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Club-Isomorphisms of Aronszajn Trees in the Extension
with a Suslin Tree

Teruyuki Yorioka

Abstract We show that, under PFA.S/, a coherent Suslin tree forces that every
two Aronszajn trees are club-isomorphic.

1 Introduction

S. Todorčević [27] introduced the proper forcing axiom PFA.S/. This axiom asserts
that there exists a coherent Suslin tree S such that the forcing axiom holds for
every proper forcing notion P which preserves that S is Suslin, that is, for any set
¹D˛I˛ 2 !1º of @1-many dense open subsets of P, there exists a filter of P which
intersects all of theD˛’s. We note that, under the existence of a supercompact cardi-
nal, PFA.S/ can be forced by the use of the theorem due to Miyamoto [16, Theorem
1.3] (see Theorem 2.1 below).

Larson and Todorčević [11] introduced the forcing axiom MA@1
.S/, which is

analogous to PFA.S/ replacing “proper” with “countable chain condition” (ccc), to
give the consistency of the affirmative answer to Katětov’s problem. In particu-
lar, they introduced the axiom K2.rec/, which is a fragment of MA@1

, and proved
that K2.rec/ holds in the extension with a coherent Suslin tree S (which witnesses
the axiom MA@1

.S/). Later, Todorčević [27] proved that, under PFA.S/, a coher-
ent Suslin tree S (which witnesses PFA.S/) forces that every compact hereditarily
normal space satisfying the countable chain condition is hereditarily separable and
hereditarily Lindelöf. A. Fischer, P. B. Larson, C. Martinez-Ranero, F. D. Tall, and
S. Todorčević developed the investigation of PFA.S/ for set-theoretic topology in
Fischer, Tall, and Todorčević [5], [11], Larson and Tall [12], Martinez-Ranero [15],
and Tall [20]–[22].
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Todorčević said that, under PFA.S/, the forcing extension of a coherent Suslin
tree is a model which mixes a part of the forcing axiom with a part of }. A basic, but
remarkable, fact is that a Suslin tree forces the tower number to be @1 (see Farah [4]).
This is one of the consequences of }. Larson and Todorčević [13], [14] demonstrated
some consequences of } which hold in the extension with a Suslin tree. These
consequences are implied by }.R;¤/, which is also forced with a Suslin tree. (This
is a result due to J. T. Moore, M. Hrušák, and M. Džamonja [17, Theorems 6.15,
6.16].)

A proof of I. Farah [4] showed that, under PFA.S/, a coherent Suslin tree S forces
that the open coloring axiom holds. This is one of the consequences of the proper
forcing axiom PFA. For other examples, under PFA.S/, a coherent Suslin tree S
forces that the continuum is @2 (in [11]), and the P -ideal dichotomy holds (in [27]).
The author [30] gave a fragment of MA@1

, which is a stronger axiom than K2.rec/
and holds in the extension with a coherent Suslin tree S over a ground model which
satisfies MA@1

.S/. So, for example, every Aronszajn tree is special in its extension
(see also Abraham and Todorčević [2], Todorčević [25]). Raghavan and Yorioka
[19] proved that, under PFA.S/, a coherent Suslin tree S forces that there are no
!2-Aronszajn trees. In this paper, we demonstrate a set-theoretic statement which is
one of the consequences of PFA and is forced with a coherent Suslin tree.

Abraham and Shelah [1] investigated the isomorphism types of Aronszajn trees.
Aronszajn trees T and U are called club-isomorphic if there exists a club C on !1

such that the set T �C , which is the set of nodes of T of heights in C , is order-
isomorphic to the set U�C . Abraham and Shelah proved that the weak diamond
(2@0 < 2@1 ), which is weaker than }, implies that there are 2@1 pairwise non-club-
isomorphic Aronszajn trees, and PFA implies that every two Aronszajn trees are
club-isomorphic (see [1, Section 5]; see also Todorčević [23, Section 5]). In this
paper, the following theorem is proved.

Theorem Under PFA.S/, a coherent Suslin tree S forces that every two Aron-
szajn trees are club-isomorphic.

2 Preliminaries

In this section, we present all prerequisites. Notation and terminology are standard
as in Jech [6] and Kunen [8].

An Aronszajn tree is a tree of height !1 such that, for every ˛ 2 !1, the set of
nodes of height ˛ is countable, and there are no uncountable chains. In this paper,
we focus on Aronszajn trees such that every node splits into infinitely many suc-
cessors, every node extends to any higher height, and different nodes have different
sets of predecessors. A Suslin tree is an Aronszajn tree which has no uncountable
antichains, and !<!1 is the set of all functions from some countable ordinal into !
(or all sequences in ! of countable length). We note that every Aronszajn tree is
embedded into the order structure h!<!1 ;�i, which can be considered as a tree. So
in this paper, to simplify notation, we may assume that every Aronszajn tree hT;�T i

is a suborder of the structure h!<!1 ;�i, that is, T � !<!1 and, for every s and t in
T , s �S t if and only if s � t . Moreover, we may assume that an Aronszajn tree T
is closed under taking initial segments, that is, for every t 2 T , ht.t/, which is the
height of the node t , is equal to the length of t . For an Aronszajn tree T and a subset
I of !1, T �I is the set of all t 2 T such that ht.t/ 2 I .
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A coherent Suslin tree is a Suslin tree S as a subtree of the tree !<!1 such that
� S is closed under taking initial segments,
� for any s and t in S , the set®

˛ 2 min
®
ht.s/; ht.t/

¯
I s.˛/ ¤ t .˛/

¯
is finite.

Moreover, we add the following property to a coherent Suslin tree in this paper:
� for any s 2 S and t 2 !ht.s/, if the set®

˛ 2 ht.s/I s.˛/ ¤ t .˛/
¯

is finite, then t 2 S .
This property is called homogeneity. In most cases, the property is equipped with the
coherent Suslin tree when we apply PFA.S/. For s 2 S , we let

Cone.S; s/ WD ¹u 2 S I s �S uº:

We note that, using } or adding a Cohen real, we can construct a coherent Suslin tree
(see, e.g., Devlin and Johnsbråten [3], Larson [9, Lemma 1.2], Todorčević [24, (6.9)],
Todorčević and Farah [28, Section 3], Todorčević [26, Section 3.2]). A coherent
Suslin tree has canonical commutative isomorphisms. Let s and t be nodes in S with
the same height. Then we define a function  s;t from Cone.S; s/ into Cone.S; t/
such that, for each v 2 Cone.S; s/,

 s;t .v/ WD t [
�
v�

�
ht.s/; ht.v/

��
:

(Here, v�Œht.s/; ht.v// is the function v restricted to the domain Œht.s/; ht.v//.) We
note that  s;t is an isomorphism, and if s, t , u are nodes in S with the same height,
then  s;t ,  t;u, and  s;u commute (for a coherent Suslin tree, see, e.g., König [7],
[13]). For s and t in S , when s and t are incomparable in S , let

�.s; t/ WD min
®
� 2 min

®
ht.s/; ht.t/

¯
I s.�/ ¤ t .�/

¯
;

and define
s ^ t WD s��.s; t/ D t��.s; t/:

In this paper, for a forcing notion P and conditions p and q in P, p �P q means
that p is an extension of q in P. For each s and t in the Suslin tree S , s �S t means
that t is an extension of s in S as a forcing notion. So the order of the product forcing
of P and S is defined as follows: for each hp; si and hq; ti in P � S ,

hp; si �P�S hq; ti ” p �P q & s �S t:

Let S be a coherent Suslin tree, and let PT and PU be S -names for Aronszajn trees.
To show the Theorem in Section 1, it suffices to find a proper forcing P such that P
preserves that S is Suslin, and P adds an S -name PI for an uncountable subset of !1

and an S -name Pf for a function such that


S “ Pf is an order-isomorphism from PT � PI onto PU� PI .”

Then in the extension by S , Pf can be extended uniquely to the closure of PI in !1.
This is the same scenario as the one in [1, Section 5] and [23, Section 5]. To demon-
strate that a proper forcing preserves a Suslin tree, we use the following condition
from Miyamoto.
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Theorem 2.1 (Miyamoto [16, Proposition 1.1]) For a Suslin tree S and a proper
forcing P, P preserves that S is Suslin if and only if, for any sufficiently large regular
cardinal � , any countable elementary substructure N ofH.�/ which contains P and
S as members, any .P; N /-generic p, and any t 2 S of level !1 \N , the pair hp; ti

is .P � S;N /-generic.

Proof We show here only the if case, which is the necessary implication in this
note. Suppose that p 2 P, and let PA be an S -name for a maximal antichain in S .

We take a sufficiently large regular cardinal � and a countable elementary sub-
structure N of H.�/ which contains P, S , p, and PA as members. Then the set

D WD
®
hq; si 2 P � S I q 
P “s 2 PA”

¯
is predense in P � S and is a member of the model N . Let q 2 P be .P; N /-generic.

Then by our assumption, for every t 2 S!1\N , the pair hq; ti is .P�S;N /-generic.
Therefore, for every t 2 S!1\N ,D \N is predense below hq; ti in P � S . Thus, for
every t 2 S!1\N , there exists s 2 S such that s <S t and

q 
P “s 2 PA:”

This says that
q 
P “ PA � S \ !<!1\N ”I

hence, q forces that PA is countable. This finishes the proof.

Moreover, to show that our forcing notion is proper and preserves a Suslin tree, we
use the following property of an Aronszajn tree. This property is defined in Yorioka
[29, Definition 2.6].

Proposition 2.2 ([29, Propositions 2.5, 2.7]) For an Aronszajn tree T , a count-
able elementary submodel N of H.�/ which contains T as a member (where � is a
large enough regular cardinal), an uncountable set I of finite antichains in T such
that I 2 N , and a finite antichain � in T , if I forms a �-system with root � \ N ,
then there exists I 0 2 ŒI �@1 \N such that, for any � 2 I 0, � [ � is still an antichain
in T .1

Proof We note that T is an Aronszajn tree if and only if, for every uncountable
subset J of T , there are two nodes s0 and s1 such that s0 and s1 are incomparable
in T and the sets ¹u 2 J I s0 <T uº and ¹u 2 J I s1 <T uº are both uncountable. So
for any Aronszajn tree T , any countable elementary submodel N of H.�/ which
contains T as a member, any uncountable subset J of T with J 2 N , and t 2 T nN ,
there exists s 2 T \ N such that the set ¹u 2 J I s <T uº is uncountable and s is
incomparable with t in T . Then every element of the set ¹u 2 J I s <T uº is also
incomparable with t in T .

Suppose that T is an Aronszajn tree, N is a countable elementary submodel of
H.�/ which contains T as a member, I is an uncountable subset of finite antichains
in T such that I 2 N , and � is a finite antichain in T such that I forms a �-system
with root � \ N . By shrinking I in the model N if necessary, we may assume that
the size of elements of I is constant, say, n. Then since T is Aronszajn, by applying
the above observation finitely many times, there exists an uncountable subset I 0 of
I with I 0 2 N such that, for each i < n � j� \ N j, j < j� n N j, and � 2 I 0, the
i th element of � n .� \N/ is incompatible with the j th element of � nN . Then for
every � 2 I 0, � [ � is still an antichain in T .
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At last in this section, we demonstrate that a Suslin tree (which is not necessarily
coherent) forces some consequence of }. Larson and Todorčević [13, Section 6]
proved that a Suslin tree forces that every ladder system has a coloring which cannot
be uniformized and there are no Q-sequences, and so on. Moore, Hrušák, and Dža-
monja [17, Theorem 6.15] proved that a Suslin tree forces }.R;R;¤/. These proofs
are essentially the same. The proof below summarizes them.

Definition 2.3 ([17]) (1) An invariant is a triple .A;B;E/ such that
� both A and B have cardinality at most c,
� E � A � B is a relation,
� 8a 2 A 9b 2 B .ha; bi 2 E/, and
� 8b 2 B 9a 2 A .ha; bi … E/.

(2) For an invariant .A;B;E/, define its evaluation hA;B;Ei by
hA;B;Ei WD min

®
jX jIX � B & 8a 2 A 9b 2 X

�
ha; bi 2 E

�¯
:

(3) For an invariant .A;B;E/, define the diamond principle for .A;B;E/ as
follows:
}.A;B;E/ � 8 Borel F W 2<!1 ! A 9g W !1 ! B 8f W !1 ! 2;®

˛ < !1I
˝
F.f �˛/; g.˛/

˛
2 E

¯
is stationary;

where we call a function F Borel if F�2˛ is a Borel function for every count-
able ordinal ˛.

Proposition 2.4 If hA;B;Ei D @0, then a Suslin tree forces }.A;B;E/.

There are some applications of invariants of the countable evaluations, for example,
in [17] and Morgan and da Silva [18].

Proof Let S be a Suslin tree, let ¹bk I k 2 !º be a witness that the evaluation of the
invariant .A;B;E/ is equal to @0, and let PF be an S -name for a Borel function from
2<!1 to A. We note that a Suslin tree is ccc and does not add new reals, and a Borel
function on 2˛ , for some ˛ 2 !1, is coded by a real.

So for each ˛ 2 !1, there exists ı˛ 2 !1 such that ı˛ � ˛ and every node in S of
height ı˛ decides the S -name PF�2˛ as a Borel function coded in the ground model.
We define an S -name Pg for a function from !1 into ! such that, for each ˛ 2 !1,

� every node in S of height at most ı˛ does not decide the value Pg.˛/, and
� for every node t in S of height ı˛ and k 2 !,

t_hki 
S “ Pg.˛/ D bk :”
We show that


S “for all Pf W !1 ! 2; the set
®
˛ 2 !1I

˝
PF . Pf �˛/; Pg.˛/

˛
2 E

¯
is stationary.”

Let t 2 S , let Pf be an S -name for a function from !1 into 2, and let C be a club
subset of !1. It suffices to show that there are t1 2 S and ˛ 2 C such that t �S t1
and

t1 
S “
˝

PF . Pf �˛/; Pg.˛/
˛
2 E; ”

because for any S -name for a club set, there exists a club set in the ground model
which is forced (by the weakest condition in S ) to be a subset of the given S -name.
Since S is ccc, there exists ˛ 2 C such that every node in S of height ˛ decides the
value of Pf .
/ for all 
 < ˛.
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We take a node t0 in S of height ı˛ such that t �S t0. Then by the property of ı˛ ,
t0 decides the value of the S -name PF . Pf �˛/, say, x. So there exists k 2 ! such that
hx; bki 2 E. Therefore, it follows that

t0 
S “
˝

PF . Pf �˛/; bk

˛
2 E:”

We let
t1 WD t0

_
hki;

which is also a node in S . Then
t1 
S “

˝
PF . Pf �˛/; Pg.˛/

˛
2 E; ”

which finishes the proof.

3 Proof of the Theorem

This section is devoted to the proof of the Theorem which is given in Section 1.
Let S be a coherent Suslin tree, and let PT and PU be S -names for Aronszajn sub-

trees of !<!1 which are closed under initial segments. Then P consists of the func-
tions p such that

� dom.p/ is a finite 2-chain of countable elementary submodels of the set
H..2@1/C/ which contain the sets S , PT , and PU as members;

� for each M 2 dom.p/, p.M/ D htM ; fM i, where tM 2 S and fM

is a nonempty finite partial injection from !˛M into !˛M for some
˛M < ht.tM /;

� the sets ¹tM IM 2 dom.p/º and ¹˛M IM 2 dom.p/º are separated by
dom.p/, that is, for each M 2 dom.p/ and M 0 2 dom.p/ \M ,
tM … M; tM 0 2 M; ˛M … M; and ˛M 0 2 M I

� for each M 2 dom.p/,
� every node in S of height ht.tM / decides the S -names PT \ !�˛M and

PU \ !�˛M ,
� tM 
S “ dom.fM / � PT & ran.fM / � PU ; ” and
� for any M 0 2 dom.p/ \M , if tM 0 <S tM , then the statement

fM 0 �
®
hx�˛M 0 ; y�˛M 0iI hx; yi 2 fM

¯
holds; and

for each p D hht
p
M ; f

p
M iIM 2 dom.p/i and q D hht

q
M ; f

q
M iIM 2 dom.q/i

in P,
p �P q W ” dom.p/ � dom.q/ & 8M 2 dom.q/ .tpM D t

q
M & f

p
M � f

q
M /:

For a condition p 2 P and M 2 dom.p/, we let ˛p
M be such that f p

M is a
nonempty finite partial injection from !˛

p
M into !˛

p
M . We note that, for each p 2 P

and M 2 dom.p/,
tM 
S “

®
hx�˛p

M 0 ; y�˛p
M 0iIM

0
2

�
dom.p/ \M

�
[ ¹M º; t

p
M 0 �S t

p
M ;

hx; yi 2 f
p

M 0

¯
is a finite partial height-preserving isomorphism from PT into PU .”

This definition is an S -name version of one in [1, Definition 5.2]. See also [23,
Theorem 5.10].

By the definition of P, we notice that the following sets are dense in P:
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� for every s 2 S and ˛ 2 !1, the set®
p 2 PI 9M 2 dom.p/ such that s �S t

p
M & ˛ � ˛

p
M

¯
I

� for every s 2 S and x 2 !<!1 such that ht.x/ < ht.s/ and

s 
S “x 2 PT ; ”

the set°
p 2 PI either p 
P “ht.x/ …

[
p2 PG

®
˛

p
N IN 2 dom.p/

¯
”

or there are M 2 dom.p/, M 0
2

�
dom.p/ \M

�
[ ¹M º, and hz; wi 2 f

p
M

such that s �S t
p
M , tpM 0 �S t

p
M ; and x D z�˛p

M 0

±
I

� for every s 2 S and y 2 !<!1 such that ht.y/ < ht.s/ and

s 
S “y 2 PU ; ”

the set°
p 2 PI either p 
P “ht.y/ …

[
p2 PG

®
˛

p
N IN 2 dom.p/

¯
”

or there are M 2 dom.p/, M 0
2

�
dom.p/ \M

�
[ ¹M º, and hz; wi 2 f

p
M

such that s �S t
p
M , tpM 0 �S t

p
M ; and y D w�˛p

M 0

±
:

For a P-generic GP, we define S -names PIGP and PfGP such that, by letting PGS be
a canonical S -generic name over the extension by GP,


S “ PIGP WD
®
˛

p
M Ip 2 GP & M 2 dom.p/ & t

p
M 2 PGS

¯
”

and


S “ PfGP WD
®
hx�˛p

M 0 ; y�˛p
M 0iI there exists M 2 dom.p/ such that p 2 GP,

t
p
M 2 PGS , hx; yi 2 f

p
M , M 0

2
�
dom.p/ \M

�
[ ¹M º;

and tpM 0 �S t
p
M

¯
:”

By the genericity of GP, PIGP is an S -name for an uncountable subset of !1 and PfGP

is an S -name for an isomorphism from the set ¹x 2 PT I ht.x/ 2 PIGPº onto the set
¹y 2 PU I ht.y/ 2 PIGPº.

We show that P is proper and preserves that S is Suslin. Let � be a large enough
regular cardinal, let N be a countable elementary submodel of the set H.�/ which
contains the sets S , PT , PU , and H..2@1/C/ as members, and let p0 2 P \N . We let

� N 0 WD N \H..2@1/C/, which is an elementary submodel of H..2@1/C/,
� ˛

p1

N 0 WD !1 \N ,
� t

p1

N 0 2 S nN 0 such that
� ht.tp1

N 0 / > !1 \N ,
� every node in S of height ht.tp1

N 0 / decides the S -names PT \ !�˛
p1
N 0 and

PU \ !�˛
p1
N 0 ,

� for every M 2 dom.p0/, tp0

M and tp1

N 0 are incomparable in S , and
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� f
p1

N 0 be an arbitrary nonempty finite partial injection from !˛
p1
N 0 into !˛

p1
N 0

such that

t
p1

N 0 
S “ dom.f p1

N 0 / � PT and ran.f p1

N 0 / � PU :”

Moreover, we let
p1 WD p0 [

®˝
N 0; ht

p1

N 0 ; f
p1

N 0 i
˛¯
:

We note that p1 is a condition of P and an extension of p0.
Let s1 2 S be of height !1 \ N . We show that the pair hp1; s1i is .P � S;

N /-generic. By ignoring the second coordinate in the product P � S , the following
argument shows that P is proper.2 Therefore, by Theorem 2.1, P preserves that S is
Suslin, which finishes the proof.

Let D 2 N be a dense open subset of P � S , and let r �P p1 and u �S s1 be
such that hr; ui 2 D (which means that hr; ui is an extension of hp1; s1i in P � S

and hr; ui 2 D). By the definition of P, r�.dom.r/\N/ D r \N , r \N 2 P, and
r �P r \N . By extending u if necessary, we may assume that ht.u/ � ht.t rM / holds
for every M 2 dom.r/. By the coherency of the tree S , we can take 
0 2 !1 \ N

such that, for every M 2 dom.r/,®
� 2 ht.t rM / \N I t rM .�/ ¤ u.�/

¯
D

®
� 2 ht.t rM / \N I t rM .�/ ¤ s1.�/

¯
� 
0:

Let ¹M r
i I i 2 nº be the 2-increasing enumeration of the set dom.r/ n N , and let

M r
�1 be the maximal model in dom.r/ \N . We note that dom.r/ nN D dom.r/ n

dom.r \N/. For each v 2 S , we define the set Hn
v which consists of the sequences˝

f
q

M IM 2 dom.q/ n dom.r \N/
˛

such that
� q 2 P,
� q �P r\N and q end-extends r\N , that is, dom.q/ end-extends dom.r\N/

and, for each M 2 dom.r \N/, r.M/ D q.M/,
� hq; vi 2 D ,
� jqj D jr j and, say, dom.q/ n dom.r \ N/ WD ¹M

q
i I i 2 nº according to its

2-increasing enumeration,
� for every M 2 dom.q/, ht.tqM / � ht.v/, and
� for every i 2 n,

t
q

M
q

i

�
0 D t rM r
i
�
0;

t
q

M
q

i

�
�

0; ht.tq

M
q

i

/
�

D v�
�

0; ht.tq

M
q

i

/
�

”

t rM r
i
�

�

0; ht.t rM r

i
/
�

D u�
�

0; ht.t rM r

i
/
�
;

and®
hx�˛r

M r
�1
; y�˛r

M r
�1

iI hx; yi 2 f
q

M
q

i

¯
D

®
hx�˛r

M r
�1
; y�˛r

M r
�1

iI hx; yi 2 f r
M r

i

¯
:

We note that the sequence hHn
v I v 2 Si belongs to the model N , and for every

v; v0 2 S , if v �S v0, then Hn
v � Hn

v0 . We consider each Hn
v as a tree which

consists of all initial segments of its members. For simplicity of notation, for each
i < n, let

 i WD  v�
0;tr

M r
i

�
0
;



Club-Isomorphisms of Aronszajn Trees 389

and let
a WD

®
i < nI t rM r

i
�

�

0; ht.t rM r

i
/
�

D u�
�

0; ht.t rM r

i
/
�¯
:

We note that both the sequence h i I i < ni and the set a are in N . By induction on
the reverse order on i < n, we define the sequence hAi

v;H
i
v I v 2 Si as follows. We

start from the sequence hHn
v I v 2 Si, which has already been defined, and we do not

define the An
v’s. Let i < n, and suppose that hH iC1

v I v 2 Si has already been built
as above. If i … a, then for each v 2 S , we define

Ai
v WD ; and H i

v WD H iC1
v :

If i 2 a, then for each v 2 S , we define

Ai
v WD

®
� 2 H iC1

v I j� j D i &

 i .v/ ±S “
®
ˇ 2 !1I 9t 2 PGS 9f W PT \ !ˇ

! PU \ !ˇ finite partial
such that �_

hf i 2 H iC1
t

¯
is uncountable”

¯
(here, PGS is the canonical S -generic name) and

H i
v WD H iC1

v n ¹� 2 H iC1
v I 9� 2 Ai

v such that � � �º:

Since the sequence of length 0 means the empty sequence, the set A0
v is either the

empty set or the set ¹;º. So if A0
v satisfies the former case, then H 0

v D H 1
v holds,

and if A0
v is the latter case, then the set H 0

v is the empty set. By the definition, we
note that, for each v 2 S and � 2 H 0

v which is not a terminal such that j� j 2 a,

 j� j.v/ 
S “
®
ˇ 2 !1I 9t 2 PGS 9f W PT \ !ˇ

! PU \ !ˇ finite partial
such that �_

hf i 2 H 0
t

¯
is uncountable.”

We note that, for every i < n, the sequence hAi
v;H

i
v I v 2 Si also belongs to the

model N . By the definition, if i < n, v; v0 2 S , and v �S v
0, then Ai

v � Ai
v0 holds;

hence, H i
v � H i

v0 holds.

Claim 3.1 The sequence hf r
M IM 2 dom.r nN/i is a cofinal chain through H 0

u .

Proof At first, we notice that hf r
M IM 2 dom.r nN/i 2 Hn

u holds. We show, by
induction on the reverse order on i < n, that the initial segment of the sequence
hf r

M IM 2 dom.r nN/i of length i does not belong to the set Ai
u.

Suppose to the contrary that i < n satisfies that the initial segment of the sequence
hf r

M IM 2 dom.r nN/i of length iC1 does not belong to the setAiC1
u , but the initial

segment of the sequence hf r
M IM 2 dom.r nN/i of length i belongs to the set Ai

u.
We denote the initial segment of the sequence hf r

M IM 2 dom.r nN/i of length i by
� and then denote the next coordinate of � in the sequence hf r

M IM 2 dom.r nN/i

by f r
M r

i

. Then we note that

� i 2 a, that is, t r
M r

i

�Œ
0; ht.t r
M r

i

// D u�Œ
0; ht.t r
M r

i

// (because then Ai
u ¤ ;),

� � 2 M r
i ,

� f r
M r

i

… M r
i ,

� �_hf r
M r

i

i 2 H iC1
u , and

� t r
M r

i


S “f r
M r

i

is a finite partial function from PT \ !
˛r

M r
i into PU \ !

˛r

M r
i .”
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Then by the definition of P, ˛r
M r

i

… M r
i . Since ht.u/ � ht.t r

M r
i

/ � !1 \ M r
i , u is

.S;M r
i /-generic. (Remember here that S is a Suslin tree.) Our assumption says that

 i .u/ ±S “
®
˛ 2 !1I 9t 2 PGS 9g W PT \ !˛

! PU \ !˛ finite partial
such that �_

hgi 2 H iC1
t

¯
is uncountable.”

Then some extension of  i .u/ in S forces that
“
®
˛ 2 !1I 9t 2 PGS 9g W PT \ !˛

! PU \ !˛ finite partial
such that �_

hgi 2 H iC1
t

¯
is countable.”

This statement can be expressed in the modelM r
i , because S , PT , PU , and hH i

v I v 2 Si

are in the model N 0 D N \H..2@1/C/ and N 0 � M r
i . So since such an extension

is also .S;M r
i /-generic, there exists w 2 S \M r

i such that w <S u and

 i .w/ 
S “
®
˛ 2 !1I 9t 2 PGS 9g W PT \ !˛

! PU \ !˛ finite partial
such that �_

hgi 2 H iC1
t

¯
is countable.”

In particular, since w 2 M r
i , it follows that

 i .w/ 
S “
®
˛ 2 !1I 9t 2 PGS 9g W PT \ !˛

! PU \ !˛ finite partial
such that �_

hgi 2 H iC1
t

¯
� M r

i :”
This is a contradiction. Because now it holds that

t rM r
i
�.!1 \N/ <S  i .u/�.!1 \N/;

w <S u, and ht.w/ < !1 \ N , and so  i .w/ �S t
r
M r

i

holds. Since f r
M r

i

… M r
i , it

follows that
t rM r

i

S “˛r

M r
i

2
®
˛ 2 !1I 9t 2 PGS 9g W PT \ !˛

! PU \ !˛ finite partial

such that �_
hgi 2 H iC1

t

¯
nM r

i :”

Therefore, the set ®
v 2 S Iu�
0 �S v & H 0

v is of height jr nN j
¯

is not empty and, in particular, contains u as a member. We note that this set belongs
to the model N . Thus, since u is .S;N /-generic, there exists v�1 2 S \ N such
that u�
0 �S v�1 �S u (then v�1 �S s1) and H 0

v�1
has a cofinal branch of length

jr nN j.3

Claim 3.2 There exists the sequence hfj ; vj I j < ni in N such that
� for each j < n � 1, vj �S vj C1 �S s1,
� for each j < n, the sequence hfk I k � j i is a chain through H 0

vj
, and

� for each j 2 a and k < n with t r
M r

k

�
0 D t r
M r

j

�
0, dom.fj / [ dom.f r
M r

k

/

is an antichain in !<!1 and ran.fj / [ ran.f r
M r

k

/ is an antichain in !<!1 .

Proof We build the sequence by induction on j < n. Suppose that we have built
hvl ; fl I l < j i as above. If j … a, then let vj WD vj �1 and pick fj 2 N such that
hfk I k � j i 2 H 0

vj
. This can be done because, in this case, Aj

vj
D A

j
vj �1

D ; and
so, since hfk I k < j i 2 H 0

vj
, the set of the successors of hfk I k < j i in H 0

vj �1
is

equal to the set of the successors of hfk I k < j i in H j
vj

D H
j
vj �1

.
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We consider the case in which j 2 a. Then we note that  j .vj �1/ �S t
r
M r

j

, and

 j .vj �1/ 
S “
®
ˇ 2 !1I 9t 2 PGS 9f W PT \ !ˇ

! PU \ !ˇ finite partial
such that hfk I k < j i

_
hf i 2 H 0

t

¯
is uncountable.”

Since the S -name®
ˇ 2 !1I 9t 2 PGS 9f W PT \ !ˇ

! PU \ !ˇ finite partial
such that hfk I k < j i

_
hf i 2 H 0

t

¯
belongs to the model N , the uncountable set

Ij WD
®
ˇ 2 !1I 9w �S  j .vj �1/ 9g W !ˇ

! !ˇ finite partial
such that hfk I k < j i

_
hgi 2 H 0

w

¯
also belongs to the model N . So, we can take a sequence hB

j

ˇ
; g

j

ˇ
Iˇ 2 Ij i in N

such that, for each ˇ 2 Ij ,
� B

j

ˇ
forms a maximal antichain in S above  j .vj �1/, and

� g
j

ˇ
is a function with dom.gj

ˇ
/ � B

j

ˇ
such that, for each w 2 B

j

ˇ
,

either there are no finite partial functions d W !ˇ ! !ˇ such that
hfk I k < j i_hd i 2 H 0

w (and in this case w … dom.gj

ˇ
/), or

hfk I k < j i
_

˝
g

j

ˇ
.w/

˛
2 H 0

w :

Then we note that

 j .vj �1/ 
S “ PI
j
�1 WD

®
ˇ 2 Ij I dom.gj

ˇ
/ \ PGS ¤ ;

¯
is uncountable.”

Let bj WD ¹k
j

h
I h < lj º be an enumeration of the index set

¹k < nI t rM r
k
�
0 D t rM r

j
�
0º:

By induction on h < lj , we will build an S -name PI
j

h
for an uncountable subset of

!1 such that, for each h < l , PI
j

h
2 N ,

 j .vj �1/ 
S “ PI
j

h
� PI

j

h�1
and, for every ˇ 2 PI

j

h
, dom.gj

ˇ
/ \ PGS ¤ ;; ”

and

t rM r

k
j
h


S “for every ˇ 2 PI
j

h
and w 2 dom.gj

ˇ
/ \ PGS ,

dom
�
g

j

ˇ
.w/

�
[ dom.f r

M r

k
j
h

/ is an antichain in PT

and ran
�
g

j

ˇ
.w/

�
[ ran.f r

M r

k
j
h

/ is an antichain in PU :”

Suppose that h < lj , and suppose that we have built PI
j

h�1
. Since t r

M r

k
j
h

�
0 D

t r
M r

j

�
0, vj �1 �S s1 �s u, and ht.vj �1/ < !1 \ N , by the property of 
0, it
follows that  j .vj �1/ �S t

r
M r

k
j
h

. Thus,

t rM r

k
j
h


S “
®
dom

�
g

j

ˇ
.w/

�
Iˇ 2 PI

j

h�1
and w 2 dom.gj

ˇ
/ \ PGS

¯
2 N 0Œ PGs�
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is an uncountable set of finite antichains in PT , all of whose members
are pairwise disjoint,
and

®
ran

�
g

j

ˇ
.w/

�
Iˇ 2 PI

j

h�1
and w 2 dom.gj

ˇ
/ \ PGS

¯
2 N 0Œ PGs�

is an uncountable set of finite antichains in PU , all of whose members
are pairwise disjoint.”

We note that
dom.f r

M r

k
j
h

/ \N 0
D ran.f r

M r

k
j
h

/ \N 0
D ;;

because N 0 2 M r
j , f r

M r
j

� 2
˛r

M r
j , and ˛r

M r
j

… M r
j . So by applying Proposition 2.2

twice, since S is a proper forcing, we can take an S -name PI
j

h
2 N 0 for an uncountable

subset of PI
j

h�1
such that

t rM r

k
j
h


S “for every ˇ 2 PI
j

h
and w 2 dom.gj

ˇ
/ \ PGS ,

dom
�
g

j

ˇ
.w/

�
[ dom.f r

M r

k
j
h

/ is an antichain in PT

and ran
�
g

j

ˇ
.w/

�
[ ran.f r

M r

k
j
h

/ is an antichain in PU ,”

which finishes the construction of PI
j

h
.

Let

C WD
®
t 2 S I 9f such that hfk I k < j i

_
hf i 2 H 0

t

and  j .t/ 
S “f 2
®
g

j

ˇ
.w/Iˇ 2 PI

j

lj �1
and w 2 dom.gj

ˇ
/ \ PGS

¯
”
¯
:

We note that C belongs to the model N and C is dense above  j .vj �1/. So there
exists vj 2 S \ N such that vj 2 C and vj �1 �S vj <S s1. Let fj be a witness
that vj 2 C . Then by our choice, for each h < lj ,

t rM r

k
j
h


S “ dom.fj / [ dom.f r
M r

k
j
h

/ is an antichain in PT

and ran.fj / [ ran.f r
M r

k
j
h

/ is an antichain in PU .”

Since both PT and PU are S -names for subtrees of h!<!1 ;�i, we note that the set
dom.fj /[ dom.f r

M r
j

/ is an antichain in !<!1 and the set ran.fj /[ ran.f r
M r

j

/ is an
antichain in !<!1 in the ground model (because these statements are absolute). This
finishes the proof.

Let q 2 P \N be a witness that the sequence hfj I j < ni belongs to the set H 0
vn�1

.
So then hq; vn�1i is in D \N . We will show that hq; vn�1i and hr; ui are compatible
in P � S .

We note that, for any j and k in n, ˛q

M
q

j

< !1 \N � ˛r
M r

k

. We should remember
that, for each j and k in n, if t r

M r
j

�S t
r
M r

k

, then

f r
M r

j
�

®
hx�˛r

M r
j
; y�˛r

M r
j
iI hx; yi 2 f r

M r
k

¯
;
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so in particular, ®˝
x�.!1 \N/; y�.!1 \N/

˛
I hx; yi 2 f r

M r
j

¯
�

®˝
x�.!1 \N/; y�.!1 \N/

˛
I hx; yi 2 f r

M r
k

¯
:

By the definition of the Hn
v ’s, we note that, for each j 2 n,

� if j … a, then tq
M

q

j

—S t
r
M r

k

for every k < n, and
� if j 2 a, then for every k < n, since vn�1 �S s1 �S u,

t
q

M
q

j

�S t
r
M r

k
” t

q

M
q

j

�
0 D t rM r
k
�
0:

Moreover, for each j; k 2 n, if tq
M

q

j

<S t
r
M r

k

, then it happens that j 2 a and k 2 bj ;

hence, both dom.f q

M
q

j

/[dom.f r
M r

k

/ and ran.f q

M
q

j

/[ ran.f r
M r

k

/ form antichains (see
Claim 3.2). Therefore, by the definition of theHn

v ’s and the choice of q, we can find

a finite subset Xk of !
˛r

M r
k � !

˛r

Mr
k , for each k 2 n, such that

� t r
M r

k


S “Xk � PT � PU ; E”
� both dom.Xk/ [ dom.f r

M r
k

/ and ran.Xk/ [ ran.f r
M r

k

/ form antichains in the

set !
˛t

M r
k ,

� for each j 2 n with tq
M

q

j

<S t
r
M r

k

,

fj (D f
q

M
q

j

) �
®
hx�˛q

M
q

j

; y�˛q

M
q

j

iI hx; yi 2 Xk

¯
;

and
� for each k0 2 n, if t r

M r
k0
<S t

r
M r

k

, then

Xk0 �
®
hx�˛r

M r
k0
; y�˛r

M r
k0

iI hx; yi 2 Xk

¯
:

We define a function q0 such that
� dom.q0/ WD dom.q/ [ dom.r/

D dom.r \N/ [ ¹M
q
j I j 2 nº [ ¹M r

k I k 2 nº;

� q0�.dom.r/ \N/ D r \N ,

� for each j 2 n, q0.M
q
j / WD q.M

q
j /, and

� for each k 2 n, q0.M r
k
/ WD ht r

M r
k

; f r
M r

k

[Xki.

By the above observations, we note that q0 is a condition in P, and hence, q0 �P q
and q0 �P r . So hq0; ui is a common extension of hr; ui and hq; vn�1i. This finishes
the proof.

Notes

1. In fact, we will use this only in the case in which � \N D ; in this paper.

2. The following proof will be the proof that p1 is .P; N /-generic by taking that u D tr
M

for the maximal M in dom.r/ nN .



394 Teruyuki Yorioka

3. In general, if A 2 N \ P .S/ contains u as a member, then there exists v 2 A \N with
v �S u, because the set ¹t 2 S I ConeS .t/ \ A D ; or t 2 Aº is in N and is dense in S .
So there exists v <S u which belongs to this set. (We should remember that the set
¹v 2 S I v <S uº is an .S;N /-generic filter.) Since u 2 A, it has to be true that v 2 A.
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