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Model Uncertainty
Merlise Clyde and Edward I. George

Abstract. The evolution of Bayesian approaches for model uncertainty over
the past decade has been remarkable. Catalyzed by advances in methods
and technology for posterior computation, the scope of these methods has
widened substantially. Major thrusts of these developments have included
new methods for semiautomatic prior specification and posterior exploration.
To illustrate key aspects of this evolution, the highlights of some of these
developments are described.
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1. INTRODUCTION

Advances in computing technology over the past
few decades have allowed for the consideration of
an increasingly wider variety of statistical models for
dataY. It is now often routine to consider many possi-
ble models, sayM1, . . . ,MK , where each modelMk

consists of a family of distributions{p(Y|θk,Mk)}
indexed by θk , a (possibly vector) parameter. For
such setups, the Bayesian approach provides a natural
and general probabilistic framework that simultane-
ously treats both model and parameter uncertainty.
Coupled with the advent of Markov chain Monte
Carlo (MCMC) methods for posterior computation
(Gelfand and Smith, 1990; Besag and Green, 1993;
Smith and Roberts, 1993; Tierney, 1994; Andrieu,
Doucet and Robert, 2004, this issue, for a histori-
cal overview and discussion of recent advances), the
development and application of Bayesian methods
for model uncertainty (Hodges, 1987; Draper, 1995;
Hoeting, Madigan, Raftery and Volinsky, 1999; Berger
and Pericchi, 2001; Chipman, George and McCulloch,
2001) has seen remarkable evolution over the past
decade. Before discussing some of the major innova-
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tions that have occurred, let us lay out the essential
ideas of the approach.

The comprehensive Bayesian approach for multi-
ple model setups proceeds by assigning a prior prob-
ability distribution p(θ k|Mk) to the parameters of
each model, and a prior probabilityp(Mk) to each
model. This prior formulation induces a joint distribu-
tion p(Y, θ k,Mk) = p(Y|θk,Mk)p(θk|Mk)p(Mk)

over the data, parameters and models. In effect, these
priors serve to embed the various separate models
within one large hierarchical mixture model. Under
this full model, the data are realized in three stages: first
the modelMk is generated fromp(M1), . . . , p(MK);
second the parameter vectorθk is generated from
p(θk|Mk); third the data Y are generated from
p(Y|θk,Mk). Through conditioning and marginaliza-
tion, the joint distributionp(Y, θk,Mk) can be used to
obtain posterior summaries of interest.

Margining out the parametersθ k and conditioning
on the dataY yields the posterior model probabilities

p(Mk|Y) = p(Y|Mk)p(Mk)∑
k p(Y|Mk)p(Mk)

,(1)

where

p(Y|Mk) =
∫

p(Y|θk,Mk)p(θ k|Mk) dθk(2)

is the marginal likelihood ofMk . [When p(θ k|Mk)

is a discrete distribution, integration in (2) is replaced
by summation.] Under the full three-stage hierarchical
model interpretation for the data,p(Mk|Y) is the
conditional probability thatMk was the actual model
generated at the first stage.
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Based on these posterior probabilities, pairwise com-
parison of models is summarized by the posterior odds

p(Mk|Y)

p(Mj |Y)
= p(Y|Mk)

p(Y|Mj )
× p(Mk)

p(Mj )
.(3)

This expression reveals how the data, through the
Bayes factorB[k : j ] ≡ p(y|Mk)

p(y|Mj )
, updates the prior odds

O[k : j ] = p(Mk)
p(Mj )

to yield the posterior odds. The

Bayes factorB[k : j ] summarizes the relative support
for Mk versusMj provided by the data. Note that
the Bayes posterior model probabilities (1) can be
expressed entirely in terms of Bayes factors and prior
odds as

p(Mk|Y) = B[k : j ]O[k : j ]∑
k B[k : j ]O[k : j ] .(4)

Insofar as the priorsp(θk|Mk) andp(Mk) provide
an initial representation of model uncertainty, the
model posteriorp(M1|Y), . . . , p(MK |Y) provides a
complete representation of postdata model uncertainty
that can be used for a variety of inferences and
decisions. By treatingp(Mk|Y) as a measure of the
“truth” of modelMk , a natural and simple strategy for
model selection is to choose the most probableMk ,
the modal model for whichp(Mk|Y) is largest.
This and other strategies can be motivated by utility
considerations as we will discuss in Section 6. Model
selection may be useful for testing a theory represented
by one of a set of carefully studied models, or it may
simply serve to reduce attention from many speculative
models to a single useful model. However, in problems
where no single model stands out, it may be preferable
to report a set of models with high posterior probability
along with their probabilities to convey the model
uncertainty.

Bayesian model averaging is an alternative to
Bayesian model selection that incorporates rather than
ignores model uncertainty. For example, suppose inter-
est focused on the distribution ofYf, a future obser-
vation from the same process that generatedY. Under
the full model for the data induced by the priors, the
Bayesian predictive distribution ofYf is obtained as

p(Yf|Y) = ∑
k

p(Yf|Mk,Y)p(Mk|Y),(5)

a posterior weighted mixture of the conditional predic-
tive distributions

p(Yf|Mk,Y)
(6)

=
∫

p(Yf|θk,Mk)p(θk|Mk,Y) dθk.

By averaging over the unknown models,p(Yf|Y)

incorporates the model uncertainty embedded in the
priors. A natural point prediction ofYf is obtained as
the mean ofp(Yf|Y), namely

E(Yf|Y) = ∑
k

E(Yf|Mk,Y)p(Mk|Y).(7)

Such model averaging or mixing procedures have been
developed and advocated by Leamer (1978b), Geisser
(1993), Draper (1995), Raftery, Madigan and Volinsky
(1996) and Clyde, DeSimone and Parmigiani (1996).

A major appeal of the Bayesian approach to model
uncertainty is its complete generality. In principle,
it can be applied whenever data are treated as a real-
ization of random variables, a cornerstone of model
statistical practice. The past decade has seen the de-
velopment of innovative implementations of Bayesian
treatments of model uncertainty for a wide variety of
potential model specifications. Each implementation
has required careful attention to prior specification and
posterior calculation. The evolution of these innova-
tions is nicely illustrated in the context of the variable
selection problem, on which we focus next.

2. VARIABLE SELECTION UNCERTAINTY

For a given response variable of interestY, and a set
of potential predictorsX1, . . . ,Xp, the problem of vari-
able selection, or subset selection as it is often called,
is one of the most fundamental and widespread model
selection problems in statistics (see George, 2000;
Miller, 2002). Often vaguely stated as the problem of
selecting the “best” predictor subset forY, Bayesian
approaches to this problem encourage the formula-
tion of more precise objectives. By providing an ex-
plicit description of model uncertainty, which here can
be thought of as “variable selection uncertainty,” the
Bayesian hierarchical mixture approach transforms the
problem into one of choosing the appropriate proce-
dure to exploit posterior information. It reveals that,
depending on how the solution is going to be used,
model averaging might be a preferable alternative to
model selection (see Section 6), a curious twist for the
so-called variable selection problem.

The variable selection problem is usually posed as
a special case of the model selection problem, where
each model under consideration corresponds to a dis-
tinct subset ofX1, . . . ,Xp. It is most familiar in the
context of multiple regression where attention is re-
stricted to submodels of the normal linear model. Let-
ting γ index the subsets ofX1, . . . ,Xp, each submodel
is of the form

Mγ : Y = 1β0 + Xγ βγ + ε,(8)
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whereXγ is the design matrix whose columns corre-
spond to theγ th subset,βγ is the vector of regression
coefficients for theγ th subset andε ∼ Nn(0, σ 2I ).
Many of the fundamental developments in variable
selection, both Bayesian and non-Bayesian, have oc-
curred in the context of the linear model, in large
part because its analytical tractability greatly facil-
itates insight and computational reduction, and be-
cause it provides a simple first-order approximation
to more complex relationships. Initial and fundamen-
tal Bayesian mixture model approaches to variable se-
lection uncertainty for the general normal linear model
include Leamer (1978a, b), Zellner and Siow (1980),
Zellner (1984), Stewart and Davis (1986), Mitchell and
Beauchamp (1988), George and McCulloch (1993),
Geweke (1996), Clyde, DeSimone and Parmigiani
(1996), Smith and Kohn (1996), George and
McCulloch (1997) and Raftery, Madigan and Hoeting
(1997). The univariate regression setup above extends
naturally tomultiple response models where each row
of Y is multivariate normal. Bayesian approaches for
variable selection uncertainty in multivariate regres-
sion models were developed by Brown, Vannucci and
Fearn (1998, 2002).

The importance of the linear variable selection prob-
lem has been greatly enhanced by the realization
that it is a canonical version for nonparametric re-
gression, a problem of growing current interest. Let-
ting y and x = (x1, . . . , xp) be elements ofY and
X = (X1, . . . ,Xp), nonparametric regression approxi-
mates the unknown regression functionE(y|x) as a
linear combination of a finite number of basis functions
of x. For example, in the simple case wherex is uni-
variate, regression spline representations are obtained
using truncated power series basis functions

E(y|x) =
q∑

i=0

xiαi +
k∑

j=1

(x − tj )
q
+βj ,(9)

whereq is the order of the spline,(·)+ is the positive-
part function andt1, . . . , tk are the knot locations.
Because removing(x − tj )

q
+ is equivalent to removing

the knot attj , uncertainty about the knot locations,
which are crucial for fitting, corresponds directly to
linear variable selection uncertainty. Another powerful
nonparametric regression representation ofE(y|x) is
in terms of a multiresolution wavelet basis,

E(y|x) = β0 +
J−1∑
j=1

n2j−J∑
i=1

φji(x)βji,(10)

where φji(x) = 2−j/2ψ(2−j x − i) are scalings and
translations of a mother waveletψ(x). Variable selec-
tion uncertainty here too corresponds to uncertainty
about which basis variables to include, which is cru-
cial for determining the appropriate degree of smooth-
ness of the regression function. Bayesian variable
selection approaches for this and other nonparametric
regression problems have proved to be very successful.
For examples of the potential of Bayesian regression
spline approaches see Smith and Kohn (1996, 1997),
Denison, Mallick and Smith (1998a, c), Wood and
Kohn (1998), Shively, Kohn and Wood (1999), Hansen
and Yu (2001), Wood, Kohn, Shively and Jiang (2002),
Liang, Truong and Wong (2001) and Hansen and
Kooperberg (2002). For examples of the potential
of Bayesian wavelet regression see approaches by
Chipman, Kolaczyk and McCulloch (1997), Clyde,
Parmigiani and Vidakovic (1998), Abramovich,
Sapatinas and Silverman 1998 and Kohn, Marron and
Yau (2000), for example. For further reading, see
the article by Müller and Quintana (2004, this is-
sue) and the book by Denison, Holmes, Mallik and
Smith (2002). Recent developments using overcom-
plete representations through frames where the number
of variablesp is potentially greater thann show great
promise for adaptive, sparse representations of func-
tions (Wolfe, Godsill and Ng, 2004).

Finally, an important and natural generalization of
the linear variable selection problem is to the class
of generalized linear models (GLMs) (McCullagh
and Nelder, 1989). GLMs allow for any exponential
family distribution for Y. In addition to the normal,
these include the binomial, multinomial and Poisson
families, which may be more appropriate whenY is
discrete. WhenY is discrete categorical data, such
models are sometimes referred to as classification
models. When there is variable selection uncertainty,
each GLM subset model for the regression function
relates the conditional mean ofE(Y|X) to Xγ βγ via
a link functiong,

Mγ : g
(
E(Y|X)

) = Xγ βγ .(11)

In addition to variable selection uncertainty here,
g may also be treated as an unknown parameter
(Ntzoufras, Dellaportas and Forster, 2003). Going fur-
ther, both (8) and (11) also may be enhanced by
introducing additional parameters, for example, re-
placing Y by Yα to allow for a Box–Cox transfor-
mation (Hoeting, Raftery and Madigan, 2002). By
extending the parameter prior, the introduction of
such parameters poses no essential difficulty for the
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Bayesian approach. Illustrations of the success of the
Bayesian approach for variable selection uncertainty
in generalized linear models can be found in George,
McCulloch and Tsay (1996), Raftery (1996), Clyde
(1999), Ibrahim, Chen and MacEachern (1999), Chen,
Ibrahim and Yiannoutsos (1999), Ibrahim, Chen and
Ryan (2000), Chen, Ibrahim, Shao and Weiss (2003),
Dellaportas and Forster (1999), Ntzoufras, Forster and
Dellaportas (2000) and Wakefield and Bennett (1996).

3. BAYESIAN VARIABLE SELECTION EVOLVES

Implementation of the Bayesian mixture approach
entails two challenges: prior specification and posterior
calculation. A key consideration in meeting these
challenges for the variable selection problem is that the
number of subset models 2p grows so rapidly withp.
In this section, we describe a thread of developments
that illustrates how this aspect influenced attempts to
meet these challenges. Of course, this is only one story
and there are many other interesting threads in the wide
variety of papers mentioned in the previous section.

Early Bayesian mixture model formulations for the
variable selection setup (8) anticipated many features
of current Bayesian approaches such as particular prior
specification forms and model averaging; see Leamer
(1978a, b), Zellner and Siow (1980), Zellner (1984),
Stewart and Davis (1986) and Mitchell and Beauchamp
(1988). Recognizing the critical importance of poste-
rior computation, especially for largep, this work also
contained prescient suggestions such as importance
sampling and branch-and-bound reduction strategies.
Rapid advances in the speed and capacity of computing
technology over the following decade would greatly
enhance the potential of these methods.

However, a most influential innovation was the
advent of MCMC methods such as the Gibbs sampler
and the Metropolis–Hastings algorithms (Gelfand and
Smith, 1990; Besag and Green, 1993; Smith and
Roberts, 1993). Development of Bayesian variable
selection quickly took off when it became apparent
that MCMC algorithms could be used to simulate a
(sequentially dependent) sample

γ (1),γ (2),γ (3), . . .(12)

that was converging in distribution to the posterior
model probabilitiesp(γ |Y) (George and McCulloch,
1993; Smith and Kohn, 1996; Geweke, 1996; Clyde,
DeSimone and Parmigiani, 1996; George and
McCulloch, 1997; Raftery, Madigan and Hoeting,
1997). Such a sequence could be used to search for

high probability models for model selection and to ob-
tain posterior weighted estimates for model averaging.

The availability of such MCMC strategies for ex-
ploration of the model posterior had an interesting
effect on the choice of parameter priors. A major ini-
tial appeal of MCMC methods was that they could
be used with wide classes of priors, thus emancipat-
ing Bayesian analysis from the constraint of using
conjugate priors that had allowed for closed form pos-
terior computation. However, for the purpose of explor-
ing the model posterior, it was quickly realized that
the use of conjugate priors offered tremendous com-
putational advantages both for simulating and extract-
ing information from (12), a huge priority for the large
model spaces which arose in variable selection prob-
lems. The key advantages provided by conjugate pri-
ors stemmed from the fact that they yielded rapidly
computable closed form expressions for the marginal
distributionsp(Y|γ ). The advantages were twofold.

First, closed forms allowed for Metropolis–Hastings
(MH) algorithms to simulate (12) as a Markov chain
directly fromp(γ |Y). Given the model sequence (12)
up to γ (k), such algorithms proceed by simulating a
candidateγ ∗ for γ (k+1) from a proposal distribution
j (γ ∗|γ (k)). Then γ (k+1) is set equal toγ ∗ with
probability

min
{

1,
p(Y|γ ∗)p(γ ∗)
p(Y|γ )p(γ )

× j (γ |γ ∗)
j (γ ∗|γ )

}
,(13)

and otherwiseγ (k+1) remains atγ (k). The availabil-
ity of p(Y|γ ) was crucial for the rapid calculation
of (13). A special case is the Metropolis algorithm
with a symmetric random walk on model indicators
so that the acceptance ratio is just the Bayes fac-
tor for comparing modelγ ∗ to model γ (k). While
the Metropolis algorithm always accepts moves to
higher probability models, making it useful for find-
ing the highest probability model, it and other MCMC
algorithms occasionally accept moves to models re-
ceiving lower probability. This feature allows these
algorithms to escape from local modes, unlike greedy
search and stepwise methods. Attention quickly fo-
cused on the development of better and more effi-
cient proposal distributionsj (γ ∗|γ ), which governed
the movements of the algorithm around the model
space. Initial implementations of this algorithm, cor-
responding to different choices ofj , included the con-
jugate version of stochastic search variable selection
(SSVS) (George and McCulloch, 1997) and Markov
chain Monte Carlo model composition (MC3) (Raftery,
Madigan and Hoeting, 1997).
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Just as important, the availability of closed forms
for p(Y|γ ) made it possible to rapidly compute exact
posterior odds or Bayes factors for comparison of any
two of the sampled models in (12). Such exact values
were far more reliable than sample frequency posterior
estimates, especially for large model spaces where
many of the sampled models would typically be visited
only once. Within the set of sampled models, this
allowed for exact selection of the modal model, and
determination of the extent to which this modal model
dominated the other models. LettingS stand for the
set of sampled models, exact values forp(Y|γ ) also
allowed for the exact calculation of the renormalized
estimates of posterior model probabilities

p̂(γ |Y) = p(Y|γ )p(γ )∑
γ ′∈S p(Y|γ ′)p(γ ′)

.(14)

Such simulation consistent estimates take full advan-
tage of the information inp(Y|γ ). For the purpose
of model averaging, sucĥp(γ |Y) can be used instead
of p(γ |Y) to provide simulation consistent estimates
of (5) and (7) and other quantities of interest (Clyde,
DeSimone and Parmigiani, 1996; Raftery, Madigan
and Hoeting, 1997). Finally, it should also be men-
tioned that the availability ofp(Y|γ ) also facilitated
other viable computational alternatives such as impor-
tance sampling for model averaging estimation (Clyde,
DeSimone and Parmigiani, 1996).

Of the variety of conjugate parameter prior specifi-
cations considered for the normal linear variable selec-
tion problem, Zellner’sg-prior formulation (Zellner,
1986) has attracted particular attention. Lettingpγ de-
note the number of predictor variables in theγ th
subset, this formulation is

p(βγ |γ , g) = Npγ

{
0, gσ 2(XT

γ Xγ )−1}(15)

for a positive hyperparameterg, and

p(β0, σ
2|γ ) ∝ 1/σ 2,(16)

where all the predictors have been recentered at 0
to remove dependence on the intercept. For several
reasons, this limiting version of the usual normal-
inverse Gamma conjugate prior gradually emerged as
a default conventional prior of choice. To begin with,
it yields rapidly computable closed form expressions
for p(Y|γ ), in part because the prior covariance is
proportional to(XT

γ Xγ )−1, which avoids a ratio-of-
determinants calculation. Indeed, the Bayes factor for
any modelγ with respect to the null model (intercept
only) has the simple form

B[γ : 0] = (1+ g)(n−pγ −1)/2

(17)
· (

1+ g(1− R2
γ )

)−(n−1)/2
,

where R2
γ is the usual coefficient of determination.

To further reduce computational overhead of comput-
ing (13) for MH algorithms, such priors allow for effi-
cient updating routines (George and McCulloch, 1997;
Smith and Kohn, 1996). Such priors are also condition-
ally compatible in the sense that each submodel prior
is obtained via a conditioning of the full model prior
(Dawid and Lauritzen, 2001). Most important, such
priors require only the tuning of a single hyperpara-
meterg, which controls the expected size of the coef-
ficients inβγ , thereby facilitating their semiautomatic
use. However, a drawback is that model comparisons
based ong-priors have an undesirable inconsistency
property, as discussed in Berger and Pericchi (2001).
For any fixedg, the Bayes factorB[γ : 0] in (17)
goes to(1 + g)(n−pγ −1)/2 as R2

γ goes to 1.0. Thus,
for a fixed sample size, the Bayes factor is bounded
no matter how overwhelmingly the data supportγ

(Berger and Pericchi, 2001). See Berger, Ghosh and
Mukhopadhyay (2003) for a discussion of such incon-
sistency in the context of nonparametric regression.

Turning to model space prior specification, a default
choice that has emerged is the independent Bernoulli
prior

p(γ |w) = wpγ (1− w)p−pγ ,(18)

which, like theg-prior, is controlled by a single hyper-
parameterw ∈ (0,1) (George and McCulloch, 1993,
1997; Raftery, Madigan and Hoeting, 1997). Under
this prior, each predictor is independently included in
the model with the same probabilityw. This prior in-
cludes the uniform distribution over models,w = 1/2,
which was initially considered by many as the natural
“noninformative” choice. However, in the context of
variable selection, the uniform distribution over models
induces a Binomial distribution on the model sizepγ ,
with prior expectation that half of the variables will be
included. The more general priorp(γ |w) allows for
the additional flexibility of controllingw, the expected
proportion of predictors in the model. Another useful
alternative is to assign a truncated Poisson distribution
to the number of components in the model (Denison,
Mallick and Smith, 1998b). This can be viewed as
a limiting version ofp(γ |w) for large p small w,
and may be an appropriate way to represent prior ex-
pectations of sparsity. Elaborations of the Bernoulli
prior to handle structured dependence between vari-
ables, such as occur with interactions, polynomials,
lagged variables or indicator variables, were developed
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by Chipman (1996). A limitation of the Bernoulli pri-
ors is that they may accumulate too much prior proba-
bility in clusters of similar models when there is severe
multicollinearity(George, 1999).

Implementation of the Bernoullig-prior combi-
nation requires values for the two hyperparameters
g and w. For this purpose, it was quickly realized
that settingg arbitrarily large, a typical “noninforma-
tive” strategy for estimation problems, could lead to
misleading results in the model uncertainty context.
Why? Because very largeg values can induce the
well-known Lindley–Bartlett paradox (Bartlett, 1957),
where Bayes factors tend to overwhelmingly favor the
null model for all but very extreme parameter esti-
mates. Thus, a variety of default choices withw = 1/2
but g no larger than 10,000 were initially recom-
mended on the basis of reasonable performance in
simulations and applications (Clyde, DeSimone and
Parmigiani, 1996; Smith and Kohn, 1996; George
and McCulloch, 1997; Raftery, Madigan and Hoeting,
1997). To shed further light on the effect of different
values ofg andw, George and Foster (2000) showed
that, for fixed values ofσ 2, different choices ofg
andw corresponded exactly to popular model selec-
tion criteria, such as the Akaike information criterion
(AIC; Akaike, 1973), the Bayesian information crite-
rion (BIC; Schwarz, 1978) and the risk inflation cri-
terion (RIC; Foster and George, 1994), in the sense
that the highest posterior model would be the same
as that model selected by the criteria. Through simu-
lation studies, Fernández, Ley and Steel (2001) recom-
mended RIC calibrated priors whenn < p2 and BIC
calibrated priors otherwise. In nonparametric mod-
els, such as wavelet regression wherep = n, there
are cases where priors calibrated to BIC have better
predictive performance than prior distributions cali-
brated to RIC, and vice versa (Clyde, Parmigiani and
Vidakovic, 1998). It gradually became clear, through
simulation studies and asymptotic arguments, that no
one default choice forg andw would “perform” well
for all contingencies (Fernández, Ley and Steel, 2001;
Hansen and Yu, 2001; Berger and Pericchi, 2001).

The essential difficulty of using fixed values for
g andw was that different values put different prior
weights on model features. For example, smallw

and largeg concentrate the prior on parsimonious
models with large coefficients, whereas largew and
smallg concentrate the prior on saturated models with
small coefficients. To avoid the difficulty of preselect-
ing g and w, George and Foster (2000) and Clyde

and George (2000) proposed and developed empiri-
cal Bayes (EB) methods that used estimatesĝ and
ŵ based on the data. Such methods provided auto-
matic prior specifications and had the computational
convenience of theg-prior formulation. Motivated by
information theory, Hansen and Yu (2001) developed
related approaches that use model specific (local EB)
estimates ofg. The global EB procedure (one com-
mon g in all models) borrows strength from all mod-
els in estimatingg (Clyde, 2001), but can be difficult
to implement in conjunction with stochastic search in
high-dimensional problems; the one exception where
global EB is easier to implement is orthogonal re-
gression, which arises naturally in the wavelet setting
(Clyde and George, 2000).

A natural alternative to these EB methods are fully
Bayes (FB) treatments that put priors onw and/org.
Putting a uniform or Beta prior onw induces a
Beta-binomial prior onγ , and putting an inverse
Gamma(1/2, n/2) prior on g, as recommended by
Zellner and Siow (1980), leads to a multivariate Cauchy
prior on βγ . Such priors have heavier tails than the
Bernoulli g-prior combination and are often recom-
mended from a Bayesian robustness perspective. Such
FB approaches, including the use of Strawderman pri-
orsp(g) ∝ (1+g)−a/2 (Strawderman, 1971) that yield
closed form marginals with Cauchy-like tails, have
been recently investigated (Liang et al., 2003; Cui,
2002; Johnstone and Silverman, 2004; Wang, 2002).
For the wavelet regression problem, Johnstone and
Silverman (2004) show that empirical Bayes estima-
tion of w coupled with heavy tailed priors forβγ , such
as the Cauchy or double exponential, yields adaptive
thresholding rules that yield optimal rates of conver-
gence for various smoothness classes of functions.

4. BEYOND VARIABLE SELECTION UNCERTAINTY

Rapid advances in computational power and MCMC
allowed Bayesian treatment of model uncertainty in
other classes of problems, in particular, tree models
and graphical models. The appeal of these models, as
with other hierarchical models, is that they exploit local
dependencies (and hence can take advantage of local
calculations) to model complex global structures.

4.1 Tree Models

Motivated by the CART formulation of Breiman,
Friedman, Olshen and Stone (1984), tree models of-
fer a flexible alternative to additive regression mod-
els such as (8) and (11). The basic idea is to partition
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the X values so that the distribution ofY within each
subset of the partition is captured by a (hopefully sim-
ple) parametric model. The partition is accomplished
by a binary treeT that assigns each observation(y, x)

in (Y,X) to a subset of the partition with simple split-
ting rules of the form{x ∈ A} or {x /∈ A}. Beginning
with a splitting ruleat the root node, eachx is assigned
to one of the terminal nodes ofT by a sequence of
splitting rules at each of the intermediate nodes. The
terminal node ofT then associates the observation with
a probability distribution fory|x.

Letting T1, . . . , Tb denote theb terminal nodes of a
particular treeT , and lettingpj (y|x, θj ) denote the
distribution corresponding toTj , the tree model for
each observation can be expressed as

MT : p(y|x) =
b∑

j=1

p(y|x, θj ) I {x ∈ Tj }.(19)

For a fixed parametric family of terminal node dis-
tributions, the model uncertainty here stems from the
choice of a partition treeT . Initial Bayesian treatments
of this problem (Buntine, 1992; Chipman, George
and McCulloch, 1998; Denison, Mallick and Smith,
1998b) considered simple parametric distributions for
p(y|x, θj ) such as the Bernoulli or Normal that did not
depend onx. More recently, extensions using linear
and generalized linear models forp(y|x, θj ) have been
developed by Chipman, George and McCulloch (2001,
2003). For further references on these and closely
related partition models, see the book by Denison
et al. (2002).

4.2 Graphical Models

Graphical models (see Jordan, 2004, this issue)
provide graph theoretic representations of probability
models that greatly facilitate the formulation of multi-
variate models for complex phenomena. Recent devel-
opments concerning model uncertainty have focused
on identifying latent graphical structure that encodes
conditional independence relationships with the pres-
ence or absence of edges connecting variables in the
graph. Bayesian treatments of model selection and ac-
counting for model uncertainty for discrete graphical
models, such as directed acyclic graphs, were consid-
ered by Madigan and Raftery (1994), Madigan and
York (1995) and Dellaportas and Forster (1999). For
multivariate Gaussian data, the model selection prob-
lem can be viewed as a problem in covariance selection
(Dempster, 1972), where zeros in the precision matrix
(the inverse covariance matrix) encode various condi-
tional independence specifications (Giudici and Green,

1999; Smith and Kohn, 2002; Wong, Carter and Kohn,
2003). With decomposable graphical models and con-
jugate priors, explicit marginal likelihoods are avail-
able, allowing the use of MH to stochastically explore
the model space. However, even with a moderate num-
ber of variables, the model space is astronomical in
size so that efficient proposal distributions are needed.
Extensions to nondecomposable models add additional
complexities as marginal likelihoods are not available
and potentially high-dimensional integrals must be ap-
proximated (Dellaportas, Giudici and Roberts, 2003;
Roverato, 2002; Atay-Kayis and Massam, 2002). This
is typical of many other model selection and variable
selection problems where closed form marginal likeli-
hoods and Bayes factors are unavailable.

5. ESTIMATING BAYES FACTORS
AND MARGINALS

While the class of models that permits analytically
tractable marginal likelihoods covers a wide range of
applications, generalized linear models, hierarchical
mixed or random effects models, nondecomposable
Gaussian graphical models, for example, do not al-
low closed form expressions for marginal likelihoods.
Methods based on computing the marginal likelihoods
for each model using Monte Carlo methods of integra-
tion, such as importance sampling, are often difficult
to implement in moderate to high-dimensional models.
Such models, however, are highly amenable to MCMC
methods for sampling from model specific posteriors
for parameters, leading to a range of approaches to
estimate either marginals or Bayes factors using the
output from MCMC. These methods can be broken
down into two groups; those that involve running a
single chain for each model and indirectly estimating
marginal likelihoods or Bayes factors from the output,
or methods based on constructing one Markov chain
that samples from the joint parameter–model space.
Han and Carlin (2001) provide a recent comparison
of several approaches that have broad applicability for
model selection.

5.1 Single Chain Methods

Chib (1995) proposed a method of estimating mar-
ginal likelihood based on inverting the identity behind
Bayes’s theorem,

p(Y|Mk) = p(Y|θ k,Mk)p(θ k|Mk)

p(θk|Y,Mk)
,(20)

which holds for anyθ k , in particular forθ∗
k , a fixed

point of high probability or the MLE. When
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p(θk|Y,Mk) is unavailable, but closed form full con-
ditionals are available, Chib (1995) uses the Gibbs
sampler to construct an estimator̂p(θk|Y,Mk) to
use in estimating the marginal likelihood (20). Chib’s
method for constructingp̂(θ k|Y,Mk) involves par-
titioning θk into blocks of parameters each having
closed form full conditional distributions (given the
other blocks of parameters). In the case of two blocks,
θk = (θk1, θ k2), the method is straightforward to im-
plement; however, extensions toB blocks require
an additional (B − 1) Gibbs samplers (per model)
and extensive bookkeeping. More recently Chib and
Jeliazkov (2001) extended the approach to Metropolis–
Hastings algorithms by exploiting the detailed balance
of MH algorithms. Whenθ k is generated in more than
one block, multiple chains per model must be executed
to estimatep(θ∗

k |Y). While theoretically the methods
of Chib (1995) and Chib and Jeliazkov (2001) can
be applied with any MCMC scheme, the extra sam-
pling and bookkeeping may limit practical application
to models where efficient MCMC algorithms exist for
low-dimensional blocked samplers.

Importance sampling (IS) has a long history of use
in estimating normalizing constants or ratios of nor-
malizing constants as in Bayes factors. However, its
efficiency depends critically on the choice of pro-
posal distributions and related IS weights. For low
dimensional variable selection problems, simple im-
portance sampling usingt-densities with location and
scale parameters based on the output of the Gibbs sam-
pler or even based on MLEs can often be very effi-
cient and should not be overlooked. Bridge sampling
(Meng and Wong, 1996), path sampling (Gelman and
Meng, 1998), ratio importance sampling (RIS; Chen
and Shao, 1997) build on standard importance sam-
pling (see also Andrieu, Doucet and Robert, 2004,
this issue). While RIS, with the optimal choice of
proposal distribution, is theoretically more efficient
than bridge or path sampling, the optimal proposal
distribution depends on the unknown Bayes factor.
Chen, Shao and Ibrahim (2000) discuss relationships
among these methods, and extensions to models with
differing dimensions. For variable selection, Ibrahim,
Chen and MacEachern (1999) and Chen, Ibrahim and
Yiannoutsos (1999) combine RIS with the importance
weighted marginal density estimator (IWMDE; Chen,
1994) to estimate Bayes factors of submodelsMk of
the full model. This can be viewed as an estimate of the
generalized Savage–Dickey density ratio (Verdinelli
and Wasserman, 1995) for Bayes factors. The key fea-
ture is that the method only requires MCMC output

from the posterior distribution for the full model to es-
timate all Bayes factors.

The above methods require an exhaustive list of
models, but can be combined with some additional
search strategy to calculate Bayes factors for a subset
of models. The “leaps and bounds” algorithm of
Furnival and Wilson (1974) has been adapted to a wide
variety of settings by Volinsky, Madigan, Raftery and
Kronmal (1997), and can be used to rapidly identify
a subset of models for further evaluation. Alternatively,
single chain methods, such as reversible jump, can
be used for both search and estimation of model
probabilities.

5.2 MCMC over Combined Model–
Parameter Spaces

Single chain methods required creating a Markov
chain over a fixed dimensional space as in the prod-
uct space search of Carlin and Chib (1995), or using
dimension matching at each iteration as in reversible
jump MCMC (RJ-MCMC; Green, 1995). Unlike the
product-space and single-chain-per-model approaches,
RJ-MCMC and variations that sample over the model
space and parameter space jointly do not require ex-
haustive enumeration of the model space and theoret-
ically can be used in moderate and large dimensional
problems. The basic iteration step in RJ-MCMC al-
gorithms can be described as follows and applies to
extremely general model selection problems.

Given the current state(θk,Mk):

1. Propose a jump to a new modelMj , j (Mj |Mk,Y)

given the current modelMk .
2. Generate a vectoru from a continuous distribution

q(u|θk,Mk,Mj ,Y).
3. Set (θj ,u∗) = g(θ k,u;Mk,Mj ), where g is a

bijection between(θ k,u) and (θj ,u∗) and the
lengths ofu andu∗ satisfypMk

+dim(u) = pMj
+

dim(u∗), wherepMk
andpMj

are the dimensions
of Mk andMj , respectively.

4. Accept the proposed move to(θj ,Mj ) with prob-
ability

α = min
{

1,
p(Y|θj ,Mj )p(θj |Mj )p(Mj )

p(Y|θk,Mk)p(θk|Mk)p(Mk)

· j (Mk|Mj ,Y)q(u∗|θ j ,Mj ,Mk,Y)

j (Mj |Mk,Y)q(u|θk,Mk,Mj ,Y)
(21)

·
∣∣∣∣∂g(θk,u;Mk,Mj )

∂(θ k,u)

∣∣∣∣
}
.

The introduction of the variablesu andu∗ ensures that
the numerator and denominator in the acceptance ratio
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are all defined with respect to a common measure, so
that at each iteration (locally) the dimensions of the two
augmented spaces are equal. The key to implementing
efficient RJ-MCMC algorithms involves constructing
model jumping proposalsj , efficient proposals foru
and an appropriate functiong mapping between the
two models. These often have to be tailored to each
specific class of problems and may require significant
tuning. Relationships of RJ-MCMC and MH–Gibbs
sampling in the linear model setting are discussed
in Clyde (1999) and Godsill (2001). Recent papers
by Dellaportas, Forster and Ntzoufras (2002), Brooks,
Giudici and Roberts (2003), Godsill (2001) and Green
(2003) discuss variations of RJ-MCMC algorithms
and construction of efficient or automatic proposal
distributions.

The recent review paper by Han and Carlin (2001)
uses several examples to compare MCMC approaches
for computing Bayes factors, such as Chib’s mar-
ginal likelihood approach, the product space search
of Carlin and Chib (1995), the Metropolized product
space method from Dellaportas, Forster and Ntzoufras
(2002) (an RJ variation of Carlin and Chib), and the
Composite Model search of Godsill (2001) (an RJ al-
gorithm that takes advantage of common parameters in
the context of variable selection). Han and Carlin found
that joint model–parameter space methods worked ad-
equately, but could be difficult to tune, particularly
the RJ formulations. The marginal likelihood methods
were easiest to program and tune, although they note
the blocking structure required may limit applications.

As with the MH methods in linear models, esti-
mates of model probabilities using Monte Carlo fre-
quencies of models from RJ-MCMC may be very
slow to converge top(γ |Y). While perhaps less im-
portant for model averaging than say model selec-
tion, construction of efficient proposal distributions
and more efficient estimates of Bayes factors and mar-
ginal likelihoods given theoutput are still critical areas
for future developments. Using RJ-MCMC for search
only and alternative approaches for estimating mar-
ginal likelihoods, such as the Laplace approximation
(Tierney and Kadane, 1986) or the Metropolized–
Laplace estimators (DiCiccio, Kass, Raftery and
Wasserman, 1997; Lewis and Raftery, 1997), can
provide more accurate results for model selection.
Sampling without replacement from the model space
(Clyde, 1999) using adaptive proposals is another al-
ternative for model search and appears to perform well
for variable selection.

5.3 Default Bayes Factors

Despite tremendous progress in Monte Carlo meth-
ods, significant effort is required to implement Monte
Carlo methods for estimating Bayes factors. As a re-
sult, the simplicity of BIC,

B[Mk :Mj ]BIC = p(Y|θ̂k)

p(Y|θ̂j )
n

(pMj
−pMk

)/2
,(22)

has made it popular as an approximation to Bayes
factors (Kass and Raftery, 1995), as it requires just
the MLE of θ under each model. In combination
with deterministic or stochastic search, BIC provides
a default method for approximating model probabil-
ities and is appealing in practical applications with
many models and/or where conventional prior spec-
ification is difficult (Hoeting et al., 1999). The soft-
ware designed for use in Hoeting et al. (1999) [as well
as other programs and articles on Bayesian model
averaging (BMA)] can be found at the BMA web pa-
ge (http://www.research.att.com/∼volinsky/bma.html).
One of the difficulties with using BIC, however, is
determining the effective sample sizen in noninde-
pendent settings, such as hierarchical models (Pauler,
1998; Pauler, Wakefield and Kass, 1999). BIC is
also not appropriate in problems where the num-
ber of parameters increases with the sample size or
other irregular asymptotics prevails (Berger, Ghosh and
Mukhopadhyay, 2003).

In addition to the concerns over the general applica-
bility and accuracy of BIC, the overwhelming need for
objective Bayesian approaches for model selection has
led to a wealth of new procedures for obtaining “de-
fault” Bayes factors, such as intrinsic Bayes factors
(IBF; Berger and Pericchi, 1996a, b, 1998), fractional
Bayes factors (FBF; O’Hagan, 1995) and expected
posterior (EP) prior (Pérez and Berger, 2000). Berger
and Pericchi (2001) review and contrast these meth-
ods with BIC and conventional prior specifications in
the context of linear models. It is well known that
marginal likelihoods constructed using improper pri-
ors lead to indeterminacies of Bayes factors and poste-
rior model probabilities. IBFs and FBFs use the idea of
“training” samples to convert an improper prior (ref-
erence priors are recommended) into a proper poste-
rior for θk . In the case of IBFs, a subset of the data is
used as a training sample, while with FBFs a fraction
b/n of the likelihood is used. This proper distribution
is then used as a prior to define the Bayes factors based
on the remaining part of the data. While the Bayes
factors do not depend on any arbitrary scaling in the
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improper priors, they do depend on the choice of train-
ing samples. In the case of IBFs, this dependency on
the training sample is eliminated by “averaging” over
all possible training samples. Two popular choices in-
clude the arithmetic IBF (AIBF), defined by arithmetic
average of IBFs over training samples, and the median
IBF (MIBF), which is the median of the IBFs over all
minimal training samples. With more than two models
under consideration, IBFs are not coherent in the sense
that B[i : j ] �= B[i :k]/B[k : j ]; nevertheless they can
be used to defineformal posterior model probabilities
(Casella and Moreno, 2002).

The EP prior also uses the idea of taking train-
ing samplesY∗ from a marginal distributionm(Y∗).
As with the IBF approach, the training sample is used
to convert an improper prior distribution into a proper
posterior distribution givenY∗; the expectation of the
resulting distribution with respect tom(Y∗) leads to
the expected posterior prior, which can then be used
to construct objective Bayes factors. While subjective
distributions form(Y∗) are of course allowable, a de-
fault choice can be obtained by sampling from the em-
pirical distribution of the data. Like the IBF and FBF,
there is no problem of indeterminacies in the definition
of Bayes factors. The EP priors are also automatically
compatible, a feature that may be difficult to achieve
with nonnested models.

Modulo computation of the Bayes factors them-
selves, these default approaches have wide applica-
bility, particularly in nonnested models, or where
conventional prior distributions are unavailable. Many
of the approaches lead to an “intrinsic” prior which can
be contrasted with conventional priors. In linear mod-
els, the intrinsic priors associated with AIBFs behave
like a mixture of multivariate Cauchy distributions.
Recently, Casella and Moreno (2002) have explored
intrinsic priors for Bayesian model selection in lin-
ear models and have developed algorithms for com-
putation and search in moderate to high dimensional
problems. EP priors also show promise for more com-
plicated problems in that they are amenable to MCMC
sampling and hence potentially can be combined with
other methods for computing Bayes factors and model
probabilities.

6. DECISION THEORETIC CONSIDERATIONS

The key object provided by the Bayesian approach
is the posterior quantification of postdata uncertainty.
Whether to proceed by model selection or model av-
eraging is determined by additional considerations that

can be formally motivated by decision theoretic con-
siderations (Gelfand, Dey and Chang, 1992; Bernardo
and Smith, 1994). Lettingu(a,	) be the utility or neg-
ative loss of actiona given the unknown of interest	,
the optimala maximizes the posterior expected utility∫

u(a,	)p(	|Y) d	,(23)

where p(	|Y) is the predictive distribution of	
givenY under the full three stage model specification.
For example, highest posterior model selection corre-
sponds to maximizing 0–1 utility for a correct selec-
tion. The model averaged point predictionE(Yf|Y)

corresponds to minimizing quadratic loss with re-
spect to the actual future valueYf. The predictive
distributionp(Yf|Y) minimizes Kullback–Leibler loss
with respect to the actual predictive distributionp(Yf|
θ k,Mk). Model selection can also be motivated with
these latter utility functions by restricting the action
space to selection. For example, for such a restriction,
Barbieri and Berger (2004) show that, for sequences of
nested models, the median posterior model minimizes
quadratic predictive loss. San Martini and Spezzaferri
(1984) investigate selection rules that maximize poste-
rior weighted logarithmic divergence.

Several authors have proposed Bayesian model se-
lection approaches that use parameter priorsp(θk|Mk)

but entirely avoid model space priorsp(M1), . . . ,

p(MK). Such an approach using maximum utility (23)
can be used wherep(	|Y) is the posterior distribu-
tion of 	 under an all-encompassing model, that is,
a model under which every other model is nested.
In one of the earliest papers on Bayesian variable se-
lection, Lindley (1968) developed such an approach
where costs for including variables were included in
the utility function and the encompassing model was
the model with all variables included. This approach
was extended to multivariate regression by Brown,
Fearn and Vannucci (1999). For some other Bayesian
selection approaches that avoid the model space prior
see Gelfand and Ghosh (1998), Draper and Fouskakis
(2000) and Dupuis and Robert (2003).

Another interesting modification of the decision
theory setup is the so-calledM-open framework under
which the “true” model is not any one of theMk under
consideration, a commonly held perspective in many
applications. One way of incorporating this aspect into
a utility analysis is by using a cross validation training
sample estimate of the actual predictive density in
place of p(	|Y); see Bernardo and Smith (1994),
Berger and Pericchi (1996b), Key, Pericchi and Smith
(1999) and Marriott, Spencer and Pettitt (2001).
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7. FUTURE DIRECTIONS

The Bayesian treatment of model uncertainty,
coupled with advances in posterior search and com-
putation, has led to an explosion of research in model
selection and model averaging. To illustrate the rapid
evolution of these methods, we have described the
highlights of some of these developments, but due to
space limitations have left out much more. What is
clear, however, is that the evolution and impact of these
Bayesian methods is far from over. New model un-
certainty challenges continue to arise in a wide va-
riety of areas, including bioinformatics, data-mining,
“inverse” problem analysis, nonparametric function
estimation, overcomplete representation and spatial–
temporal modeling. New computational advances such
as automatic RJ-MCMC (Green, 2003) and adaptive
MCMC samplers (see Andrieu, Doucet and Robert,
2004, this issue) portend powerful new approaches
for exploration of model space posteriors. Continu-
ing developments in objective Bayesian methodology
hold the promise of improved automatic prior spec-
ifications and a greater understanding of the operat-
ing characteristics of these methods. The potential of
Bayesian methods for model uncertainty has only be-
gun to be realized.
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