traffic between a source and a destination).
means to introduce regularization and induce identi- The network tomography model we consider in this
fiability. Both tactics are utilized in the examples in Section is a special case of (1), in which the error
later sections of the article. In most of the large-scale t€rme is omitted for further simplification. Hence the
Internet inference and tomography problems studied Model can be rewritten as

to date, the components of the noise vectoare ) Y = AX,

assumed to be approximately independent Gaussian,

Poisson, binomial or multinomial distributed. When where X = (X1,...,Xy)" is a J-dimensional vec-
the noise is Gaussian distributed with covariance inde-tor of network dynamic parameters (e.g., link de-
pendent ofAX;, methods such as recursive linear least lay, traffic flow counts at a particular time interval),
squares can be implemented using conjugate gradi-Y = (Y1,...,Y;)" is anI-dimensional vector of mea-
ent, Gauss—Seidel and other iterative equation solverssurements and is an/ x J routing matrix.

When the noise is modeled as Poisson, binomial or As mentioned beforé) is not full rank in a general
multinomial distributed, more sophisticated statistical network tomography scenario, where typicallyk J;
methods, such as reweighted nonlinear least squaredhence, constraints have to be introduced to ensure the
maximum likelihood via expectation—maximization identifiability of the model. A key assumption is that all
(EM) and maximum a posteriori via Markov chain components oK are independent of each other. Such
Monte Carlo (MCMC) algorithms, become necessary. an assumption does not hold strictly in a real network

In developing methods to perform network tomog-
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due to the temporal and spatial correlations betweenthe (k + 1)st step of the pseudo-EM algorithm is de-
network traffic, but it is a good first-step approxima- fined as

tion. Furthermore, we assume that © T
6 6,0 = Eoswo (I° (xF; 0% |yF),

@) X;~ F0), =11 ©  06.6%) =2, Bt 071)
where f; is a density function and; is its para-  which is obtained by assuming the independence of
meter. Then the parameter of the whole model is subproblems in the expectation step. The starting point
0 = (01, ...,05). In our first network tomography ex- of the pseudo-EM algorithm can be arbitrary, but just as
ample, that of link-level delay distribution estimation, in the EM algorithm, care needs to be taken to ensure
the goal is estimation df; in the second example, itis that the algorithm does not converge to a local maxi-
estimation of the actuai;. mum.

The main idea of the pseudo-likelihood approach is  There are several points worth noting in constructing
to decompose the original model into a series of sim- the pseudo-likelihood function:

pler subproblems by selecting pairs of rows from the 1. Selecting three or more rows each time may also be

routing matrix A and to form the pseudo-likelihood
function by multiplying the marginal likelihoods of
such subproblems. Létdenote the set of subproblems
by selecting all possible pairs of rows from the routing
matrix A: S = {s = (i1,i2): 1 <i1 <i» < I}. Then for
each subprobleme S, we have

) YS = ASXS,

where X* is the vector of network dynamic compo-
nents involved in the given subproblesm A’ is the
corresponding subrouting matrix att = (Y;,, ¥i,)’

is the observed measurement vectos.dfet 6* be the
parameter of and letp®(Y*; 6%) be its marginal like-

lihood function. Usually subproblems are dependent,
but ignoring such dependencies, the pseudo-likelihood

function can be written as the product of marginal
likelihood functions of all subproblems, that is, given
observation y1,...,yr, the pseudo-log-likelihood
function is defined as

T
()  LP(yi....yr:0) =YY I'(y}: 6",

reasonable to construct a pseudo-likelihood func-
tion, but there is a trade-off between the com-
putational complexity incurred and the estimation
efficiency achieved by taking more dependence
structures into account. The experience with the two
examples we discuss later shows that selecting two
rows each time gives satisfactory estimation results
while keeping the computational cost within a rea-
sonable range.

. Currently all possible pairs are selected to construct

the pseudo-likelihood function, but a subset can be
judiciously chosen to reduce the computation. The
pseudo-likelihood is obtained by assuming all sub-
problems to be independent. Although this assump-
tion is frequently violated, we obtain, under mild
conditions, the consistency and asymptotic normal-
ity of maximum pseudo-likelihood estimates (Liang
and Yu, 2003a). Furthermore, the performances of
the full- and pseudo-likelihood approaches are com-
parable at least in the two examples below.

In summary, the pseudo-likelihood approach keeps

a good balance between the computational complexity
and the statistical efficiency of the parameter estima-
tion. Even though the basic idea of divide-and-conquer
is not new, it is very powerful when combined with
pseudo-likelihood for large network problems.

t=1seS

wherel® (Y*; 6%) = log p*(Y*; 6%) is the log-likelihood
function of subproblena. Maximizing the pseudo-log-
likelihood function L? gives the maximum-pseudo-
likelihood estimate (MPLE) of parameter Maximiz-
ing the pseudo-likelihood is not an easy task because3-1 Example: Multicast Delay
LP(y1,...,yr;0) is a summation of many functions. Distribution Inference

Since the maximization of the pseUdO-like”hOOd func- The Multicast-Based Inference of Network-Internal
tion is a typical missing value problem, a pseudo-EM Characteristics (MINC) projecthtp://gaia.cs.umass.
algorithm (a variant of the EM algorithm; Liang and edu/ming pioneered the use of multicast probing for
Yu, 2003a, b), is employed to maximize the function network link-level queuing delay distribution estima-
LP(y1,...,yr;0). Letl*(X*; 6°) be the log-likelihood  tion. A similar approach through unicast end-to-end
function of a subproblem given the complete dat&’ measurements can be found in Tsang, Coates and
and lety® be the estimate @f obtained in théth step. Nowak (2003). Consider a general multicast tree, as de-
The objective function (6, 9%) to be maximized in  picted in Figure 1. Each node is labeled with a number
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and we adopt the convention that linkonnects nodé because a smaller bin size entails higher dimension

to its parental node. Each probing packet with a time of delay distributions. In experiments and simulations

stamp sent from root node O will be received by all end (Lo Prestietal., 2002; Liang and Yu, 2003a) it has been

receivers 4—7. For any pair of receivers, each packet ex-observed that the parameter estimation has similar ac-

periences the same amount of delay over the commorcuracy over a significant range gf(from very small

path. For instance, copies of the same packet receivedin size to bin size of the same order as the mean link

at receiver 4 and 5 experience the same amount of dedelays). In practice, we choose a reasonalidased on

lay on the common links 1 and 2. Measurements arethe spread of the delay measurements and prior know!-

made at end receivers, so only the aggregated delaygdge of network topology and network traffic. If the

over the paths from root to end receivers are observed.resultant distributions appear too coarse, we repeat the
Due to the aggregation of the measured delays,inference with a finer bin size.

model (2) can be naturally applied to the problem of  To ensure identifiability, we consider only canonical

the multicast internal link (queuing) delay distribution multicast trees (Lo Presti et al., 2002), defined as those

inference. For each probing packit;is the vector of  that satisfy

unobserved delays over each link ands the vector of _

observed path-level delays at each end receiver. Vector fjo=PX;=0>0, j=1....J,

A‘is anl x J routing matrix determined by the mul-  {hatjs, each individual packet has a positive probability

ticast spanning tree, whereis the number of end re- {5 have zero delay over any internal link. The goal of

ceivers and/ is the number of internal links. For the  {he multicast delay distribution inference is to estimate
multicast tree depicted in Figure 1, (2) can be written o delay distribution parametets,

as For the problem of multicast internal delay in-

Y1 110100 X1 ference, the maximum-likelihood method is usually
Yo 1 1 0 0 1 0 offX2 infeasible for networks of realistic size, because the
Y371 0 1 00 1 0 S likelihood function involves finding all possible in-
Yy 1 01 000 X7 ternal delay vectors which can account for each
observed delay vector. We can show that the com-
whereYy, ..., Y4 are the measured delays at end re-

putational complexity grows at a nonpolynomial rate.
Lo Presti et al.’s (2002) recursive algorithm is a compu-
tationally efficient method for estimating internal delay
distributions by solving a set of convolution equations.
Our pseudo-likelihood approach is motivated by the
decomposition of multicast spanning trees depicted in
Figure 2. A virtual two-leaf subtree is formed by con-
sidering only two receiver®; and R3 in the origi-

nal multicast tree. The marginal likelihood function of
the virtual two-leaf subtree is tractable because of its
simple structure. For a multicast tree withend re-
ceivers, there is a total df(/ — 1)/2 subtrees: differ-
ent subtrees contain delay distribution information on

ceivers 4...,7 andXy, ..., X7 are the delays over in-
ternal links ending at nodes 1., 7.

Each link has a certain amount of minimal de-
lay (the propagation delay on the link), which is
assumed to be known beforehand. After compen-
sating for the minimal delay of each link, a dis-
cretization scheme is imposed on link-level delay by
Lo Presti et al. (2002) such that; takes finite pos-
sible values{0,q,2q,...,mqg, o0}, where g is the
bin width andm is a constant. Therefore, each;
is a discrete random variable whose possible values
are{0,q,2q, ..., mq, oo} with respective probabilities
Qj = (91'0, Qj]_, R Qjm, Qjoo). When the delay is infi-
nite, it implies the packet is lost during the transmis-
sion.

As discussed by Lo Presti et al. (2002), the bin gize
is chosen beforehand and then the delay measurement .
are discretized accordingly. The bin size and the max- ; B i A
imum observed queuing delay provide an indication
of the required value ofz. This process introduces a \ y A
quantization error such that the equativa= AX does
not hold exactly: the error diminishes ads reduced. R
The choice ofg thus represents a trade-off between
the accuracy of estimation and cost of computations, FiG. 2. Pseudo-likelihoodsubtree decomposition

= @

A
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different virtual links. Combining all subproblems by
ignoring their dependencies enables us to recover link
delay distributions. Since forming the subtree is equiv-
alent to selecting two rows from the routing matAx
the pseudo-likelihood method is applicable to the gen-
eral network tomography model (2).

Given multiple observed end-to-end multicast mea-
surements {ys, ..., yr}, the pseudo-log-likelihood
function can be written as

T
LP(y1,....yr;0) =) _Y logp(Y* =y;|6%),
seSt=1

where p(Y*® = yf|0*) is the probability of the delay
measurement* of subtrees being y; when its link
delay distributions ar@*. The pseudo-log-likelihood
function is maximized in an EM fashion with small
variations (Liang and Yu, 2003a).

We evaluate the performance of the pseudo-likeli-
hood methodology by model simulations carried out on
the four-leaf multicast tree depicted in Figure 1. Due
to the small size of the multicast tree, the maximum-
likelihood estimation (MLE) method can be imple-
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FiG. 4. Link Ly error norm averaged oveBO simulations The
solid line is the MPLEthe dashed line is the MLE and the dotted
line is the recursive algorithm of Lo Presti et #2002).For each
link the vertical bar shows the standard deviation of e error
norm for the given link

lay distributions and their performance is comparable,
whereas the recursive algorithm sometimes gives esti-
mates far from the truth.

A further comparison is illustrated in Figure 4, which

mented, and so we can compare the performance ofSNows theL; error norm of MLE and MPLE for each

maximum-pseudo-likelihood estimation (MPLE) with
that of MLE and also with that of the recursive al-
gorithm of Lo Presti et al. (2002). For each link the
bin sizeq = 1 and the number of bins: is set to

be 14. During each simulation 2000 i.i.d. multicast

link, as averaged over 30 independent simulations. For
each link theL1 error norm is simply the sum of the
absolute differences between probability estimates and
the true probabilities. As a common measure of the
performance of density estimates, the error norm

delay measurements are generated, with each internagnjoys several theoretical advantages as discussed by

link having an independent discrete delay distribution.
Figure 3 shows the delay distribution estimates of three
arbitrarily selected links along with their true delay
distributions in one such experiment. The plot shows
that both MPLE and MLE capture most of the link de-

Scott (1992). The plot shows that MLE and MPLE
have comparable estimation performance for tracking
link delay distributions, while the recursive algorithm
has much largeii.; errors on all links. Meanwhile,
we can see that MPLE has smaller standard deviation
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Fic. 3. Delay distribution estimates of three arbitrarily selected internal lidksk 1, link 2 and link4. The solid step function is the true
distribution the dashed line with circles is the MPLthe dotted line with triangles is the MLE and the dashed line is the recursive estimate
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on L4 error norm than MLE on all links, implying traffic in opposite directions is weak. This renders
that MPLE is more robust than MLE. This is because the independence assumption a reasonable approxima-
the pseudo-likelihood function, which is a product tion. Time-varying traffic matrices estimated from a se-
of less complex likelihood functions on subproblems, quence of link counts are validated by comparing the
has a nicer surface than the full-likelihood function estimates with actual OD counts that were collected by
(Blackwell, 1973). running Cisco’s NetFlow software on a small network
depicted in Figure 5b. Such direct point-to-point mea-
surements are often not available because they require
additional router CPU resources, can reduce packet
Vardi (1996) was the first researcher to study the forwarding efficiency and involve a significant admin-
problem of inferring the origin—destination (OD) traf- jstrative burden when used on a large scale.
fic matrix from link traffic counts at router interfaces  The network tomography model specified by (2) is
(his work originated in 1993, but appeared in 1996). gpplicable to the OD matrix inference through link

In this problem the observations are the link counts yafic counts since the observed link traffic counts
at router interfaces and the OD traffic variables to be ;. inear aggregations of the unobserved OD vari-

estimat_ed are Iinegr aggre_:ga_tion.s of these link counts. 1) 1as to be estimated. Hehe — (Y1, Yo, ....Y)) is
Assuming i.i.d. Poisson distributions for the OD traf-
fic byte counts on a general network topology, Vardi
demonstrated the identifiability of the Poisson model
and developed an EM algorithm to estimate Poisson
parameters in both deterministic and Markov rout-
ing schemes. To reduce the computational complexity
of the EM algorithm, he proposed a moment estima-
tion method and briefly discussed the normal model
as an approximation to the Poisson model. Follow- . ) . :
up works treated the special case involving a single Ing m‘?‘t”XA’ m.Wh'Ch.I.'S the ”“”.‘ber of m_easured
set of link counts: Vanderbei and lannone (1994) ap- mcommg/outgm_ng unldlregtlonal links and is th_e
plied the EM algorithm and Tebaldi and West (1998) numb«_sr of possible OIZ_) pairs. In contrast to mu_Itlcast
presented a Bayesian perspective and a Markov chairfl€/@y inference, the ultimate goal of the OD traffic ma-
Monte Carlo implementation. trix |_nfereqce is to estimate th.e under_lylng randgm oD
Cao et al. (2000a) used real data to revise the Poissoriraffic X given the observed link traffiY’. To achieve
model and to address the nonstationary aspect of thdhis goal, we first estimate the mean of the traffic vec-
problem. They represented link count measurementstor, as described below.
as summations of various OD counts that are mod- Each component oX is assumed to be independent
eled as independent random variables. Even though thétormally distributed and to satisfy the mean—variance
transmission control protocol (TCP), which governs relationshipX; ~ N(;, ¢19) independently, where
the flow of the majority of Internet traffic, generates ¢ is a positive scalar applicable to all OD pairs and
feedback that creates dependence, direct measuremenis a power constant. For the examples below, our ex-
of OD traffic indicate that the dependence between ploratory data analysis has shown that the Gaussian

3.2 Example: Origin—Destination Traffic
Matrix Inference

the vector of observed traffic byte counts measured on
each link interface during a given time interval and
X =(X1,X2,...,Xy) is the corresponding vector of
unobserved true OD traffic byte counts at the same
time period. VectoiX is called the OD traffic matrix,
even though it is arranged as a column vector for no-
tational convenience. Under a fixed routing scheme,
Y is determined uniquely bX through thel x J rout-
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distribution does capture the characteristics of OD traf- estimation is carried out for the parameter estimation
fic flows well. As a second-order approximation to via a combination of the EM algorithm and a second-
real network traffic, the mean—variance relationship is order global optimization routine. The componentwise
critical in the Gaussian model. It is well-known that conditional expectations of the OD traffic, given the
real network traffic exhibits strong long range depen- link traffic, the estimated parameters and the positivity
dence (Leland, Tagqu, Willinger and Wilson, 1994), constraints on the OD traffic, are used as the initial es-
which is in general incompatible with the generation timates of the OD traffic. The linear equatipa= Ax is
of normal distributions. Despite this phenomenon, sev- enforced via the iterative proportional fitting algorithm
eral researchers have suggested that the power lawCao et al., 2000a; Csiszar, 1975) to obtain the final es-
describes well the mean-variance relationship for atimates of the OD traffic. The positivity and the linear
large load of aggregated network traffic (Rolls, 2003; constraints are very important final steps to get reli-
Morris and Lin, 2000). able estimates of the OD traffic, in addition to the im-
The assumption implies that plicit regularization introduced by the i.i.d. statistical
@) Y = AX ~ N(AL,ASA’), model. To smooth the parameter estimates, a random
walk model also was applied by Cao et al. (2000a) to
wherei = (A1, ...,4;) and ¥ = ¢diagrg, ..., 19), the logarithm of the parameteksand¢ over the time
so the parameter of the full model ds= (¢, 1). The windows.
mean-variance relationship is a key assumption to en-  Even though the full-likelihood method described by
sure the |dent|f|ab|l|ty of the normal model. It |mp||eS Cao et al. (2000&) uses all available information to es-
that an OD pair with large traffic byte counts tends timate parameter values and the OD traffic vedtoit

to have large variance with the same scale fagtor
For the power constant bothc =1 and 2 work well

with the Lucent network data as shown by Cao et al.

(2000a, b). Because =1 or ¢ = 2 give similar re-
sults, in this paper, we use= 1 as in Cao et al.

does not computationally scale to networks with many
nodes. In general, if there aNg, edge nodes, the num-
ber of floating point operations needed to compute the
MLE is at least proportional taV> after exploiting
sparse matrix calculation in each iteration. Assuming

can deal withc = 2 without any additional technical
difficulties. Then given observed link traffic count vec-
tors {y1, ..., yr}, the pseudo-log-likelihood function
can be written as

1 T
LP(A, —— —log|AS . AY
() 2;;{ glA ZAY

+ (yts _ AS)\.S)/(AS ESAs/)—l
(v =AY,
where for a subproblem, A* is its mean traffic vector,
3, is its covariance matrix and® is the subrouting
matrix. The maximization of the pseudo-log-likelihood

function is realized by the pseudo-EM algorithm as
well (Liang and Yu, 2003a).

is O(+/N.), it can be shown that the overall computa-
tional complexity of each iteration of the pseudo-EM
algorithm is O (N2®). Compared with the complex-
ity of the full-likelihood O(Ne5), the pseudo-likelihood
approach reduces the computational complexity con-
siderably. Moreover, the pseudo-likelihood approach
fits into the framework of the distributed computing,
which is beneficial to realistic applications.

First, to compare with results presented by Cao et al.
(2000a) we analyzed the same raw network OD traffic
data collected on February 22, 1999 for fReuter1
network depicted in Figure 5b. Figures 6 and 7 show
the estimated OD traffic from MPLE and MLE based
on the link traffic for the subnetwork along with the
validation OD traffic via NetFlow. Figure 6 gives the

Cao et al. (2000a) addressed the nonstationarity offull scale plot and Figure 7 is the zoomed-in scale

the data using a local likelihood model. For any given (20x). From the plot we can see that estimated OD
time intervalz, analysis is based on a likelihood func- traffic from both MPLE and MLE agrees well with

tion derived from the observations within a symmetric the NetFlow measured OD traffic for large measure-
window of sizew around: (e.g., in the experiments ments, but not so well for small measurements where
described belowyw = 11 corresponds to observations the Gaussian model is a poor approximation. From the
within about an hour in real time). Within this window, point of view of origin—destination traffic engineering,

an i.i.d. assumption is imposed (as a simplified and yetit is adequate that the large traffic flows are inferred
practical way to treat the approximately stationary ob- accurately. For tasks such as planning and provision-
servations within the window). Maximum-likelihood ing activities, OD traffic estimates can then be used as
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Fic. 6. Full scale OD traffic count estimates obtained from pseudo- and full-likelihood methods against the true OD traffic counts for
four node network around routdr.

inexpensive substitutes for direct measurements. Thethe dynamics of the simulated OD traffic under the
performances of MPLE and MLE are comparable in zoomed-in scale. Table 1 summarizes the execution
this case, but the computation of the MPLE is faster time for both pseudo- and full-likelihood approaches
than MLE. For this example, the computations are car- under the three different settings. From the table
ried out using R 1.5.0 (Ihaka and Gentleman, 1996) we can see that the pseudo-likelihood approach speeds
on a 1-GHz laptop: it takes about 12 s to compute the up the computation without losing much estimation
MPLE and about 49 s to compute the MLE in produc- performance, so it is more scalable to larger networks.
ing Figure 6.

Second, to assess the performance of MPLE more
thoroughly, simulations were carried out on some
larger networks through the network simulates- 2
(http://www.isi.edu/nsnam/hsThe experimental net-

TABLE 1
Execution times of MPLE and MLE on router networks of
different sizes

X - ) Network Number of MPLE MLE
work topologies are (i) the two-router network depicted topology edge nodes time (s) time (s)
in Figure 5c¢ and (ii) the Lucent network illustrated in —
. . . . Figure 5b 4 12 49
Figure 5a, which comprises 21 end nodes and 27 links. Figure 5¢ 8 18 88
From the simulation results (plots not shown), we see Figure 5a 21 151 2305

that both pseudo- and full-likelihood methods capture
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Fic. 7. OD traffic count estimate$;, obtained from pseudo- and full-likelihood methods against the true OD traffic counts for four node
network around routef.. The plot has been zoomed20x to illustrate the detailed features

4. TOPOLOGY IDENTIFICATION of communication. Also, the fear of malicious attacks
(such as denial of service attacks) forces network ad-

network topology was known: this knowledge is es- ministrators to bIoc!< access to some diagnosis tools
sential for successful application of the techniques on routers (such asi ng or the_ ability to re_s_pond to
described. When the topology is unknown, tools such ICMP packets), preventing their use for legitimate pur-
ast r acer out e (seehttp://www.caida.org/toolscan ~ POSES. _ _
be used in an attempt to identify it. However, these It_|s therefore desirable to develop a method for esti-
tools rely on close cooperation from the network inter- Mating topology that uses only measurements taken at
nal devices and are incapable of detecting certain typedhe network edge, obtained without cooperation from
of devices. The tools can thus determine the topologyinternal devices. We consider a Single source that is
only if the network is functioning properly and net- Ccommunicating with multiple receivers (denote the set
work elements are prepared to cooperate and reveaPf receiver nodes by). The physical network topol-
themselves. These conditions are often not met and aré®gy can be represented as a directed graph, where each
becoming more uncommon as the Internet grows in vertex represents a physical device (e.g., a router or a
size and speed; there is little motivation for extremely switch) and the edges correspond to the connections
high-speed or heavily loaded switches to spend timebetween those devices. In our approach we use only
processing requests that are not central to the procesend-to-end measurements and do not use any network

In the previous section it was assumed that the
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Nowak (2004). In the following discussion, we focus
on the unicast measurement procedure we proposed
(Coates et al., 2002a) and the hierarchical clustering in-
terpretation of the topology identification problem ex-
pounded by Castro, Coates and Nowak (2004).

Recall equation (1). In the topology identification
problem the quantity of interest &, the routing ma-
- @5 trix. Note that the entries of this matrix are only O or 1.
The measurement¥, are obtained through special
(a) (‘1_“_; measurement technigues described below angahe

it tial ordering of Y; can be used to determirfe. The
matrix estimation formulation above is not well suited

Fic. 8. (a) Physical topology andb) correspond.ing logical to the topology identification problem, so we formu-
topology The darker unnumbered nodes are devices where no late it below as a tree estimation exercise. One can also
branching of traffic occurs and therefore do not appear in the logi- ) : )
cal topology regard the topology discovery problem as hierarchical
clustering. Within such a framework one wants to iden-
tify clusters of receivers that share certain properties.
In particular, we want to identify the clusters of re-
ceiver nodes whose paths from the source node are the
same up to a certain point.

Our goal is to identify the logical topology. With
each internal node in a tree we associate a met-

device information, which forces us to rely solely on
traffic and queueing characteristics. With this limited
knowledge, it is only possible to identify the so-called
logical topology (see Figure 8 for an illustration of
the distinction between logical and physical topolo-
gies). In the logical topology, each vertex represents _ ;
a physical network device where traffic branching oc- "IC valu€ yx. We consider only metrics that have a
curs, that is, where two or more source—destination Menotonic property: An internal node has a smaller
paths diverge. The set of vertices thus corresponds tgNetric value than any of its descendants (e.g., in Fig-
a subset of the traversed physical devices. An edge is!'€ 875 > y2). Examples of such metrics in network-
included between two vertices if traffic travels between N9 are the average delay or delay variance experienced
the corresponding network devices and does not pas¢Y & packet traveling from the source to ndder the
through any other devices in the included subset. Eachban.dmdth-related metric we describe in Section 4.2.1.
edge corresponds to a connection between two phys- Sinceé we do not know the topology, we cannot es-
ical devices, but the connection may include several timate the metric values directly, but it is possible to
network devices where no traffic branching occurs. We €stimate them indirectly. Lei(i, j) denote the near-
assume that the routes from the sender to the receiver§St common ancestor of a given receiver pajr R
are fixed during the measurement period, in which casel€:9-,a(4,9) = 2]. Definey;; = ya. ). The valuey;;
the topology is a tree-structured graph, as in Figure 8.can be regarded as a characterization of the shared por-
Every node has at least two children, apart from the tion of the paths from the root toand ;. The shared
root node (which has one) and the leaf nodes (which path for a pair of nodesi, ;) is the path from the
have none). If all internal nodes have exactly two chil- rootto nodez(i, j). In the context of hierarchical clus-
dren, then the tree is called binary. tering, they;; can be interpreted a@milarity values.
Ratnasamy and McCanne (1999) first demonstratedNote that there is an enforced symmetry in this model:
that observations of correlations in end-to-end (multi- ¥i; = v;ji- Knowledge of the pairwise metric values and
cast) loss measurements could be used to reconstrudhe monotonicity property suffices to completely iden-
the logical topology. Duffield, Horowitz and Lo Presti tify the logical topology (Duffield et al., 2002).
(2001) and Duffield, Horowitz, Lo Presti and Towsley ~ For example, referring to Figure 8, the metyigr
(2002) then rigorously established the correctness ofis greater thary;7 for all i € R\ {6, 7}, revealing that
the proposed algorithm and developed a more generahodes 6 and 7 have a common parent in the logi-
framework in which other measurements, such as de-cal tree. This property can be exploited recursively
lay variance, could be used. This work was extendedto devise a simple and effective bottom-up merging
to unicast scenarios by Bestavros, Byers and Harfoushalgorithm that identifies the complete, logical topol-
(2002), Coates et al. (2000a) and Castro, Coates andagy (Duffield et al., 2002; Castro, Coates and Nowak,
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2004). These same techniques are used in agglom+V leaves. A very loose lower bound on the size of
erative hierarchical clustering methods (Ward, 1963; the forest¥ is N!/2. For example, ifN = 10, then
Willet, 1988; Fasulo, 1999). there are more than@x 10° trees in the forest. More-
over, the computation of the profile likelihood (9) is
nontrivial because it involves a constrained optimiza-
tion over (7). Castro, Coates and Nowak (2004)
In general, we do not have access to the exact pair-showed that if the functions;; are concave, it is
wise metric values and can only observe a noisy andnot necessary to perform the constrained optimization,
distorted version of them, usually obtained by actively since the maximum-likelihood metric value estimate
probing the network. If we have a statistical model that for the MLT is always in the interior of the sgi(7).
relates the underlying (unknown) metric values and the Hence one can just compute an unconstrained opti-
measurements, we can formulate the topology identi- mization and subsequently check if the resulting max-
fication problem as a maximum-likelihood estimation imizer lies in the sef (7). However, even with this

4.1 Likelihood Formulation and
Optimization Strategies

exercise. simplification, it is still infeasible to search exhaus-
For a given unknown tre@ with a receiver seR, tively over all candidate trees. In the following sub-

let X;; be a random variable parameterized)pyfor sections we briefly describe two alternative algorithms

anyi,j € R,i# j, and lety = {y,;}. Let p(x|y) de- that return tree estimates that are an approximation to

note the joint probability density function of those ran- the MLT.

dom variables. A sample = {x;;:i, j € R, i # j} 4.1.1 Bottom-up agglomerative procedurtn a sce-

of the random variablesy;; is observed. These are nario where one can determine the true pairwise sim-

the pairwise measurements recorded through a probing|arity metrics y, it is possible to reconstruct the tree

process such as the one described in Section 4.2.1. Thegpology using a simple agglomerative bottom-up pro-

maximum-likelihood tree estimate is then given by cedure (Willet, 1988; Duffield et al., 2002). When
E oy we only have access to the measurementsonvey-

®) T = arng;%xyes;(g)p(XW), ing indirect information abouyp, we can still develop

a bottom-up agglomerative clustering algorithm to es-

timate the true topology. This method follows the same

conceptual framework as many hierarchical clustering

, . . ; . techniques, and proceeds by repeatedly applying four
uations we are not interested in estimatipghence, d P yrep y applying

) teps:
we can regargs as nuisance parameters. In that case, P _ ' _ o
(8) can be interpreted as a maximization of the profile 1. Choose the pair of nodes with the highest similarity.

where ¥ denotes thdorestof all possible trees with
leavesR, and 4.(7) is the set of ally’s that satisfy
the monotonicity property for the trég. In many sit-

likelihood (Berger, Liseo and Wolpert, 1999) 2. Merge the pair into a new node/cluster.
3. Update the similarities between the new node and
©) LX|T)= sup px[y). the former existing nodes.
yes) 4. Repeat the procedure until only one node is left.
The solution of (8) is referred to as the maximum- The crucial step is th date of the similari |
likelihood tree (MLT). p is the update of the similarity val-

Under reasonable modeling assumptions the randomi€s: and in many hierarchical clustering algorithms the

variablesX;; are independent. Taking this into account upda_te_ procedure is chosen via application-dependent
) . o heuristics (Fasulo, 1999). In our model-based ap-
yields a useful factorization of the log-likelihood. As-

sume that the random variables;; have densities proach, which relatey to x, the appropriate update
.. s of similarities arises naturally from the likelihood for-
p(xijlvij), i, j € R, i # j, with respect to a common

dominating m re Lot (xiilvi) — | o mulation and leads to the agglomerative likelihood tree
Tﬁ II Il_kg I_heazu_ efh o (xijlyij) =109 p(xijlyij)- (ALT) algorithm (Castro, Coates and Nowak, 2004).
€ log-likelinood is then The algorithm commences by considering a set of
(10) log p(X|y) = Z Z fij (xijlyvij)- nodes§, initialized to the recei.ve.r set, and'forming
iR jeR\{i} the estimates of the pairwise similarity metrics for each

The optimization problem in (8) is quite formidable. pair of nodes in the set, given by

We are not aware of any method for computation of vij = arg n;?'R)(fij(xiﬂy) + fii(xjily)),
the global maximum except by a brute force exami- (11) v
nation of each tree in the forest. Consider a tree with i,je$,i+#]j.
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One expects the above estimated pairwise similaritiesof the MLT involves a search over the entire for&st
to be reasonably close to the true similaritjesCon- In this section we propose a random search technique
sider the pair of nodes such thag is greatest, thatis,  that efficiently searches the forest of trees and, most
importantly, focuses on the likely regions of the forest.
Recall the profile likelihood defined in (9) and note
We infer thati and j are the most similar nodes, im- that the maximum likelihood tree is the tree that max-
plying that they have a common parénin the tree. imizesL(X|7). For a given set of measurements/e
Assuming that our decision is correct, the tree struc- can regard the profile likelihood (x|7") as a discrete
ture and the likelihood impose some structure on the distribution over the set of possible tree topologies
true similarities, providing a logical way to performthe (up to a normalizing factor). One way to search the
merging of similarities (see Castro, Coates and Nowak, set ¥ is to sample it according to this distribution.
2004, for details). The algorithm proceeds by replac- The more likely trees are sampled more often than the
ing nodes andj with their parentc in 8. For a given  less likely trees, making the search more efficient. The
nodek, we denote by, the set of receivers which are sampling can be implemented using the Metropolis—
descendants of in the tree. Thus, at the initial stage Hastings algorithm (Coates et al., 2002a; Hastings,
of the algorithmR; = {i}, and after the update step, 1970). For this we need to construct a Markov chain
R; = R; U R;. We update the similarity estimates4n  with state space . We allow only certain transitions.

)’/\,‘j Z]’/\lm’ Vi,meSs.

according to For a given state (a tree} € £ we can move to
R another state (tree) using “birth moves” and “death
Ykl = Yik =arg n;%XZ JriGertly) + fir(arly), moves” as illustrated in Figure 9. Details of the entire

(12) reRy procedure can be found in Castro, Coates and Nowak

wherel € 8\ {k}. (2004). The Metropolis—Hastings algorithm is a basic

) ) ) sampling approach, which, despite its simplicity, re-

These two steps, selecting the pair of nodes with max-gyits in improved performance compared to ALT; the
imum estimated similarity for merger and updating the incorporation of more sophisticated sampling strate-

similarities, are repeated until there is a single node gies is an avenue for developing improved topology
in 8. Castro, Coates and Nowak (2004) formalized the jgentification procedures.

concepts behind this algorithm and showed that if the 1o achieve our (approximate) solution of (8), we

underlying tree is binary and the estimated pairwise sjmylate the constructed chain and keep track of the

similarities are sufficiently close to the true similari- ree we visit that has the largest likelihood; the longer
ties, then the ALT algorithm is equivalent to the MLT

and identifies the true topology.

4.1.2 Markov chain Monte Carlo approactDe- Insan
spite the simplicity of the ALT algorithm, it is a greedy , J
procedure based on local decisions that involve the es- i ™
timated pairwise similarities. If an incorrect local de- Birth Mave
cision is made at some stage in the algorithm, then it /\
cannot be reversed. In the topology estimation prob- L .
lem the measurement process is generally distributed,
relying on clocks and counters at numerous network [ ] [
sites. It is frequently the case that several of the mea- Desale
surements are substantially more inaccurate than the J
rest. The ALT algorithm compares pairwise similarity —
estimates, each of which is formed from only a subset ®  Death Mave
of the available measurements and is thus vulnerable
to the effect of the local inaccuracies. Unlike the ALT, . & @ . 8 8
the MLT estimator takes a global approach: the expres- _ _ _
sion to be optimized in (8) involves a contribution from ¢ 9 lllustration of the birth and death moves in the MCMC

. P search algorithmThe birth move selects a node with more than
all Of_the me_asuremems’ and '_dentlfl_catlon of the ML-_I- two children chooses two of these children and inserts an extra
requires a simultaneous consideration of all the pair- node as the new parent of these childrghe death move chooses
wise similarities. The price to pay is that identification a node with two children and deletes that node
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the chain is simulated, the higher the chance of visiting are appealing because they are very simple to mea-
the MLT at least once. Although theoretically the start- sure, losses are relatively rare in a properly function-
ing point (initial state) of the chain is not important, ing network (generally less than 2% for an end-to-end
provided that the chain is simulated for long enough, path), so these metrics have poor discrimination prop-
starting at a reasonable point improves the chance oferties. Metrics that use delay/timing measurements of-
visiting the MLT in a reasonable simulation period. fer better discrimination (Duffield, Horowitz and Lo
Starting the chain simulation from the tree obtained us- Presti, 2001), but their estimation often requires clock
ing the ALT algorithm is a reasonable approach, since synchronization between various physical points in the
this is a consistent estimator and so one expects the renetwork, a rather difficult task (Pasztor and Veitch,
sulting tree to be “close” (in terms of the number of 2002). In earlier work we proposed a topology iden-
MCMC moves) to the actual MLT. This is the major tification method based on delay differences (Coates
reason the simple Metropolis—Hastings sampling pro- et al., 2002a). The measurement technique overcomes
cedure works reasonably well. Although inefficiencies the clock synchronization issues without impairing the
can prevent it from visiting more than a small region good discrimination of delay-based metrics and hence
of the forest, it does visit much of the region near the itis easily deployed in practice. The method relies on a
MLT early in its evolution and can thus “correct” local measurement scheme called sandwich probing, details
errors in the ALT. of which can be found in Coates et al. (2002a); here we
One drawback to the likelihood criterion is that it present a brief overview.
places no penalty on the number of links in the tree. As  Each sandwich probe consists of three packets and
a consequence, trees with more links can have highegives information about the shared path between two
likelihood values (since the extra degrees of freedom receivers. Figure 10 illustrates the probing scheme. The
they possess allow them to fit the data more closely).large packet is destined for node 2; the small packets
This is an instance of the classic “overfitting” problem are destined for node 3. The black circles on the links
associated with model estimation (Rissanen, 1989) andrepresent physical queues where no branching occurs.
can be remedied by applying regularization, that is, by The initial spacing between the small prohess in-

replacing the simple likelihood criterion withgenal- ~ creased along the shared path from nodes 0 to 1 be-
izedlikelihood criterion, cause the second small prolpe queues behind the

N large packet (due to the bandwidth limitations of each
(13) 75 =argmaxogL(x|T) — An(T), link). The measurement collected for each receiver pair

_ o is the extra delay differenc&d between the two small
wheren(7) is the number of links in the tre@ and  packets. This extra delay is due to the queueing of the
A >0 is a parameter, chosen by the user, to balancesecond small packet behind the large one, for all links
the trade-off between fitting to the data and control- jn the shared portion of the path. The metric used for
ling the number of links in the tree. We can use an each pair is the mean delay difference. In idealized net-

MCMC method in a similar fashion as before to ap- work conditions (Coates et al., 2002a), the contribution
proximately find the solution of (13). Minimum de-

scription length principles (Rissanen, 1989) motivate

a penalty that is dependent on the size of the network # | Q
(in terms of the number of receivers). However, other i

model selection techniques lead to choices of different ¢ | — l +
penalties (Robert and Casella, 1999). T

4.2 Experimental Results

4.2.1 Probing techniques and modelinghere are
several possible choices for similarity metrics in the / \\
topology identification problem; the only constraints
are that the metric obey the monotonicity property
and is measurable in a practical setting. It is possible
to devise similarity metrics that rely on packet losses
(e.g., average loss on a shared path). Although these FiG. 10. Example of sandwich probe measurement
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from each link in the shared path to the mean delay dif-
ference is inversely proportional to its bandwidth and is
always positive, so the metric satisfies the monotonic-
ity property.

The observed mean delay differences are noisy ver-
sions of the underlying metrics, primarily because of
the influence of background traffic in the network.
Let x;; be the sample mean of repeated delay differ-
ence measurements for pajri € R. We assume that
the cross-traffic is stationary over the measurement in- ...,
terval and the initial spacing of the two small pack-
etsd is large enough so that neither the large packet
nor the second small packet queues behind the first
small packet at any time. We send each probe far apart
in time, so we can assume that the outcomes of dif-
ferent measurements are independent. Under these ant
other mild assumptions, the measurements are statisti-
cally independent and have finite variance; hence, ac-
cording to the central limit theorem, the distribution of
each empirical mean tends to a Gaussian. This moti-
vates the (approximate) model
(14) xij ~ N (Vij, 0’,% , ,_E;,
Whereal.z. is the sample variance of the measurements,
divided E’)y the number of measurementsis the sam-
ple mean of the measurements aNdy, o2) denotes
the Gaussian density with meanand variances2.
Notice that we are not assuming that the delay differ-
ences are normally distributed, but only their empirical
means. Under the above assumptions, as the number o
measurements increases, the model accuracy increase
We also assume that the measurements for the differ-
ent receiver pairs are statistically independent, which
is a reasonable assumption due to generally weak spa:
tial correlation between traffic on different links. Datrdey

4.2.2 Internet experimentsWe have implemented a
software tool calleshet t ono that performs sandwich
probing measurements and estimates the topology offiG. 11. (a)The topology of the network used for Internet ex-
a tree-structured network. We conducted Internet ex- periments obtained usingr acer out e. (b) Estimated topology

: : : . sing the ALT algorithmThe three links inside the ellipse have
periments using several hosts in the United States an(jijnk_par‘,jImeter valuesy, — y 1) that are one order of magnitude

abroad. The topology inferred fromr acer out e smaller than all the other link§c) The estimated topology obtained

is depicted in Figure 1la. Often the acer out e using the MCMC method with a penalized likelihood criterion

tool cannot be used to determine the topology, but it

does work in this measurement scenario and thus pro-

vides a useful ground truth for validation (even here, The experiment was conducted for a period of 8 min,

tracerout e fails to detect one network element). during which a sandwich probe was sent to a ran-

The source for the experiments was located at Ricedomly chosen receiver pair once every 50 ms. With-

University. There are 10 receiver clients, 2 located out any loss, the maximum number of probes available
on different networks at Rice, 2 at separate hosts inis 8600. This corresponds to less than 200 probes per
Portugal and 6 located at four other U.S. universities. pair; hence the traffic overhead on any link is very low.
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We applied the ALT algorithm to the measurements latency, dynamic random routing and spatial depen-
collected and the resultis depicted in Figure 11b. Sincedence. As wireless links and ad hoc networks become
the procedure is suited only for binary trees, it adds more prevalent, accounting for spatial dependence and
some extra links with small link-level metric value (i.e., routing dynamics will become increasingly important.
Yk — Yr&k) ~ 0). The extra links are an artifact of our Recently there have been some preliminary attempts
model and are essentially overfitting the data. Using to deal with the time-varying, nonstationary nature of
the maximum penalized likelihood approach, we ob- network behavior. In addition to the estimation of time-
tain the result depicted in Figure 11c (see Coates et al.varying OD traffic matrices discussed in Section 3.2,
2002a, for details of the penalty selection procedure). other researchers have adopted a dynamical systems
Notice that this is very close to ther acer out e approach to handle nonstationary link-level tomogra-
topology, but it fails to detect the backbone connec- phy problems (Coates and Nowak, 2002). Sequential
tion between Texas and Indianapolis. We expect thatMonte Carlo inference techniques were employed by
the latter connection is very high speed and that the Coates and Nowak (2002) to track time-varying link
queuing effects on the constituent links are too minor delay distributions in nonstationary networks. One
to influence measurements sufficiently for its detection. common source of temporal variability in link-level
The estimated topologies also place an extra shared elperformance is the nonstationary characteristics of
ement between the Rice computers. This element is notcross-traffic.

a router and hence is not shown in the topology re- There is also an accelerating trend toward network
turned byt r acer out e, but it corresponds to a real Security that will create a highly uncooperative en-
physical device and branching point. To the best of our Vironment for active probing—firewalls designed to

knowledge, the detected element is a bandwidth limi- Protect information may not honor requests for rout-

tation device. ing information, special packet handling (multicast,
TTL, etc.) and other network transport protocols re-
5. CONCLUSION AND FUTURE DIRECTIONS QUiI’Ed by many current probing techniques. This has

_ _ . _ prompted investigations into more passive traffic mon-
This article has provided an overview of the area jioring techniques, for example, based on sampling
of large-scale inference and tomography in commu- TCp traffic streams (Padmanabhan, Qiu and Wang,
nication networks. As is evident from the limited 2qp2: Tsang, Coates and Nowak, 2001). Furthermore,
scale of the simulations and experiments discussedihe yltimate goal of carrying out network tomography
in this article, the field is emerging. Deploying mea- on a massive scale poses a significant computational
surement/probing schemes and evaluating inferencechallenge. Decentralized processing and data fusion
algorithms for larger networks is the next key step. will probably play an important role in reducing both
Statistics will continue to play an important role in the computational burden and the high communica-

this area and in this section we attempt to stimulate tion overhead of centralized data collection from edge
the reader with an outline of some of the many open nodes.

issues. These issues can be divided into extensions of The majority of work reported to date has focused
the theory and potential networking application areas. on reconstruction of network parameters which may
The spatiotemporally stationary and independent be only indirectly related to the decision-making ob-
traffic and network transport models that currently jectives of the end-user regarding the existence of
dominate network tomography research have limi- anomalous network conditions. An example of this
tations, especially in tomographic applications that is bottleneck detection considered by Shih and Hero
involve heavily loaded networks. Since one of the prin- (2001) and Ziotopolous, Hero and Wasserman (2001)
cipal applications of network tomography is to detect as an application of reconstructed delay or loss esti-
heavily loaded links and subnets, relaxation of these mation. Other important decision-oriented applications
assumptions continues to be of great interest. Somemay be detection of coordinated attacks on network re-
recent work on relaxing spatial dependence and tem-sources, network fault detection and verification of ser-
poral independence has appeared in unicast (Shih andices.
Hero, 2001) and multicast (Caceres et al., 1999) set- Finally, the impact of network monitoring, which is
tings. However, we are far from the point of being able the subject of this article, on network control and pro-
to implement flexible yet tractable models which si- visioning could become the application area of most
multaneously account for long time traffic dependence, practical importance. Admission control, flow control,
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service level verification, service discovery and effi-
cient routing could all benefit from up-to-date and
reliable information about link and router level perfor-

mances. The big question is, Can statistical methods be
developed which ensure accurate, robust and tractable

monitoring for the development and administration of
the Internet and future networks?
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