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1. Introduction

Researchers have increasingly been studying models from economics and from
the natural sciences where the underlying randomness contains jumps. To give
an example from financial mathematics, the classical model for a stock price is
that of a geometric Brownian motion. However, wars, decisions of the Federal
Reserve and other central banks, and other news can cause the stock price to
make a sudden shift. To model this, one would like to represent the stock price
by a process that has jumps.

This paper is a survey of some aspects of stochastic differential equations
(SDEs) with jumps. As will quickly become apparent, the theory of SDEs with
jumps is nowhere near as well developed as the theory of continuous SDEs, and
in fact, is still in a relatively primitive stage. In my opinion, the field is both
fertile and important. To encourage readers to undertake research in this area,
I have mentioned some open problems.

Section 2 is a description of stochastic integration when there are jumps.
Section 3 describes a number of the most important types of SDEs that involve
jumps. In Section 4 I discuss a few pathwise uniqueness results, and in Sec-
tion 5 I discuss some results relating to martingale problems. Section 6 concerns
the regularity of harmonic functions with respect to the corresponding integral
operators.

A forthcoming book by Applebaum [Ap] contains much information on
the subject of this paper, as well as applications to finance.
∗This is an original survey paper.
†Research partially supported by NSF grant DMS-0244737.
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2. Stochastic calculus

Before we can describe SDEs with respect to jump processes, we need to talk a
bit about the differences between the stochastic calculus for continuous processes
and for processes with jumps. Some good references for this are the volumes by
Dellacherie and Meyer [DM1], [DM2], Meyer’s course [Me], and the books by
He, Wang, and Yan [HWY], Jacod [Jd], Protter [Pr], and von Weizsäcker and
Winkler [WW]. I have some notes on the web at [Ba5]; my notes [Ba6] provide
further background on predictability.

Suppose we are given a probability space (Ω,F ,P) and a filtration {Ft}.
We suppose that the filtration satisfies the “usual conditions,” which means
that Ft is right continuous and each Ft is complete. We say that Xt is right
continuous with left limits if there exists a null set N so that if ω /∈ N , then
limu↓tXu(ω) = Xt(ω) for all t and lims↑tXs(ω) exists for all t. The French
abbreviation for this is “cádlág.” Given a process Xt that is right continuous
with left limits, let Xt− = lims↑tXs and ∆Xt = Xt −Xt−.

A stochastic process X can be viewed as a map from [0,∞) × Ω to
(usually) R. We define a σ-field P on [0,∞) × Ω, called the predictable σ-field
or previsible σ-field, by letting P be the σ-field on [0,∞)×Ω generated by the
class of stochastic processes that are adapted to the filtration {Ft} and have
left continuous paths. One can show that P is also generated by the class of
processes H(s, ω) = G(ω)1(a,b](s), where G is bounded and Fa-measurable.

Suppose At is an Ft-adapted process that is right continuous with left
limits whose paths are increasing, and let us suppose for simplicity that At is
integrable for each t. Since At ≥ As, then E [At | Fs] ≥ E [As | Fs] = As, so
trivially At is a submartingale. By the Doob-Meyer decomposition, there exists
a predictable increasing adapted process Ãt such that

At = martingale + Ãt.

We call Ãt the compensator or dual predictable projection of At. If At has paths
of bounded variation, we write At = A+

t −A−t , where A+
t and A−t are increasing

processes, and then define Ãt = Ã+
t − Ã−t .

Before defining the stochastic integral, we discuss the decomposition of
square integrable martingales. A martingaleMt is square integrable if supt EM2

t <
∞.

If Mt is a square integrable martingale that is right continuous with left
limits, for each integer i let Ti1 = inf{t : |∆Mt| ∈ [2i, 2i+1)}, Ti2 = inf{t > Ti1 :
|∆Mt| ∈ [2i, 2i+1)}, and so on. Since Mt is right continuous with left limits,
Tij → ∞ as j → ∞ for each i. Let {Sm} be some ordering of the {Tij}. We
then have a countable sequence of stopping times Si such that every jump of
M occurs at one of the Si and ∆MSi is a bounded random variable for each i.

Let us set Ai(t) = ∆MSi1(t≥Si) and set Mi(t) = Ai(t)− Ãi(t). One can
then prove the following theorem; see [Me], T.II.11 or [Ba5], Th. 2.3.

Theorem 2.1 Suppose Mt is a square integrable martingale that is right con-
tinuous with left limits and Mi(t) is defined as above. Then each Mi(t) is a



R.F. Bass/Stochastic differential equations with jumps 3

square integrable martingale and
∑∞
i=1Mi(t) converges in L2 for each t. If

M c
t = Mt −

∑∞
i=1Mi(t), it is possible to find a version of M c

t that is a square
integrable martingale with continuous paths. Moreover, M c and the Mi are mu-
tually orthogonal.

The bit about finding a version of M c is due to the fact that the infinite sum
converges in L2, but there is a null set that depends on t. In fact, it is possible
to arrange matters so that there a single null set. Saying two martingales N1(t)
and N2(t) are orthogonal means here that E [N1(T )N2(S)] = 0 for every pair of
stopping times S and T .

Recall that if Mt is a martingale, then 〈M〉t is the unique increasing
predictable process such that M2

t − 〈M〉t is a martingale. The existence and
uniqueness of 〈M〉t is guaranteed by the Doob-Meyer decomposition. If Mt is a
square integrable martingale whose paths are left continuous with right limits,
define

[M ]t = 〈M c〉t +
∑
s≤t

|∆Ms|2.

Here M c is the continuous part of M given in Theorem 2.1. One can show, using
Theorem 2.1, that M2

t − [M ]t is a martingale, and in particular, EM2
t = E [M ]t.

With this as background, we can now proceed to a definition of stochastic
integrals with respect to a square integrable martingale. We want our integrands
to be predictable. Let us take a moment to explain why this is very natural. Let
Mt = 1 +Pt∧1− t ∧ 1, i.e., a Poisson process minus its mean stopped at time 1,
and then with 1 added so that Mt is nonnegative. Let us suppose that Mt is the
price of a stock, and Hs is the number of shares we hold at time s. With this
investment strategy, it is not hard to see that the net profit (or loss) at time 1
is
∫ 1

0
HsdMs. Let T be the first time the Poisson process jumps one. If we were

allowed to choose Hs to be zero for s < T and 1 for T ≤ s, our profit at time
1 would be 1 on the event that (T ≤ 1) and 0 on the event (T > 1); we would
have made a profit without any risk (if Mt has paths of bounded variation, the
stochastic integral and Lebesgue-Stieltjes integral will coincide). The problem is
that we looked an instantaneous amount into the future to see when the Poisson
process jumped. We can’t allow that, and the way to prevent this is to require
Hs to be predictable.

Let us give the definition of stochastic integral. Suppose Mt is a square
integrable martingale with paths that are right continuous with left limits. If

Hs(ω) =
m∑
i=1

Gi(ω)1(ai,bi](s), (2.1)

where Gi is bounded and Fai-measurable, define

Nt =
∫ t

0

HsdMs =
m∑
i=1

Gi(Mt∧bi −Mt∧ai).
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Just as in [Ba3], pp. 43–44, the left hand side will be a martingale and very
similarly to the proof of [Ba3], Section I.5 with [ ] instead of 〈 〉, N2

t − [N ]t will
be a martingale, where [N ]t =

∫ t
0
H2
sd[M ]s.

If H is only P-measurable and satisfies E
∫∞

0
H2
sd[M ]s < ∞, approxi-

mate H by integrands Hn
s where each Hn

s is of the form given in (2.1). De-
fine Nn

t =
∫ t

0
Hn
s dMs. By the same proof as in [Ba3], Section I.5, the martin-

gales Nn
t converge in L2. We call the limit Nt =

∫ t
0
HsdMs. The stochastic

integral is a square integrable martingale, its paths are right continuous with
left limits, its definition is independent of which sequence Hn

s we choose, and
[N ]t =

∫ t
0
H2
sd[M ]s.

We want to generalize the definition of stochastic integral to more general
processes. For example, a Cauchy process, even if stopped at a fixed time, is
not square integrable, but we should be able to handle stochastic integrals with
respect to a Cauchy process by looking at the large jumps separately.

We say Mt is a local martingale if there exist stopping times Tn increasing
to infinity such that for each n the process Mt∧Tn is a uniformly integrable
martingale. A semimartingale is a process of the form Xt = X0 +Mt+At, where
X0 is a finite random variable that is F0-measurable, Mt is a local martingale,
and At is a process whose paths have bounded variation on [0, t] for each t. A key
result concerning semimartingales is the following reduction theorem; see [Me],
T.IV.8 or [Ba5], Th. 5.4. This is easy in the case of continuous semimartingales,
but not at all in the case of semimartingales that have jumps.

Theorem 2.2 Suppose Xt is a semimartingale. There exist stopping times Sn ↑
∞ such that Xt∧Sn = Unt +V nt , where Un is a square integrable martingale and
V n is a process whose paths have bounded variation and the total variation of
V n over the time interval [0,∞] is finite. Moreover, Unt = UnSn and V nt = V nSn
for t ≥ Sn.

If Xt is a local martingale and Sn are stopping times such as in Theorem
2.2, set Xc

t∧Sn = (Un)ct for each n and [X]t∧Sn = 〈Xc〉t∧Sn +
∑
s≤t∧Sn ∆X2

s ,
where (Un)c is defined as in Theorem 2.1. It is not hard to see that these
definition are independent of the choice of stopping times Sn.

Next we weaken the assumptions on H. A predictable process Hs is
locally bounded if there exist stopping times Rn ↑ ∞ and constants Kn such
that the process H is bounded by Kn on [0, Rn]. If H is locally bounded and X
is a semimartingale, we define

∫ t
0
HsdXs by setting∫ t

0

HsdXs =
∫ t

0

Hs∧RndU
n
s∧Sn +

∫ t

0

Hs∧RndV
n
s∧Sn

when t ≤ Rn ∧ Sn; the first integral is a stochastic integral with respect to the
square integrable martingale Un and the second is a Lebesgue-Stieltjes integral.
Since Rn ∧ Sn ↑ ∞, this defines

∫ t
0
HsdXs for all t. It can be shown that this

integral does not depend on the choice of Rn and Sn.
Itô’s formula (see [Me], T.III.3 or [Ba5], Th. 4.1) is
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Theorem 2.3 Suppose X is a semimartingale and f is a C2 function. Then
f(Xt) is also a semimartingale and we have

f(Xt) = f(X0) +
∫ t

0

f ′(Xs−)dXs + 1
2

∫ t

0

f ′′(Xs−)d〈Xc〉s

+
∑
s≤t

[f(Xs)− f(Xs−)− f ′(Xs−)∆Xs].

Note that f ′(Xs−) is a left continuous process, hence predictable. For d-dimen-
sional processes, each of whose components is a semimartingale, the obvious
generalization holds.

3. Jump processes

SDEs with respect to Lévy processes. The classical SDE with respect to Brown-
ian motion is

dXt = σ(Xt)dWt + b(Xt)dt, (3.1)

where Wt is a Brownian motion. The simplest analogue of this in the jump case
is

dXt = a(Xt−)dZt, (3.2)

where Zt is a Lévy process. To be even more specific, we might take Zt to be
a symmetric stable process of index α. Already, even in this very special case,
there are several interesting things one can say. Note that we write Xt− instead
of Xt in order that the integrand be predictable.

It would be natural to allow a process to have both a continuous compo-
nent and a jump component, so one might want to consider the SDE

dXt = σ(Xt)dWt + b(Xt)dt+ a(Xt−)dZt. (3.3)

Poisson point processes. For many applications, (3.3) is not a very good model.
For example, suppose one wants to model a stock price in such a way that the
underlying randomness is given by a jump process. For simplicity let us consider
(3.2) instead of (3.3). If Zt has a jump of size z, then Xt will have a jump of
size a(Xt−)z. However, one might very well want Xt to have a jump whose
size depends on Xt− and z, but is not necessarily linear in z. If the underlying
randomness has a big jump, the behavior of X might be qualitatively different
from the case where the underlying randomness has a small jump.

To obtain models with this extra versatility, we need to consider Poisson
point processes. See [Sk] for details. Let (S, λ) be an arbitrary measure space
(letting S = R and λ be Lebesgue measure will usually do). For each ω ∈ Ω
let µ(ω, dt, dz) be a measure on [0,∞)×S. The random measure µ is a Poisson
point process if (i) for each set A ⊂ S with λ(S) <∞ the process µ([0, t]×A) is
a Poisson process with parameter λ(A) and (ii) if A1, . . . , An are disjoint subsets
of S with λ(Ai) <∞, then the processes µ([0, t]×Ai) are independent.

Define a non-random measure ν by ν([0, t] × A) = tλ(A). If λ(A) < ∞,
then µ([0, t]×A)−ν([0, t]×A) is the same as a Poisson process minus its mean,
hence is a martingale.
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We can define a stochastic integral with respect to the compensated point
process µ− ν as follows. Suppose H(s, z) = H(ω, s, z) is of the form

H(s, z) =
n∑
i=1

Ki(ω)1(ai,bi](s)1Ai(z), (3.4)

where for each i the random variable Ki is Fai-measurable and Ai ⊂ S with
λ(Ai) <∞. We define

Nt =
∫ t

0

∫
H(s, z) (µ− ν)(ds, dz) =

n∑
i=1

Ki(µ− ν)(((ai, bi] ∩ [0, t])×Ai).

By linearity it is easy to see that Nt is a martingale. It is also easy to see that
N c = 0 and

[N ]t =
∫ t

0

∫
H(s, z)2µ(ds, dz). (3.5)

With a little work one can show

〈N〉t =
∫ t

0

∫
H(s, z)2ν(ds, dz). (3.6)

Suppose H(s, z) is a predictable process in the following sense: H is mea-
surable with respect to the σ-field generated by all processes of the form (3.4).
Suppose also that E

∫∞
0

∫
H(s, z)2ν(ds, dz) < ∞. If we take processes Hn

of the form (3.4) converging to H in an appropriate way, the corresponding
Nn
t =

∫ t
0

∫
Hn(s, z)d(µ − ν) will converge in L2, and we call the limit Nt the

stochastic integral of H with respect to µ−ν. One can show that (3.5) and (3.6)
are still valid. One may think of the stochastic integral as follows: if µ assigns
mass one to the point (t, z), then Nt jumps at this time t and the size of the
jump is H(t, z).

Now consider a stochastic differential equation with respect to a com-
pensated Poisson point process. Look at

dXt = σ(Xt) dWt + b(Xt) dt+
∫
F (Xt−, z) d(µ− ν), X0 = x0. (3.7)

This means

Xt = x0 +
∫ t

0

σ(Xs)dWs +
∫ t

0

b(Xs)ds+
∫ t

0

∫
F (Xs−, z)(µ− ν)(ds, dz),

where Wt is a standard Brownian motion on R. This is a quite general formu-
lation, as is shown in Çinlar and Jacod [CJ].
Martingale problems. For simplicity we consider here the SDE (3.7) with σ ≡
b ≡ 0. Suppose f ∈ C2 and suppose that Xt is the solution to

dXt =
∫
F (Xt−, z) d(µ− ν). (3.8)
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By Itô’s formula (Theorem 2.3),

f(Xt) = f(X0) +
∫ t

0

f ′(Xs−)dXs +
∑
s≤t

[f(Xs)− f(Xs−)− f ′(Xs−)∆Xs].

The stochastic integral term is a martingale. We can write f(Xs) as f(Xs− +
∆Xs). The jump of Xt at time s is equal to F (Xs−, z) if µ assigns mass one to
the point (s, z), and so f(Xt)− f(X0) is equal to a martingale plus∫ t

0

∫
[f(Xs− + F (Xs−, z))− f(Xs−)− f ′(Xs−)F (Xs−, z)]µ(ds, dz).

This in turn is equal to a martingale plus∫ t

0

∫
[f(Xs− + F (Xs−, z))− f(Xs−)− f ′(Xs−)F (Xs−, z)]ν(dz, ds)

=
∫ t

0

∫
[f(Xs− + F (Xs−, z))− f(Xs−)− f ′(Xs−)F (Xs−, z)]λ(dz)ds.

If we now set

Lf(x) =
∫

[f(x+ F (x, z))− f(x)− f ′(x)F (x, z)]λ(dz), (3.9)

we then see that

f(Xt)− f(X0)−
∫ t

0

Lf(Xs−)ds

is a martingale. Since X has only countably many jumps, then the Lebesgue
measure of the set of times where Xs 6= Xs− is 0, and hence f(Xt) − f(X0) −∫ t

0
Lf(Xs)ds = f(Xt)− f(X0)−

∫ t
0
Lf(Xs−)ds. Therefore

f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds

is a martingale.
These calculations (and analogous ones when σ or b in (??) is nonzero) are

the motivation for what is known as the martingale problem. In this formulation
we take Xt to be the canonical coordinate process. One defines an integral
operator by a formula such as (3.9) and then says that a probability measure
P solves the martingale problem started at a point x0 if P(X0 = x0) = 1 and
f(Xt) − f(X0) −

∫ t
0
Lf(Xs)ds is a martingale under P whenever f ∈ C2. Note

here that a solution is a probability, not a process.
Since the number of large jumps is finite in number over any finite time

interval and the large jumps do not affect the existence or uniqueness of solu-
tions, and one wants not to worry about the integrability of

∫
|z|F (x, z)λ(dz),

one often sees operators of the form

Lf(x) =
∫

[f(x+ z)− f(x)− 1(|z|≤1)f
′(x)z]n(x, dz). (3.10)
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If n(x, dz) does not depend on x, the reader will note that in this case (3.10) is
the infinitesimal generator of a Lévy process.

An example of an operator such as (3.10) is to let

n(x, dz) =
a(x, z)
|z|1+α

dz, (3.11)

where a is bounded above and below by positive constants, and 0 < α < 2. If
a is constant, we have the infinitesimal generator of a symmetric stable process
of index α.

The extension of the notion of martingale problem to higher dimensions
causes no problems. One also often sees operators of the form L+M, where L
is as in (3.10) and

Mf(x) = 1
2σ(x)2f ′′(x) + b(x)f ′(x).

This corresponds to adding a diffusion and drift term to the jump operator.
Again, the higher dimensional analogues are what one expects.

Pseudodifferential operators. With L as in (??), let us see what we get when we
apply L to the function f(x) = eiux. We obtain

Lf(x) = eiux
∫

[eiuz − 1− iuz1(|z|≤1)]n(x, dz).

In the case where n(x, dz) does not depend on x, i.e., n(x, dz) = n(dz) for all
x, this implies that the Fourier transform of L is ψ(u), where

ψ(u) =
∫

[eiuz − 1− iuz1(|z|≤1)]n(dz).

More generally, when n(x, dz) does depend on x, we let

ψ(x, u) =
∫

[eiuz − 1− iuz1(|z|≤1)]n(x, dz),

and we call ψ(x, u) the symbol corresponding to the operator L.
By the uniqueness of the Fourier transform, we can specify an operator by

presenting n(x, dz) or we can specify the operator by giving its symbol ψ(x, u).

Dirichlet forms. Suppose one considers the operator Lf(x) = (a(x)f ′(x))′. For
this to make sense in terms of the usual notion of derivative, we need a to be
differentiable. If g is C∞ with compact support, an integration by parts gives

−
∫
g(x)Lf(x) dx =

∫
g′(x)a(x)f ′(x) dx.

The expression on the right makes sense for any measurable and bounded a,
as long as f and g are differentiable with compact support, say, and is called a
Dirichlet form, written E(f, g).
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Under minimal hypotheses, a Dirichlet form will determine the process.
See [FOT] for the basic theory of Dirichlet forms.

If we define

E(f, f) =
∫ ∫

[f(y)− f(x)]2J(dx, dy), (3.12)

where the measure J is symmetric, the associated process will be of jump type.
A special case is when J(dx dy) = |x−y|−1−αdx dy, and the associated process is
a symmetric stable processes of index α. We will briefly consider some properties
of processes associated to the Dirichlet form given in (??), called symmetric
jump processes, in the case where

J(dx, dy) =
a(x, y)
|x− y|1+α

dx dy (3.13)

and also higher dimensional analogues, where 0 < α < 2, a is bounded above
and below by positive constants, and a(x, y) = a(y, x) for all x and y. Here the
questions concern not uniqueness, since that is covered by the general theory of
Dirichlet forms, but instead properties of the corresponding process. (But see
also [AS].)

4. Pathwise uniqueness

When is the solution to (3.2) or (3.7) pathwise unique? When the coefficients
are Lipschitz coefficients, then the standard Picard iteration procedure proves
uniqueness. For example, for (3.7) we have the following, due to [Sk].

Theorem 4.1 If σ and b are bounded and Lipschitz,
∫

supx |F (x, z)|2λ(dz) <
∞ and ∫

|F (x, z)− F (y, z)|2λ(dz) ≤ c1|x− y|2

for all x, y, then there exists a solution to (3.7) and that solution is pathwise
unique.

Concerning (3.2), again, if a is bounded and Lipschitz continuous, one
would expect pathwise uniqueness, and indeed that is the case. In one dimension,
however, in view of the result of Yamada-Watanabe [YW] for SDEs with respect
to a one dimensional Brownian motion, one would hope that much weaker condi-
tions would suffice for uniqueness. For example, the Yamada-Watanabe sufficient
condition for pathwise uniqueness for diffusions is that

∫ ε
0
ρ(x)−2dx =∞ for all

ε > 0, where ρ is the modulus of continuity: |σ(x)− σ(y)| ≤ ρ(|x− y|) for all x
and y.

For solutions to (3.2) we have the following; see [Km2] and [Ba4].

Theorem 4.2 Suppose α > 1, Zt is a one dimensional symmetric stable process
of index α, and |a(x)− a(y)| ≤ ρ(|x− y|) for all x and y and∫ ε

0

1
ρ(x)α

dx =∞
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for every ε > 0. Then for every x0 ∈ R, the solution to

dXt = a(Xt−)dZt, X0 = x0,

is pathwise unique.

This result is sharp. As a corollary, if a is Hölder continuous of order 1/α,
then we have pathwise uniqueness. Note that the smaller α, the more continuity
is required.

What happens when α ≤ 1? When α < 1, the paths of Zt are of bounded
variation on finite time intervals, and I initially thought only continuity and
appropriate boundedness of a sufficed [Ba4]. However the solution constructed
there, although measurable with respect to the σ-field generated by Z, is not
adapted. In fact, when α ≤ 1, the condition that a be Lipschitz continuous
turns out to be sharp; see [BBC]. Probably the Lipschitz continuity condition
can be weakened by a logarithm term, but it does not suffice to let a be Hölder
continuous of order β for any β < 1.

For diffusions Nakao [Na] showed that bounded variation of σ suffices
for (3.1) to have a unique solution, and LeGall [LG] improved this to σ hav-
ing finite quadratic variation. What is the appropriate analogue of this for the
equation (3.2)?

A paper concerning pathwise existence along somewhat different lines is
Williams [Wi]. Here the stochastic integral is not the Itô integral, but instead
the rough integral of Lyons (cf. [Ly]), and the issue is existence.

Other papers related to pathwise properties of SDEs with jumps are [Ro]
on backward SDEs, [JMW] on approximations of solutions, and [AT], [Fu], [FK],
and [Ku] on flows of solutions.

5. Martingale problems

In this section let us discuss existence and solutions to martingale problems such
as those mentioned in Section 3. When there exists a non-degenerate diffusion
component, that term dominates the situation, and uniqueness holds. We have
the following theorem of Stroock [St]

Theorem 5.1 Suppose

Lf(x) =
d∑

i,j=1

aij(x)
∂2f

∂xi∂xj
(x) +

d∑
i=1

bi(x)
∂f

∂xi
(x) (5.1)

+
∫
Rd\{0}

[f(x+ z)− f(x)− 1(|z|≤1)∇f(x) · z]n(x, dz) (5.2)

and
(a) a is bounded and continuous and strictly elliptic;
(b) b is bounded and measurable;
(c)

∫
A
|z|2

1+|z|2n(x, dz) is bounded and continuous for each A ⊂ Rd \ {0}.
Then there is a unique solution to the martingale problem for L started at any
x0 ∈ Rd.



R.F. Bass/Stochastic differential equations with jumps 11

This result should also be compared with that of Komatsu [Km1] and that of
Lepeltier and Marchal [LM].

Suppose now that there is no diffusion component present. For early
works see [Ts1], [Ts2], and [TTW]. A special case of a result of Komatsu [Km4]
is the following.

Theorem 5.2 Suppose

Lf(x) =
∫
Rd\{0}

[f(x+ z)− f(x)− 1(|z|≤1)∇f(x) · z]
[

1
|z|d+α

dz + n0(x, dz)
]

for some α ∈ (0, 2), n∗(dz) = supx n(x, dz), and∫
(1 ∧ |z|α)n∗(dz) <∞.

Then there is a unique solution to the martingale problem for L started at any
point x0.

See also [NT].
Martingale problems are closely related to the notion of weak uniqueness

for SDEs. Concerning weak existence of solutions for (3.2) see [PZ], [Za1], and
[Za2].

Another approach that has been explored has been the use of pseudodif-
ferential operators. See works of Komatsu, Jacob, Hoh, and Schilling: [Km3],
[HJ1], [HJ2], [Ho1], [Ho2], [Ho3], [Ho4], [JL], [Ja1], [Ja2], [Ja3], [JS], [Ja4], and
[Ja5].

A recent result along these lines is that of Kolokoltsov [Kl2]. If ψi(u),
i = 1, . . . , n, are the symbols associated to Lévy processes satisfying certain
conditions and ai(x) are suitable functions of x, then there is a unique solution
to the martingale problem associated to the symbol

ψ(x, u) =
n∑
i=1

ai(x)ψi(u).

Can one obtain a similar result when we have an infinite sum instead of a finite
one?

In most of the above results, the operators are the sum of a finite number
of integral terms plus a lower order term. There are fewer papers that handle
variable order terms without assuming a considerable amount of continuity in
the x variable. One such paper is [Ba1]. This paper deals with one-dimensional
processes, and the exact conditions are rather complicated. One can give an
example, though, that illustrates the theorem. Suppose L is given by (3.10),
where

n(x, dz) =
1

|z|1+α(x)
dz. (5.3)

Qualitatively, this says that at a point x, the process behaves like a symmetric
stable process of order α(x). Note that the order depends on x. For this example,
the conditions of [Ba1] reduce to
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Theorem 5.3 Suppose α(x) is Dini continuous, bounded above by a constant
less than 2 and bounded below by a constant greater than 0. If L is given by (3.10)
with n(x, dz) defined by (5.3), then there exists a unique solution to the martin-
gale problem for L started at any point x0 ∈ R.

Dini continuity of α means that there exists ρ such that |α(x)− α(y)| ≤
ρ(|x− y|) for all x and y and ∫ ε

0

ρ(x)
x

dx <∞

for all ε > 0.
Other papers that deal with properties of processes associated to oper-

ators of variable order without assuming a great deal of smoothness include
[Ba2], [Ne], [Ts3], [Km5], [Kl1], [Ue].

It would be greatly desirable to have a uniqueness theorem for variable
order operators where the hypotheses are relatively simple.

6. Regularity of harmonic functions

In this section we give some regularity results for harmonic functions related to
the integral operators L such as those similar to (3.11). Before doing this, we
mention that there has been a great deal of recent work on the potential theory
of symmetric stable processes in domains, such as Fatou theorems, boundary
Harnack principle, intrinsic ultracontractivity, Green function estimates, etc. See
[Ch] for a survey of some of the recent work. Little of this has been extended to
more general jump processes, but it would be worthwhile doing so.

First we consider the Harnack inequality. Suppose Lh(x) = 0 in a domain
D ⊂ Rd. Here the operators L that we are considering are of the form

Lf(x) =
∫
Rd\{0}

[f(x+ z)− f(x)− 1(|z|≤1)∇f(x) · z]n(x, z)dz, (6.1)

where

n(x, z) =
a(x, z)
|z|d+α

, (6.2)

α ∈ (0, 2), and a is bounded above and below by positive constants. It may
so happen that what one would like to consider as a harmonic function is not
regular enough to be in the domain of L. So a more general definition of harmonic
function is to say that h is harmonic if h(Xt∧τD ) is a martingale. Here τD =
inf{t : Xt /∈ D}, the first exit time of the domain D, and Xt is the Markov
process associated to the operator L. We have the following Harnack inequality
[BL1].

Theorem 6.1 Suppose L is given by (6.1), n by (6.2), n(x, z) = n(x,−z) for
all x and z, x0 ∈ Rd, R > 0, h is nonnegative and harmonic in a ball B(x0, 2R)
of radius 2R centered at x0, and h is bounded in Rd. Then there exists a constant
c1 not depending on h, x0, or R such that

h(x) ≤ c1h(y), x, y ∈ B(x0, R).
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This theorem has been extended by [SV] to more general n, but still ones
that are essentially stable of some order α.

One of the reasons one is interested in Harnack inequalities is that they
often imply that harmonic functions must be continuous. In [BL1] it is also
proved that

Theorem 6.2 Under the same conditions as Theorem 6.1 there exist constants
c2 and γ ∈ (0, 1) such that

|h(x)− h(y)| ≤ c2
( |x− y|

R

)γ
‖h‖∞.

In other words, harmonic functions are Hölder continuous.
What if the function n is not of the form (6.2)? Suppose there exist

constants c3, c4 and 0 < α < β < 2 such that

c3
|x− y|d+α

≤ n(x, y) ≤ c4
|x− y|d+β

, |x− y| ≤ 1, (6.3)

and with some appropriate conditions on n(x, y) when |x − y| ≥ 1? In [BK] it
was proved that the conclusion of Theorem 6.1 holds provided that β − α < 1
and one allows c1 to depend on R. It was shown that the dependence on R
cannot be dispensed with.

It is still unknown whether a Harnack inequality must hold in the case
β − α ≥ 1, or whether a counterexample exists.

If one turns to symmetric jump processes, that is, ones determined by
the Dirichlet form (3.12), that the analogue of Theorem 6.1 holds is implicitly
proved in [BL2]; see also [CK]. In the paper [BL2] upper and lower bounds on
the transition probability densities were found, extending and improving results
of Komatsu [Km5].

I believe there is also an analogue of [BK], but that in this case the full
range 0 < α < β < 2 is allowed. Whether the analogue of Theorem 6.2 holds in
this full range is at present unknown.

If one assumes more regularity in the operator L, that is, stronger con-
ditions on n, then more can be said about regularity. See [Kl2].
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tions driven by Lévy processes. Rev. Mat. Iberoamericana 17 (2001), no.
2, 295–329. (MR 2003h:60102) MR1891200

[YW] Yamada, Toshio; Watanabe, Shinzo. On the uniqueness of solutions of
stochastic differential equations. J. Math. Kyoto Univ. 11 1971 155–167.
(MR 43#4150) MR278420

[Za1] Zanzotto, P. A. On solutions of one-dimensional stochastic differential
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