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Randomness and Semimeasures

Laurent Bienvenu, Rupert Hölzl,
Christopher P. Porter, and Paul Shafer

Abstract A semimeasure is a generalization of a probability measure obtained
by relaxing the additivity requirement to superadditivity. We introduce and study
several randomness notions for left-c.e. semimeasures, a natural class of effec-
tively approximable semimeasures induced by Turing functionals. Among the
randomness notions we consider, the generalization of weak 2-randomness to
left-c.e. semimeasures is the most compelling, as it best reflects Martin-Löf ran-
domness with respect to a computable measure. Additionally, we analyze a ques-
tion of Shen, a positive answer to which would also have yielded a reasonable
randomness notion for left-c.e. semimeasures. Unfortunately, though, we find a
negative answer, except for some special cases.

1 Introduction

Suppose we have an algorithmic procedure P that, upon receiving an infinite binary
sequence as an input, yields either an infinite binary sequence or a finite binary string
as the output. The question we investigate here is:

(Q) What is the typical infinite output of P ?
In the case in which P always produces an infinite output or produces an infinite
output with probability 1, there is already a complete answer to (Q), insofar as we
understand typicality in terms of Martin-Löf randomness. In this case, the typical
outputs of P are determined precisely by the behavior of P on all random inputs:
the procedure P and the Lebesgue measure � together induce a measure �P (in a
sense to be made precise below) so that the typical infinite outputs of P are exactly
the sequences that are random with respect to the measure �P .

In this article, we attempt to answer the question (Q) in the case where the algo-
rithmic procedure P does not produce an infinite output with probability 1. Whereas
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an algorithmic procedure that yields an infinite output with probability 1 induces a
computable measure, a procedure that yields an infinite output with probability less
than 1 induces what is known as a left-c.e. semimeasure, where a semimeasure is a
function � W 2<! ! Œ0; 1� which satisfies

(i) �."/ D 1 and
(ii) �.�/ � �.�0/ C �.�1/,

where " denotes the empty string, and a semimeasure is left-c.e. if it is effectively
approximable from below.

As will be discussed in the next section, we can reformulate the question (Q) as
follows:

(Q0) Which infinite sequences are random with respect to the left-c.e. semimeasure
induced by the Turing functional ˆ?

Clearly, answering this question requires a definition of randomness with respect to
a left-c.e. semimeasure, but there is currently no such definition available.

One attempt at answering (Q0) was suggested by Shen at a recent meeting in
Dagstuhl (see Becher, Bienvenu, Downey, and Mayordomo [1]). There he asked the
following question, which was already raised in Shen, Bienvenu, and Romashchenko
[15].

Question 1.1 If ˆ and ‰ are Turing functionals that induce the same left-c.e.
semimeasure, does it follow that ˆ.MLR/ D ‰.MLR/?

The relevance of Shen’s question to the task of defining randomness with respect to
a left-c.e. semimeasure is the following. Suppose Question 1.1 has a positive answer.
Then we can define Y 2 2! to be �-random if and only if there is some X 2 2! such
that ˆ.X/ D Y for any ˆ that induces �. We call this the pushforward definition of
randomness with respect to a semimeasure.

In this article, we show that Shen’s question has a positive answer in the restricted
case in which ˆ and ‰ induce a computable semimeasure. Moreover, we show that
if the definition of Martin-Löf randomness for computable measures is extended to
computable semimeasures, the resulting definition is equivalent to the pushforward
definition of randomness with respect to a computable semimeasure.

The situation is much less straightforward when we consider left-c.e. semimea-
sures. First, we show that Shen’s question has a negative answer in this more general
setting, and thus we need a different strategy for answering (Q0). Toward this end,
we consider two general approaches to defining randomness with respect to a left-c.e.
semimeasure:1

(1) defining randomness with respect to a semimeasure by a direct adaptation of
standard definitions of randomness with respect to computable measures, and

(2) defining randomness with respect to a semimeasure in terms of a specific
measure derived from trimming back a given semimeasure to a measure.

Although we prove a number of results about these candidate definitions, no def-
inition has yet emerged as the most well behaved. However, some of the results we
present indicate that weak 2-randomness is a promising notion in this context.

The remainder of the article is organized as follows. In Section 2, we provide
the necessary background on randomness with respect to computable and noncom-
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putable measures. We also discuss some basic results about the relationship between
semimeasures and Turing functionals. In Section 3, we answer Shen’s question when
restricted to the collection of computable semimeasures by formulating a definition
of randomness with respect to a computable semimeasure. In Section 4, we answer
the general version of Shen’s question in the negative, but we do show that a related
question involving a notion of randomness that is stronger than Martin-Löf random-
ness has a positive answer. In Section 5, we pursue the first strategy for answering
(Q0) discussed above, directly modifying a number of different definitions of ran-
domness with respect to a measure. Lastly, in Section 6, we discuss the measure
obtained by trimming back a semimeasure and explore the notions of randomness
with respect to such measures.

We assume that the reader is familiar with the basic notions from computability
theory: computable functions, partial computable functions, computably enumer-
able sets, Turing functionals, Turing degrees, and the Turing jump. (For details on
algorithmic randomness, see Downey and Hirschfeldt [3] or Nies [11].)

Let us fix some notation and terminology. We denote by 2! the set of infinite
binary sequences, also known as Cantor space. We denote the set of finite strings
by 2<! and the empty string by ". The set of nonnegative dyadic rationals, that is,
rationals of the form m=2n for m; n 2 ! is written QC

2 . Given X 2 2! and an
integer n, X�n is the string that consists of the first n bits of X , and X.n/ is the
.n C 1/st bit of X (so that X.0/ is the first bit of X ). If � and � are strings, then
� � � means that � is an initial segment of � . Similarly for X 2 2! , � � X means
that � is an initial segment of X . Given a string � , the cylinder J�K is the set of
elements of 2! having � as an initial segment. Similarly, given S � 2<! , JSK is
defined to be the set

S
�2S J�K. The cylinders form a basis for the usual topology on

the Cantor space (the product topology), and thus the open sets for this topology are
those of the form JSK for some S . An open set U is said to be effectively open (or
†0

1) if U D JSK for some c.e. set of strings S . An effectively closed set (or …0
1) is

the complement of an effectively open set. A sequence of open sets .Un/n2! is said
to be uniformly effectively open if there exists a sequence .Sn/n2! of uniformly c.e.
sets of strings such that Un D JSnK.

2 Preliminaries

In this section, we will review the basic results of randomness with respect to com-
putable and noncomputable measures.

2.1 Randomness with respect to computable measures The standard definition of
algorithmic randomness is Martin-Löf randomness, first introduced by Martin-Löf
[10]. Martin-Löf’s original definition was given in terms of the Lebesgue measure,
but he also recognized that it held for a larger class of probability measures. We first
define Martin-Löf randomness with respect to a computable measure �.

A measure � on 2! is computable if � 7! �.J�K/ is computable as a real-valued
function, that is, if there is a computable function Q� W 2<! � ! ! QC

2 such thatˇ̌
�

�
J�K

�
� Q�.�; i/

ˇ̌
� 2�i

for every � 2 2<! and i 2 !. From now on, we will write �.J�K/ as �.�/, and
similarly, for V � 2<! , we will write �.JV K/ as �.V /.
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By Carathéodory’s theorem, a Borel measure � on 2! is uniquely determined by
the values �.�/ for � 2 2<! , and conversely, given a function f W 2<! 2 Œ0; 1� such
that f ."/ D 1 and f .�/ D f .�0/ C f .�1/ for all � , there exists a (unique) Borel
measure � such that �.J�K/ D f .�/ for all � .

The uniform (or Lebesgue) measure � is the measure for which each bit of the
sequence has value 0 with probability 1=2, independent of the values of the other
bits. It can be defined as the unique Borel measure such that �.�/ D 2�j� j for all
strings � .

Definition 2.1 Let � be a computable measure on 2! .
(i) A �-Martin-Löf test is a sequence .Ui /i2! of uniformly effectively open

subsets of 2! such that, for each i ,

�.Ui / � 2�i :

(ii) X 2 2! passes the �-Martin-Löf test .Ui /i2! if X …
T

i2! Ui .
(iii) X 2 2! is �-Martin-Löf random, denoted X 2 MLR�, if X passes every

�-Martin-Löf test. When � is the uniform measure �, we often abbreviate
MLR� by MLR.

An important feature of Martin-Löf randomness is the existence of a universal test.
For every computable measure �, there is a universal �-Martin-Löf test .bUi /i2!

having the property that X 2 MLR� if and only if X …
T

i2!
bUi .

Definition 2.2 For any computable measure �, we tacitly assume that a univer-
sal �-Martin-Löf test .bUi /i2! has been fixed, and we denote by MLRd

� the …0
1-set

.bUd /c, so that MLR� is the nondecreasing union of the sets MLRd
�.

Given a measure �, we say that X 2 2! is an atom of � if �.¹Xº/ > 0. Kautz
[6, Lemma IV.3.7] proved the following useful fact about the atoms of a computable
measure.

Lemma 2.3 X 2 2! is computable if and only if X is an atom of some computable
measure.

There is an intimate connection between Martin-Löf random sequences and a class of
effective functionals that induce computable measures, a connection that we would
like to preserve when we formulate a definition of randomness with respect to a
semimeasure. Recall that a Turing functional ˆ W� 2! ! 2! may be defined as a
c.e. set of pairs of strings .�; �/ such that if .�; �/; .� 0; � 0/ 2 ˆ and � � � 0, then
� � � 0 or � 0 � � . For each � 2 2<! , we define ˆ� to be the maximal string (for
the prefix order) in ¹� W .9� 0 � �/..� 0; �/ 2 ˆ/º. To obtain a map defined on 2!

from this c.e. set of pairs, for each X 2 2! , we let ˆX be the maximal (for the prefix
order) sequence Y such that ˆX�n is a prefix of Y for all n. Note that Y can be finite
or infinite. We will thus set dom.ˆ/ D ¹X 2 2! W ˆX 2 2!º. When ˆX 2 2! , we
will often write ˆX as ˆ.X/ to emphasize the functional ˆ as a map from 2! to 2! .
For � 2 2<! , let ˆ�1.�/ be the set ¹� 2 2<! W 9� 0 � � W .�; � 0/ 2 ˆº. Similarly,
for S � 2<! we define ˆ�1.S/ D

S
�2S ˆ�1.�/. When A is a subset of 2! , we

denote by ˆ�1.A/ the set ¹X 2 dom.ˆ/ W ˆ.X/ 2 Aº. Note in particular that
ˆ�1.J�K/ D Jˆ�1.�/K \ dom.ˆ/.
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The Turing functionals that induce computable measures are precisely the almost
total Turing functionals, where a Turing functional ˆ is almost total if

�
�
dom.ˆ/

�
D 1:

Given an almost total Turing functional ˆ, the measure induced by ˆ, denoted �ˆ,
is defined by

�ˆ.�/ D �
�q

ˆ�1.�/
y�

D �
�
¹X W ˆX

� �º
�
:

It is not difficult to verify that �ˆ is a computable measure. Moreover, given a
computable measure �, one can show that there is some almost total functional ˆ

such that � D �ˆ.
The following two results are very useful. The first one, due to Zvonkin and Levin

[17, Theorem 4.2.6] and known as the preservation of randomness theorem, says
that randomness is preserved under almost total Turing functionals. The second one,
due to Shen (unpublished, but see [15, Theorem 5.1]), is a partial converse of the
preservation of randomness theorem. It says that sequences that are random with
respect to some computable measure must have some unbiased random source. We
thus refer to this result as the no randomness ex nihilo principle, to reflect that one
cannot produce randomness solely out of nonrandom sources.

Theorem 2.4 Let ˆ be an almost total Turing functional.
(i) Preservation of randomness: If X 2 MLR, then ˆ.X/ 2 MLR�ˆ

.
(ii) No randomness ex nihilo principle: If Y 2 MLR�ˆ

, then there is some
X 2 MLR such that ˆ.X/ D Y .

It will be helpful to introduce several other notions of algorithmic randomness for
computable measures. First, the definition of Martin-Löf randomness can be straight-
forwardly relativized to an oracle (for details, see [3] or [11]). In particular, for each
n, if we relativize Martin-Löf randomness to ;.n/, the nth jump of the empty set, this
yields a notion known as .n C 1/-randomness. Another definition of randomness we
consider is weak 2-randomness.

Definition 2.5 Let � be a computable measure.
(i) A generalized �-Martin-Löf test is a sequence .Ui /i2! of uniformly †0

1 sub-
sets of 2! such that

lim
i!1

�.Ui / D 0:

(ii) X 2 2! passes the generalized �-Martin-Löf test .Ui /i2! if X …
T

i2! Ui .
(iii) X 2 2! is �-weakly 2-random, denoted X 2 W2R�, if X passes every

generalized �-Martin-Löf test. When � is the uniform measure �, we often
abbreviate W2R� by W2R.

As every �-Martin-Löf test is a generalized �-Martin-Löf test, it follows that
W2R� � MLR�. In general, the converse does not hold, as shown by the following
result. Recall that A; B 2 2! form a Turing minimal pair if, for any C 2 2! ,
C �T A and C �T B imply that C �T ;.

Theorem 2.6 Let � be a computable measure on 2! . If X 2 2! is not computable,
then X is �-weakly 2-random if and only if X is �-Martin-Löf random and forms a
Turing minimal pair with ;0.
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The proof of this theorem is a generalization of the proof of the result in the case in
which � is the Lebesgue measure (see Porter [12, proof of Theorem 2.69] for details).
One direction of the original theorem was proved by Downey, Nies, Weber, and Yu
[4], while the other direction was proved by Hirschfeldt and Miller (unpublished; see
[3, Theorem 7.2.11]).

2.2 Randomness with respect to noncomputable measures Let P .2!/ be the col-
lection of probability measures on 2! . It can be equipped with a natural topology,
the so-called weak topology. The set B of subsets of P .2!/ of type°

� W

n̂

iD1

�
`i < �.�i / < ri

�±
;

where the �i ’s are strings and the `i ’s and ri ’s are rational numbers, form a base for
this topology. Note that such sets can be encoded by an integer, and we call Bi the
set of code i .

We will consider two general approaches to defining randomness for a noncom-
putable measure � 2 P .2!/, depending on whether our test has access to the mea-
sure as an oracle. If we allow our test to have access to the measure as an oracle, we
first need to code it as an infinite binary sequence. For this we fix a surjective partial
map ‚ W 2! ! P .2!/, defined on a …0

1-subset of 2! , which must have the following
property: from every enumeration of X 2 dom.‚/ (seen as a subset of !), one can
uniformly enumerate the Bi ’s containing �, and from any enumeration of the Bi ’s
containing �, one can uniformly enumerate some preimage of � by ‚. We say that
an enumeration of X is a representation of ‚.X/. There are a number of equivalent
ways to carry this out (see Reimann [13] or Day and Miller [2]), the easiest one being
to define ‚.X/ to be the measure (if it exists and is unique) contained in Bi for each
i 2 X .

The important caveat is that there are measures such that, among all their represen-
tations, there is none of smallest Turing degree (this follows, for example, from the
existence of a neutral measure, as shown by Levin [8]), a phenomenon which occurs
no matter what particular representation is chosen. Therefore, there is no canonical
way—in terms of Turing degree—to represent a measure by a unique member of 2! ,
and subsequently, in any definition where one wants to treat � as an oracle, one needs
to quantify over representations of �.

Definition 2.7 Let � be a measure on 2! , and let R be a representation of �.

(i) An R-Martin-Löf test is a sequence .Ui /i2! of uniformly †0
1.R/ subsets of

2! such that, for each i ,

�.Ui / � 2�i :

(ii) X 2 2! passes the R-Martin-Löf test .Ui /i2! if X …
T

i2! Ui .
(iii) X 2 2! is R-Martin-Löf random, denoted X 2 MLRR

� , if X passes every
R-Martin-Löf test.

(iv) X 2 2! is �-Martin-Löf random, denoted X 2 MLR�, if there is some
representation R of � such that X is R-Martin-Löf random.
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An alternative approach to defining randomness with respect to a noncomputable
measure dispenses with the representations, resulting in what is known as blind ran-
domness (or Hippocratic randomness, as it was called by Kjos-Hanssen [7], where
the definition first appeared).

Definition 2.8 Let � be a measure on 2! .
(i) A blind �-Martin-Löf test is a sequence .Ui /i2! of uniformly †0

1 (i.e., effec-
tively open) subsets of 2! such that, for each i ,

�.Ui / � 2�i :

(ii) X 2 2! passes the blind �-Martin-Löf test .Ui /i2! if X …
T

i2! Ui .
(iii) X 2 2! is blind �-Martin-Löf random, denoted X 2 bMLR�, if X passes

every blind �-Martin-Löf test.

2.3 Some basic facts about left-c.e. semimeasures Recall from the Introduction that
a semimeasure � W 2<! ! Œ0; 1� satisfies

(i) �."/ D 1 and
(ii) �.�/ � �.�0/ C �.�1/.

Henceforth, we will restrict our attention to the class of left-c.e. semimeasures,
where a semimeasure � is left-c.e. if, uniformly in � , there is a computable func-
tion Q� W 2<! � ! ! QC

2 , nondecreasing in its first argument, and such that for
all � ,

lim
i!C1

Q�.�; i/ D �.�/:

That is, the values of � on basic open sets are uniformly approximable from below.
Just as computable measures are precisely the measures that are induced by

almost-total Turing functionals, left-c.e. semimeasures are precisely the semimea-
sures that are induced by Turing functionals.

Theorem 2.9 (Zvonkin and Levin [17, Remark 3.7])

(i) For every Turing functional ˆ, the function

�ˆ.�/ D �
�q

ˆ�1.�/
y�

D �
�
¹X W ˆX

� �º
�

is a left-c.e. semimeasure.
(ii) For every left-c.e. semimeasure �, there is a Turing functional ˆ such that

� D �ˆ.

Another significant fact about left-c.e. semimeasures is the existence of a universal
left-c.e. semimeasure: there exists a left-c.e. semimeasure M such that, for every
left-c.e. semimeasure �, there exists a c 2 ! such that � � c �M . One way to obtain a
universal left-c.e. semimeasure is to effectively list all left-c.e. semimeasures .�e/e2!

(which can be obtained from an effective list of all Turing functionals by appealing
to Theorem 2.9) and set M D

P
e2! 2�e�1�e . Alternatively, one can induce it by

means of a universal Turing functional. Let .ˆi /i2! be an effective enumeration of
all Turing functionals. Then the functional b̂ such thatb̂.1e0X/ D ˆe.X/

for every e 2 ! and X 2 2! is a universal Turing functional, and we can set
M D �b̂. Then M is an universal left-c.e. semimeasure, since for any left-c.e.
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semimeasure �, there is some ˆe such that � D �ˆe
, and thus by the definition of b̂,

we have �ˆe
� 2eC1 � �b̂.

3 Shen’s Question for Computable Semimeasures

In this section, we provide a positive answer to Shen’s question for the case of com-
putable measures. That is, we prove the following.
Theorem 3.1 If ˆ and ‰ are Turing functionals such that �ˆ D �‰ and �ˆ is
computable, then ˆ.MLR/ D ‰.MLR/.
To prove Theorem 3.1, we extend the definition of Martin-Löf randomness with
respect to computable measures to a definition of Martin-Löf randomness with
respect to computable semimeasures.

The definition of a computable semimeasure is just a slight modification of the
definition of a computable measure: a semimeasure � is computable if there is a
computable function Q� W 2<! � ! ! QC

2 such thatˇ̌
�.�/ � Q�.�; i/

ˇ̌
� 2�i

for every � 2 2<! and i 2 !.
To define Martin-Löf randomness with respect to a computable semimeasure,

we have to exercise some caution. In general, for a given †0
1 class U, �.U/

is not well defined, as there may exist prefix-free sets E0; E1 � 2<! such that
JE0K D JE1K D U but �.E0/ ¤ �.E1/, if one defines �.E/ D

P
�2E �.�/ for

E � 2<! .
To remedy this problem, we will only apply semimeasures to c.e. subsets of 2<!

rather than to effectively open subsets of 2! . Moreover, since any c.e. set E � 2<!

may be replaced with a prefix-free c.e. set F � 2<! such that JF K D JEK and
�.F / � �.E/ for any semimeasure �, we can always assume that a given c.e. subset
of 2<! is prefix-free. This replacement can be done uniformly, so whenever we need
to consider a uniformly c.e. sequence .Ei /i2! of subsets of 2<! , we may assume that
the sets Ei are all prefix-free.
Definition 3.2 Let � be a computable semimeasure.

(i) A �-Martin-Löf test is a uniformly c.e. sequence .Ui /i2! of subsets of 2<!

such that
�.Ui / � 2�i

for each i 2 !.
(ii) X 2 2! passes the �-Martin-Löf test .Ui /i2! if X …

T
i2!JUi K.

(iii) X 2 2! is �-Martin-Löf random, denoted X 2 MLR�, if X passes every
�-Martin-Löf test.

We now verify that randomness with respect to a computable semimeasure satisfies
both randomness preservation and the No Randomness Ex Nihilo principle. Whereas
the proof of randomness preservation for computable measures is essentially the
same as the standard proof of randomness preservation for computable measures,
the proof of the no randomness ex nihilo principle for computable semimeasures is
considerably more delicate than the original proof.
Theorem 3.3 (Randomness preservation for computable semimeasures) If ˆ is
a Turing functional that induces a computable semimeasure �, then X 2 MLR \

dom.ˆ/ implies that ˆ.X/ 2 MLR�.
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Proof Suppose that we have X 2 dom.ˆ/ such that ˆ.X/ … MLR�. Then there is
a �-Martin-Löf test .Ui /i2! such that ˆ.X/ 2

T
i2!JUi K. We define

Vi D

[
�2Ui

q
ˆ�1.�/

y
:

Clearly, the collection .Vi /i2! is uniformly †0
1. Then

�.Vi / �

X
�2Ui

�
�q

ˆ�1.�/
y�

D

X
�2Ui

�.�/ D �.Ui / � 2�i ;

so .Vi /i2! is a Martin-Löf test. Lastly, ˆ.X/ 2 JUi K for each i 2 !; thus for each
i 2 ! there is some � � ˆ.X/ such that � 2 Ui . This implies that X 2 Jˆ�1.�/K,
and so we have X 2 Vi . Thus, X … MLR.

Theorem 3.4 (No randomness ex nihilo principle for computable semimeasures)
Let ˆ be a Turing functional that induces a computable semimeasure �. If
Y 2 MLR�, then there is some X 2 MLR such that ˆ.X/ D Y .

Proof First, we define a collection of Turing functionals .b̂e/e2! that will serve
as approximations for the functional ˆ. Note that dom.ˆ/ D

T
`2! S`, where for

each `,
S` D

®
X 2 2!

W .9k/ jˆX�k
j � `

¯
(which is uniformly effectively open).

For each e, we define a sequence of finite sets of strings .C e
`

/`2! such that for
every `,

(i) JC e
`

K � S`, and
(ii) �.S` n JC e

`
K/ � 2�`�e�1.

The sequence .C e
`

/`2! can be effectively obtained, since � is a computable semimea-
sure that is induced by ˆ, which implies that �.S`/ is computable uniformly in `.
Each JC e

`
K is clopen, and therefore so are the sets

T
k�`JC e

k
K for each ` 2 !. Then

let .De
`
/e;`2! be a computable bisequence of sets of finite strings such that

JDe
` K D

\
k�`

JC e
k K:

Next we set b̂
e WD

®
.�; �/ 2 ˆ W � 2 De

j� j

¯
;

so that
dom.b̂e/ D

\
`2!

JDe
` K D

\
`2!

JC e
` K:

Since each JDe
`
K is clopen, it follows that dom.b̂e/ is a …0

1 class uniformly in e.
Moreover, b̂

e is a restriction of ˆ such that

�
�
dom.ˆ/ n dom.b̂e/

�
�

X
`2!

�
�
S` n JC e

` K
�

�

X
`2!

2�e�`�1
� 2�e:

Note also that, for each e; `, we have

�
�
S` n JDe

` K
�

D �
�\

k�`

Sk n

\
k�`

JC e
k K

�
�

X
k�`

2�e�k�1
� 2�e
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(where we use the definition of the De
`
’s and the fact that the Sk are nonincreasing),

an inequality we will need at the end of the proof.
Now, for each e 2 !, let ‚e be the predicate on 2<! defined by

‚e.�/ if and only if 8X
�
X … MLRe

_ X … JDe
j� j

K _ ˆX
?�

�
;

where ˆX ?� means that ˆX has length at least j� j and is incomparable with � ,
and MLRe is the complement of the eth level of the universal Martin-Löf test
(with respect to the Lebesgue measure). The predicate ŒX … MLRe

_ X … JDe
j� j

K _

ˆX ?�� is †0
1 over X ; therefore, by effective compactness, ‚e is also †0

1 uniformly
in e. For each e, let Ve be a maximal prefix-free set of strings among those sat-
isfying ‚e . Note that JVeK is effectively open uniformly in e. Let us evaluate
�ˆ.Ve/:

�ˆ.Ve/ D �
�®

X W .9� 2 Ve/ ˆX
� �

¯�
� �

�®
X W .9�/ ˆX

� � ^
�
X … JDe

j� j
K _ X 2 .MLRe/c

�¯�
� �

�[
l

Sl n JDe
l K

�
C �

�
.MLRe/c

�
� 2�e

C 2�e:

Thus, .Ve/e2! is a �ˆ-Martin-Löf test. This means that for every �ˆ-Martin-Löf
random Y , there must be an e such that Y … JVeK, or in other words (by the def-
inition of Ve): for every prefix Y �`, there is some X` 2 MLRe

\ JDe
`
K such thatb̂X`

e � Y �`. By compactness, one can assume, up to extraction of a subsequence,
that the sequence .X`/`2! converges to some X�. Since X` 2 JDe

`
K for all `, and

since the sets JDe
`
K are closed and nonincreasing, it follows that X� belongs to all

JDe
`
K, that is, X� is in the domain of b̂

e . By the continuity of Turing functionals,b̂X�

e D lim`
b̂X`

e D lim` Y �` D Y . Moreover, each X` belongs to MLRe and
MLRe is closed, so X� belongs to MLRe as well. Therefore Y has a Martin-Löf
random preimage by b̂

e , namely, X�. Since b̂
e is a restriction of ˆ, the result

follows.

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1 Given Y 2 ˆ.MLR/, it follows from Theorem 3.3 that
Y 2 MLR�. Since ‰ induces �, by Theorem 3.4 there is some X 2 MLR such
that ‰.X/ D Y . This shows that ˆ.MLR/ � ‰.MLR/, and a symmetric argument
shows that ‰.MLR/ � ˆ.MLR/.

Note that the positive answer to Shen’s question is an immediate consequence of ran-
domness preservation and the no randomness ex nihilo principle. We see this again
in Corollary 4.4 below in the context of left-c.e. semimeasures and 2-randomness.

As our definition of randomness with respect to a computable semimeasure
behaves much like Martin-Löf randomness with respect to a computable measure, it
is reasonable to ask if there are any sequences that are random with respect to some
computable semimeasure but no computable measure. We answer this question in
the negative.

Proposition 3.5 We have that X 2 2! is random with respect to a computable
measure if and only if X is random with respect to a computable semimeasure.
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Proof As every computable measure is a computable semimeasure, one direc-
tion is immediate. Suppose now that X is not random with respect to any com-
putable measure. Let � be a computable semimeasure. We define the function
g W 2<! ! Œ0; 1� to be

g.�/ D �.�/ �
�
�.�0/ C �.�1/

�
for every � 2 2<! . Clearly, g is computable since � is. Next we define
� W 2<! ! Œ0; 1� so that �."/ D 1 and for j� j � 1,

�.�/ D �.�/ C

X
���

2j� j�j� jg.�/:

Clearly, � is computable and �.�/ � �.�/ for every � 2 2<! . We just need to verify
that � is a measure, which we prove by induction. For any � 2 2<!

�.�0/ C �.�1/ D �.�0/ C

X
���0

2j� j�j�0jg.�/ C �.�1/ C

X
���1

2j� j�j�1jg.�/

D �.�0/ C
1

2

X
���0

2j� j�j� jg.�/ C �.�1/ C
1

2

X
���1

2j� j�j� jg.�/

D �.�0/ C �.�1/ C

X
���

2j� j�j� jg.�/

D �.�0/ C �.�1/ C g.�/ C

X
���

2j� j�j� jg.�/

D �.�/ C

X
���

2j� j�j� jg.�/

D �.�/:

Now since X … MLR� by hypothesis, there is some �-Martin-Löf test .Ui /i2!

such that X 2
T

i2! Ui . By letting Ui be such that JUi K D Ui for each i 2 !,
�.Ui / � �.Ui / for every i , which implies that .Ui /i2! is a �-Martin-Löf test. Thus,
X … MLR�.

4 Shen’s Question for Left-c.e. Semimeasures

In this section, we prove that Question 1.1, Shen’s original question for left-c.e.
semimeasures, has a negative answer.

Theorem 4.1 There exist Turing functionals ˆ and ‰ such that �ˆ D �‰ and yet
ˆ.MLR/ ¤ ‰.MLR/.

Proof We define ˆ and ‰ as c.e. sets of pairs .�; �/ 2 2<! � 2<! . Recall that
Chaitin’s � is defined to be

� WD

X
U.�/#

2�j� j;

where U is a universal prefix-free Turing machine (see [3] or [11] for more details).
Furthermore, it is well known that � is Martin-Löf random and left-c.e. Let .�s/s2!

be a computable nondecreasing sequence of dyadic rationals converging to �. We
can think of each �s as a finite string, so that for n < j�sj, �s.n/ is the nth bit of
the string �s .
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We define the functional
ˆ D

[
n

®
.�s�n; 0n/ W s � n

¯
:

It is easy to see that dom.ˆ/ D ¹�º and ˆ.�/ D 0! . Indeed, if X ¤ �, X and
� disagree on some bit, say, the kth bit, and then for some t we have, for all s � t ,
�s�k D ��k ¤ X�k and thus by construction jˆX j < t , that is, X … dom.ˆ/.

Next, we define ‰. For each .�; 0j� j/ that we enumerate into ˆ at stage s, let � be
the leftmost string of length j� j such that .�; 0j� j/ has not yet been enumerated into
‰ and enumerate this pair into ‰. Observe that this construction ensures that (1) for
all n, �ˆ.0n/ D �‰.0n/, and thus �ˆ D �‰ as both are equal to 0 on strings that are
not of type 0n, and (2) the domain of ‰ contains 0! and is closed downward under
the lexicographic order. A set which is closed downward under the lexicographic
order is either the empty set, the singleton 0! , or a set of positive measure. It is not
the empty set and it cannot have positive measure, because otherwise there would
exist a positive r such that �‰.0n/ > r for all n. This is impossible since �‰ D �ˆ

and �ˆ.0n/ tends to 0. Thus, dom.‰/ D ¹0!º and ‰.0!/ D 0! , which in particular
implies that ‰.MLR/ D ; ¤ ˆ.MLR/.

Remark 4.2 The above proof actually works for any �0
2 Martin-Löf random

sequence. Further, it is not necessary that �.dom.ˆ// D 0. If we define b̂ and b‰ by´b̂.0X/ D ˆ.X/b̂.1X/ D X
and

´b‰.0X/ D ‰.X/b‰.1X/ D X

(where ˆ and ‰ are defined in the previous proof), we then have

�
�
dom.b̂/

�
D �

�
dom.b‰/

�
D 1=2;

while �b̂ D .�ˆ C �/=2 D .�‰ C �/=2 D �b‰ , and b̂.0�/ D ˆ.�/ has no
Martin-Löf random preimage via b‰.

Although Question 1.1 has a negative answer, if we rephrase the question in terms of
a stronger notion of randomness, then we can answer the question in the affirmative.
To do so, we have to extend our definition of randomness with respect to a com-
putable semimeasure to a definition of 2-randomness with respect to a ;0-computable
semimeasure.

First, we extend several definitions from the previous section.
– A semimeasure � is ;0-computable if the values .�.�//�22<! are uniformly

;0-computable.
– For a ;0-computable semimeasure �, a �-;0-Martin-Löf test is a uniformly

;0-c.e. sequence .Ui /i2! of subsets of 2<! such that �.Ui / � 2�i .
– A sequence X 2 2! passes the �-;0-Martin-Löf test .Ui /i2! if X …T

i2!JUi K.
– For a ;0-computable semimeasure �, X 2 2! is �-2-random, denoted

X 2 2MLR�, if X passes every �-;0-Martin-Löf test.
Using these definitions, the following result is obtained from relativizing the proof

of Theorems 3.3 and 3.4.

Corollary 4.3 Let � be a left-c.e. semimeasure, and let ˆ be a Turing functional
such that � D �ˆ.
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(i) For every X 2 2MLR \ dom.ˆ/, ˆ.X/ 2 2MLR�.
(ii) If Y 2 2MLR�, then there is some X 2 2MLR such that ˆ.X/ D Y .

Corollary 4.3, together with an argument similar to the one in the proof of Theo-
rem 3.1, yields the following.

Corollary 4.4 If ˆ and ‰ are Turing functionals such that �ˆ D �‰ , then
ˆ.2MLR/ D ‰.2MLR/.

5 The Direct Adaptation Approach

A positive answer to Shen’s question would have yielded a definition of randomness
with respect to a left-c.e. semimeasure: for a left-c.e. semimeasure �, the sequences
that are random with respect to � would simply be the images of the Martin-Löf
random sequences under any functional that induces �. But as we have answered
Shen’s question in the negative, we need a different strategy to define randomness
with respect to a left-c.e. semimeasure.

In this section, we discuss certain desiderata for our definition and then we con-
sider several definitions of randomness with respect to a left-c.e. semimeasure that
are obtained by directly modifying standard definitions of randomness with respect
to a computable measure.

5.1 Desiderata for a definition of randomness with respect to a left-c.e. semimea-
sure Given that the collection of left-c.e. semimeasures extends the collection of
computable measures, we would like our theory of randomness with respect to a
left-c.e. semimeasure to extend the standard theory of randomness with respect to a
computable measure. To this end, it would be ideal to find a definition of random-
ness with respect to a semimeasure that satisfies a number of conditions, which we
describe below.

First, as every computable measure is a left-c.e. semimeasure, it seems natural to
require the following.

(i) Coherence: X is random with respect to a computable measure � if and only
if X is random with respect to � considered as a left-c.e. semimeasure.

Second, as the relationship between almost-total Turing functionals and computable
measures is analogous to the relationship between Turing functionals and left-c.e.
semimeasures, we would like to extend the analogy by requiring the following two
conditions.

(ii) Randomness preservation: If X is random and ˆ is a Turing functional, then
ˆ.X/ is random with respect to the semimeasure �ˆ.

(iii) No randomness ex nihilo principle: If Y is random with respect to the
semimeasure �ˆ for some Turing functional ˆ, then there is some random X

such that ˆ.X/ D Y .
Lastly, in the theory of randomness with respect to a measure (computable or non-
computable), a computable sequence is random with respect to some measure � only
if it is an atom of �, as shown by Reimann and Slaman [14]. We extend this to the
case of left-c.e. semimeasures.

(iv) Computable sequence condition: If X is computable and random with respect
to a left-c.e. semimeasure �, then infn �.X�n/ > 0.
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With these conditions in mind, we now turn to a first candidate definition for
randomness with respect to a semimeasure.

5.2 Martin-Löf randomness with respect to a left-c.e. semimeasure First, we con-
sider the same modification of Martin-Löf randomness that we made in Section 3
when defining randomness for a computable semimeasure.

Definition 5.1 Let � be a left-c.e. semimeasure.
(i) A �-Martin-Löf test is a sequence .Ui /i2! of uniformly c.e. subsets of 2<!

such that, for each i ,
�.Ui / � 2�i :

(ii) X 2 2! passes the �-Martin-Löf test .Ui /i2! if X …
T

i2!JUi K.
(iii) X 2 2! is �-Martin-Löf random, denoted X 2 MLR�, if X passes every

�-Martin-Löf test.

One interesting consequence of this definition is that the universal left-c.e. semimea-
sure M is universal for Martin-Löf randomness with respect to a left-c.e. semimea-
sure.

Proposition 5.2 Let S be the collection of left-c.e. semimeasures. Then MLRM DS
�2S MLR�.

Proof Clearly, MLRM �
S

�2S MLR�. For the other direction, note that for
any left-c.e. semimeasure �, every M -Martin-Löf test can be transformed into a
�-Martin-Löf test since there is some c such that �.�/ � c �M.�/ for every � 2 2<! .
Thus, if X … MLRM , it follows that X … MLR� for any left-c.e. semimeasure �.

Even though every universal left-c.e. semimeasure is universal in the sense of Propo-
sition 5.2, the converse does not hold.

Proposition 5.3 There is a nonuniversal left-c.e. semimeasure fM such that

MLReM D MLRM D

[
�2S

MLR�:

Proof First, define a semimeasure � by �.�/ D 2�j M.�/, where j is the largest
integer such that 1j � � . The semimeasure � is left-c.e., but it cannot be universal
as there is no c such that c � �.�/ � M.�/ for every � 2 2<! .

Consider a �-Martin-Löf test .Ti /i2! . For each j 2 !, define an M -Martin-Löf
test .S

j
i /i2! by S

j
i D ¹� 2 TiCj W � � 1j 0º. For each � 2 S

j
i , � D 1j 0� for some

� 2 2<! . It follows that M.�/ D M.1j 0�/ D 2j �.1j 0�/ D 2j �.�/. Thus we haveX
�2S

j

i

M.�/ D 2j
X

�2S
j

i

�.�/ � 2j
X

�2TiCj

�.�/ � 2j 2�.iCj /
D 2�i :

Clearly, every sequence containing a 0 that is covered by .Ti /i2! is covered by
.S

j
i /i2! for some j . Thus � is almost the desired measure: we have MLRM �

MLR� [ ¹1!º. Consider then the measure ı1! , where ı1! .�/ D 1 if � D 1n for
some n 2 ! and ı1! .�/ D 0 otherwise. Let fM D .1=2/� C .1=2/ı1! . Then fM is
not universal, and MLReM � MLRM by Proposition 5.2. Finally, one easily checks
that MLReM D MLR� [ MLRı1! D MLR� [ ¹1!º. Hence MLRM � MLReM as
well.
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Now we evaluate the adequacy of our definition in terms of the desiderata laid out in
Section 5.1. Clearly, this definition satisfies the condition of coherence. Moreover,
we can show that it also satisfies randomness preservation.
Theorem 5.4 If X 2 MLR and ˆ is a Turing functional such that X 2 dom.ˆ/,
then ˆ.X/ 2 MLR�ˆ

.
Proof Suppose that there is a �ˆ-Martin-Löf test .Ui /i2! such that ˆ.X/ 2T

i2!JUi K. Then .Jˆ�1.Ui /K/i2! is a uniform sequence of †0
1 subsets of 2! , and

�
�q

ˆ�1.Ui /
y�

D �ˆ.Ui / � 2�i

for every i , so .Jˆ�1.Ui /K/i2! is a Martin-Löf test containing X .

Remark 5.5 Despite satisfying these two conditions, in general �-Martin-Löf
randomness fails to satisfy the no randomness ex nihilo principle and the com-
putable sequence condition. First, for the counterexample to the no randomness ex
nihilo principle, let � be the semimeasure constructed in the proof of Theorem 4.1.
There we constructed functionals ˆ and ‰ inducing � such that dom.ˆ/ D ¹�º,
dom.‰/ D ¹0!º, and ˆ.�/ D 0! D ‰.0!/. By Theorem 5.4, 0! 2 MLR�. How-
ever, ‰ induces � and yet maps no Martin-Löf random sequence to 0! . The same
example provides a counterexample to the computable sequence condition: 0! is
�-Martin-Löf random, but infn �.0n/ D 0.
We can also construct a left-c.e. semimeasure � that fails to satisfy the com-
putable sequence condition in the strongest possible way: � has no atoms and yet
MLR� D 2! .
Theorem 5.6 There is a nonatomic left-c.e. semimeasure � such that every
X 2 2! is Martin-Löf random for �.
Proof Let .Ee

n/he;ni2! be an effective list of all uniformly c.e. sequences of subsets
of 2<! . We satisfy the requirements

ReW

\
n2!

JEe
nK ¤ ; ! .9n 2 !/

�
�.Ee

n/ > 2�n
�
:

Satisfying all of these requirements ensures that if .En/n2! defines a �-Martin-Löf
test, then

T
n2!JEe

nK D ;. Therefore, every X 2 2! is �-Martin-Löf random.
For each e, we build a left-c.e. semimeasure �e (where we relax the requirement

�e."/ D 1 to �e."/ � 1) as follows.
– Start with �e.�/ D 0 for all � .
– If at some stage some � enters Ee

eC2, set �e.� 0/ D 2�e�1 for all prefixes of �

(including � itself) and finish the construction.
Clearly, �e is a left-c.e. semimeasure such that �e.Ee

eC2/ > 2�e�2 if Ee
eC2 ¤ ;,

and �e."/ � 2�e�1. Thus, define � by �."/ D 1 and �.�/ D
P

e2! �e.�/ for all
� with j� j > 0. Then � is a left-c.e. semimeasure such that �.Ee

eC2/ > 2�e�2 if
Ee

eC2 ¤ ;.

Note that Proposition 5.2 and Theorem 5.6 together imply the following.
Corollary 5.7 We have MLRM D 2! .
In light of the fact that �-Martin-Löf randomness does not always satisfy the desider-
ata from Section 5.1, we consider other definitions of randomness for a left-c.e.
semimeasure.
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5.3 Weak 2-randomness with respect to a left-c.e. semimeasure We can obtain the
definition of weak 2-randomness for a left-c.e. semimeasure by modifying the notion
of a generalized Martin-Löf test.

Definition 5.8 Let � be a left-c.e. semimeasure.
(i) A generalized �-Martin-Löf test is a sequence .Ui /i2! of uniformly c.e. sub-

sets of 2<! such that
lim

i!1
�.Ui / D 0:

(ii) X 2 2! passes the generalized �-Martin-Löf test .Ui /i2! if X …
T

i2!JUi K.
(iii) X 2 2! is �-weakly 2-random, denoted X 2 W2R�, if X passes every gen-

eralized �-Martin-Löf test.

Weak 2-randomness for a left-c.e. semimeasure is more well behaved than the previ-
ous definition considered in this section, as it satisfies both randomness preservation
and the computable sequence condition.

Theorem 5.9 Let � be a left-c.e. semimeasure, and let ˆ be a Turing functional
that induces �. Then for every X 2 W2R \ dom.ˆ/, ˆ.X/ 2 W2R�.

Proof The proof is nearly identical to the proof of Theorem 5.4.

Proposition 5.10 Let � be a left-c.e. semimeasure. Suppose that X is computable
and that X 2 W2R�. Then infn �.X�n/ > 0.

Proof Suppose that X is computable and that infn �.X�n/ D 0. Then setting
Ui D ¹X�iº for each i 2 ! yields a generalized �-Martin-Löf test capturing X .

Clearly, W2R� � MLR�, but for some semimeasures � (such as any � such that
�-Martin-Löf randomness violates the computable sequence condition), the inclu-
sion is strict. We should note further that the universal left-c.e. semimeasure M is
universal for weak 2-randomness, as is the nonuniversal fM from Proposition 5.3:

W2ReM D W2RM D

[
�2S

W2R�:

We have seen that weak 2-randomness for a semimeasure satisfies coherence, ran-
domness preservation, and the computable sequence condition, but we currently do
not know whether it satisfies the no randomness ex nihilo principle. We will return
to this question at the end of Section 6.

We now turn to another general approach to defining randomness with respect to
a semimeasure, an approach that is found implicitly in Levin and V’yugin [9] and
V’yugin [16].

6 Trimming a Semimeasure Back to a Measure

We can also define randomness with respect to a semimeasure by trimming back our
semimeasure to a measure and then considering the sequences that are random with
respect to the resulting measure.
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6.1 Definition of a derived measure and examples To better understand this
approach, it is helpful to think of a semimeasure as a network flow through the
full binary tree 2<! seen as a directed graph. We initially assign 1 to be the value
of the flow at the root of the tree, which implies that �."/ D 1. Some amount of
this flow at each node � is passed along to the node corresponding to �0, some is
passed along to the node corresponding to �1, and, potentially, some of the flow is
lost, yielding the condition that �.�/ � �.�0/ C �.�1/.

We obtain a measure � from � if we ignore all of the flow that is lost and just
consider the behavior of the flow that never leaves the network. We will refer to � as
the measure derived from �. This can be formalized as follows.

Definition 6.1 ([9, p. 360]) Let � be a semimeasure. We have

�.�/ WD inf
n�j� j

X
��� & j� jDn

�.�/

D lim
n!1

X
��� & j� jDn

�.�/:

The fact that one can use either inf or lim in the expression is due to the fact that
the term

P
��� & j� jDn �.�/ is nonincreasing in n by the semimeasure inequality

�.�/ � �.�0/ C �.�1/.
The following are two simple examples illustrating the different behaviors of �

and �.

Example 6.2 Let �.�/ D 4�j� j for every � 2 2<! . Then for each � 2 2<! and
each n 2 !, X

��� & j� jDn

�.�/ D 2n�j� j4�n
D 2�n2�j� j:

Thus, �.�/ D 0 for every � 2 2<! .

Example 6.3 Let � be a semimeasure such that �.�/ D
1
2
�.�/ C

1

22j�jC1 . Then
for each � 2 2<! and each n 2 !,X

��� & j� jDn

�.�/ D 2n�j� j
�1

2
�.�/ C

1

22j� jC1

�
D 2n�j� j

�1

2
2�n

C
1

22nC1

�
D

1

2
2�j� j

C
2n�j� j

22nC1

D
1

2
�.�/ C 2�.nC1/�.�/:

Thus, �.�/ D
1
2
�.�/ for every � 2 2<! .

This latter example yields what we will refer to as a Lebesgue-like semimeasure.

Definition 6.4 A semimeasure � is Lebesgue-like if there is some ˛ 2 .0; 1� such
that

� D ˛ � �:
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Let us now show that � is indeed a measure which enjoys some nice properties, both
from the analytic viewpoint and in connection with Turing functionals. The following
proposition is probably folklore; an explicit reference is hard to find in the literature.

Proposition 6.5 Let � be a semimeasure, and let � be defined as above. Then � is
the largest measure � such that � � �. In particular, if � is a measure, then � D �.
Moreover, if

�.�/ D �
�
¹X W ˆX

� �º
�
;

then
�.�/ D �

�®
X 2 dom.ˆ/ W ˆX

� �
¯�

:

(Thus, trimming � back to � amounts to restricting the Turing functional ˆ that
induces � to those inputs on which ˆ is total.)

Proof The fact that � is a measure is clear from the definition

�.�/ D lim
n!1

X
��� & j� jDn

�.�/;

since we then have
�.�0/ C �.�1/ D lim

n!1

X
���0 & j� jDn

�.�/ C lim
n!1

X
���1 & j� jDn

�.�/

D lim
n!1

X
��� & j� jDn

�.�/

D �.�/:

Now, if � is a measure such that �.�/ � �.�/ for all � , then for any given � :

�.�/ D inf
n�j� j

X
��� & j� jDn

�.�/

� inf
n�j� j

X
��� & j� jDn

�.�/

D �.�/:

(For the first equality, we used the measure property �.�/ D �.�0/ C �.�1/.)
Suppose now that � is induced by some Turing functional ˆ, that is,

�.�/ D �
�
¹X W ˆX

� �º
�

for all � . Set �.�/ D �.¹X 2 dom.ˆ/ W ˆX � �º/.
Let Dn be the set of X such that ˆX is of length at least n. The sets Dn are

nonincreasing in n. Moreover, dom.ˆ/ D
T

n2! Dn. Therefore, for all � :

�.�/ D lim
n!1

�
�
¹X 2 Dn W ˆX

� �º
�
:

By definition, for n � j� j,

�
�
¹X 2 Dn W ˆX

� �º
�

D

X
��� & j� jDn

�.�/:

Putting the two together, we have

�.�/ D lim
n!1

X
��� & j� jDn

�.�/ D �.�/;

as wanted.
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6.2 The complexity of � We now show that for a given left-c.e. semimeasure �,
� can encode a lot of information. More precisely, for any ;0-right-c.e. real ˛ (i.e.,
˛ is the limit of a ;0-computable nonincreasing sequence of rationals), we code ˛

into the values of � for some left-c.e. semimeasure �. Further, we can even make �

Lebesgue-like, as shown by the next theorem. The equivalence of .1/, .2/, and .3/

is well known but it is hard to find a reference for this result, so we include the proof
for completeness.

Theorem 6.6 The following are equivalent for ˛ 2 Œ0; 1�:

(1) ˛ is ;0-right c.e.;
(2) ˛ D lim supn qn for a computable sequence of rationals .qn/n2!;
(3) ˛ D inf rn where .rn/n2! is a uniform sequence of left-c.e. reals;
(4) there is a left-c.e. semimeasure � such that � D ˛ � �.

Proof (1) ) (2): Let ˛ 2 Œ0; 1� be ;0-right c.e, and assume that ˛ is irrational
because the implication is clear for rational ˛. Thus there is a ;0-computable function
g such that .g.i//i2! is a strictly decreasing sequence of rationals in Œ0; 1� converging
to ˛. By the limit lemma, there is a total computable function f that outputs rationals
in Œ0; 1� and is such that .8i 2 !/.g.i/ D lims f .i; s//.

We define our sequence of rationals .qn/n2! as follows. Let .is/s2! be an effective
sequence of natural numbers in which every number appears infinitely often. At
stage s, enumerate f .is; s/ as the next rational in the sequence if it has not yet been
enumerated, and .8k < is/.f .is; s/ < f .k; s//.

We show that, for every i 2 !,

(i) .9n0 2 !/.qn0
D g.i//, and

(ii) .9n1 2 !/.8n > n1/.qn < g.i//.

For (i), given i , let s be such that .8k � i/.g.k/ D f .k; s// and is D i . Then at
stage s we have .8k < is/.f .is; s/ D g.is/ < g.k/ D f .k; s//, so at this stage
f .is; s/ D g.i/ will be enumerated if it has not been enumerated already. For (ii),
given i , let s0 be such that .8k � i/.8s � s0/.g.k/ D f .k; s// and such that (by
(i)) every g.k/ for k � i has been enumerated by stage s0. Consider an f .is; s/

that is enumerated at some stage s > s0. It is impossible that is � i because in this
case at stage s we would have f .is; s/ D g.is/, and by assumption this number was
already enumerated. Thus is > i , and to be enumerated at stage s, f .is; s/ must
satisfy f .is; s/ < f .i; s/ D g.i/ as desired.

The conclusion ˛ D lim supn qn now follows from (i) and (ii). By (i), every tail of
the sequence .qn/n2! contains an element of the form g.i/ for some i ; hence, since
˛ < g.i/, we have ˛ � lim supn qn. By (ii), .8i 2 !/.lim supn qn � g.i//, hence
lim supn qn � ˛.

(2) ) (3): Suppose that ˛ D lim supn qn for a computable sequence of
rationals .qn/n2! . Let rn WD sup.qi /i�n. Clearly, each rn is left-c.e. and
infn rn D lim sup qn D ˛.

(3) ) (4): Since each ri is left-c.e., let ri;s be the sth rational in the approximation
of ri . To define �, we let �s.�/ D 2�j� j mini�j� j ri;s . Then �.�/ D 2�j� j mini�j� j ri .
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It is routine to verify that � is a semimeasure. Now observe that

�.�/ D inf
n

X
��� & j� jDn

�.�/

D inf
n

X
��� & j� jDn

2�j� j min
i�j� j

ri

D inf
n

2n�j� j2�n min
i�n

ri

D 2�j� j inf
n

min
i�n

ri

D ˛ � 2�j� j:

(4) ) (1): We have that ;0 computes
P

xWjxjDn �.x/ uniformly in n. Then
�."/ D infn

P
xWjxjDn �.x/ is ;0-right-c.e.

The following corollary tells us that � can be as complicated as possible.

Corollary 6.7 There is a left-c.e. semimeasure � such that � D ˛ �� and ˛ �T ;00.
In particular, every representation of � computes ;00.

Proof Recall that Tot D ¹e W ˆe is totalº. Let ˛ D
P

e2Tot 2�e , which is ;0-right-
c.e., and apply Theorem 6.6.

Despite the fact that for a given left-c.e semimeasure �, � can encode a lot of infor-
mation, we cannot obtain every ;0-computable measure as the � of some left-c.e.
semimeasure �, as the following result shows. The witnessing measure � we con-
struct even has a low representation in the sense described at the beginning of Sec-
tion 2.2 because the (in this case rational-valued) function � 7! �.�/ is low and
clearly computes a representation of �.

Proposition 6.8 There is a measure � such that �.�/ is a positive rational for all
strings � , the function � 7! �.�/ is low, and � ¤ ˇ � � for every left-c.e. real ˇ and
every left-c.e. semimeasure �. In particular, � ¤ � for any left-c.e. semimeasure �.

Proof Let Q>0 denote the set of positive rationals. For each n 2 !, let 2�n denote
the set of strings of length at most n, and let 2<n denote the set of strings of length
less than n. Define a partial measure to be a function of the form mW 2�n ! Q>0

for some n 2 ! such that m."/ D 1 and .8� 2 2<n/.m.�/ D m.�0/ C m.�1//.
The partial measures form a partial order P when ordered by extension: m0 v m1 if
dom.m0/ � dom.m1/ and .8� 2 dom.m1//.m0.�/ D m1.�//. Similarly, if m is
a partial measure and � is a measure, we write � v m if .8� 2 dom.m//.�.�/ D

m.�//.
To ensure � ¤ ˇ � �, it suffices to ensure that there is a � 2 2<! such that

�.�/ > ˇ � �.�/ because then �.�/ > ˇ � �.�/ � ˇ � �.�/. To this end, let .ˇ/e2! be
an effective list of all left-c.e. reals, and let .�e/e2! be an effective list of all left-c.e.
semimeasures.

We satisfy the following list of requirements for all e; i 2 !:

Rhe;ii W .9� 2 2<!/
�
�.�/ > ˇe � �i .�/

�
;

Le W .9m w �/
�
ˆm

e .e/# _ .8m0
v m/

�
ˆm0

e .e/"
��

:



Randomness and Semimeasures 321

To each requirement we associate the subset of P consisting of the partial mea-
sures that satisfy the requirement:

Rhe;ii D
®
m 2 P W

�
9� 2 dom.m/

��
m.�/ > ˇe � �i .�/

�¯
;

Le D
®
m 2 P W ˆm

e .e/# _ .8m0
v m/

�
ˆm0

e .e/"
�¯

:

Claim For every e; i 2 !, Rhe;ii is a dense subset of P.

Proof Let mW 2�n ! Q>0 be a given member of P, and let q D m.0n/. The fact
that �i is a semimeasure implies that, for all k � n,

P
¹�i .�/ W � � 0n ^ j� j D kº �

�i .0
n/. Therefore inf¹�i .�/ W � � 0nº D 0, so there is a � � 0n such that

ˇe � �i .�/ � q=2. We may extend m to a partial measure m0 that satisfies
m0.�/ D 3q=4 and m0.�/ D q=4.2j� j�n � 1/ for all � � 0n with j� j D j� j

and � ¤ � . Then m0 2 Rhe;ii because m0.�/ D 3q=4 > q=2 � ˇe � �i .�/.

Claim For every e 2 !, Le is a dense subset of P.

Proof Let m be given. If there is an m0 v m such that ˆm0

e .e/#, then m0 2 Le . If
not, then m 2 Le .

The sets Rhe;ii and Le are dense in P and uniformly c.e. in ;0 (Le is even
;0-computable), so ;0 can compute a measure � such that �.�/ is a positive
rational for each string � and such that � meets all of the requirements. That is,
.8e; i 2 !/.9m w �/.m 2 Rhe;ii/ and .8e 2 !/.9m w �/.m 2 Le/. Therefore
� 7! �.�/ is low, and � ¤ ˇ � � for every left-c.e. real ˇ and every left-c.e.
semimeasure �.

It is well known that for a measure �, the atoms of � are computable from any
representation of � (which can be shown by generalizing the proof of Lemma 2.3).
Thus, given the computational power of �, one might expect that the atoms of � for
some left-c.e. semimeasure � will include some noncomputable sequences. But this
does not hold.

Proposition 6.9 A set X 2 2! is computable if and only if there exists a left-c.e.
semimeasure � such that X is an atom of �.

Proof The left-to-right direction is trivial: for a given computable X 2 2! , we
define a left-c.e. semimeasure � by setting �.X�n/ D 1 for all n. For the other
direction, let � be a left-c.e. semimeasure, and assume that X is an atom of �. Write
˛ D limn �.X�n/, and choose q 2 Q such that 1

2
˛ < q < ˛. Then there exists a

large enough N such that �.X�N / is strictly smaller than 2q. To decide all further
bits of X , say, X.n/ for n � N , we proceed inductively as follows. Wait until one
of �.X�n_0/ and �.X�n_1/ attains or exceeds q, and output the according bit.
This bit is the correct value of X.n/, since �.X�n_X.n// must eventually attain or
exceed q while �.X�n_.1�X.n/// cannot attain q, as otherwise their sum would be
at least 2q and would therefore exceed �.X�N /, contradicting our choice of N .

Although the measure derived from a left-c.e. semimeasure cannot have a noncom-
putable atom, one interesting difference between these derived measures and com-
putable measures is that whereas there is no computable measure � such that every
computable sequence is a �-atom (because for each computable measure � one can
effectively find a sequence X such that limn!1 �.X�n/ D 0), every computable
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sequence is an atom of M , because M dominates every computable measure up to a
positive multiplicative constant.

6.3 Notions of randomness with respect to � We now apply the definitions of
Martin-Löf randomness with respect to noncomputable measures, introduced in
Section 2.2, to the measure derived from a semimeasure, and we compare the
resulting definitions to the definitions studied in Section 5.

As noted in Section 2.2, there are two general approaches to defining a random-
ness test .Ui /i2! with respect to a noncomputable measure �: either allow .Ui /i2!

to have access to a representation of � as an oracle and require �.Ui / � 2�i for
every i , or simply require the latter condition without using a representation of � as
an oracle.

Taking the former approach yields the following example.

Proposition 6.10 Let � be the semimeasure from Corollary 6.7, so that � D ˛ � �

for some ˛ �T ;00. Then �-Martin-Löf randomness is 3-randomness.

Proof Let j 2 ! satisfy 2�.j C1/ < ˛ < 2�j , which implies that 2j < 1
˛

< 2.j C1/.
First, we show that MLR;00

� MLR�. Since ;00 computes a representation of �, we
have MLR;00

� � MLR�. Now for any ;00-Martin-Löf test .Ui /i2! (with respect to �),
we have ˛ � �.Ui / � 2�i , which implies that �.Ui / � 2j C1�i . Thus .Ui /i�j C1 is a
;00-Martin-Löf test (with respect to �) that covers

T
i2! Ui . Thus MLR;00

� MLR�.
To show that MLR� � MLR;00

, let .Ui /i2! be a ;00-Martin-Löf test with respect
to �. Then since

˛ � �.Ui / � 2�j �.Ui / � 2�.iCj /;

it follows that .Ui /i2! is a ;00-Martin-Löf test with respect to �. But since every rep-
resentation of � computes ;00, it follows that for any such representation R, .Ui /i2!

is an R-Martin-Löf test with respect to �. Thus MLRR
� � MLR;00

for all representa-
tions R of �, and hence MLR� � MLR;00

.

This example shows a defect of using � to define randomness with respect to �.
As � is a multiple of the Lebesgue measure, we would expect that �-Martin-Löf
randomness is just Martin-Löf randomness with respect to the Lebesgue measure.
But the ˛ encodes information that can be used to derandomize any sequence that is
not 3-random. However, the blind approach to �-randomness avoids this problem.

Proposition 6.11 Let � be the semimeasure from Corollary 6.7. Then blind
�-Martin-Löf randomness is the same as Martin-Löf randomness.

Proof By an argument similar to the one in the proof of Proposition 6.10, every
Martin-Löf test is covered by a blind �-Martin-Löf test, and vice versa.

As a consequence of these two examples, we have the following.

Corollary 6.12 There is a left-c.e. semimeasure � such that MLR� ¨ bMLR�.

We also have the following.

Proposition 6.13 There is a left-c.e. semimeasure � such that bMLR� ¨ MLR�.
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Proof Let � be the left-c.e. semimeasure from the proof of Theorem 4.1, so that
MLR� D ¹0!º. Since � is induced by a functional ˆ such that �.dom.ˆ// D 0, by
the characterization of � given in Proposition 6.5,

�.2!/ D �
�
J"K

�
D �

®
X W X 2 dom.ˆ/

¯
D 0:

Thus MLR� D ;.

The above proof also shows that bMLR� does not satisfy randomness preservation,
since ˆ induces � (and hence �), but ˆ.MLR/ D ¹0!º ¤ bMLR�. Thus, blind
Martin-Löf randomness for � does not provide an adequate definition of randomness
for � according to the desiderata laid out in Section 5.1.

Blind weak 2-randomness with respect to � fares much better than �-Martin-Löf
randomness and blind Martin-Löf randomness with respect to �. As we now show,
blind weak 2-randomness for � is equivalent to weak 2-randomness for � and, hence,
satisfies randomness preservation. First, we need a lemma generalizing the definition
of �.�/.

Lemma 6.14 Let � be a left-c.e. semimeasure. Let E � 2<! be prefix-free. For
each m 2 !, let Em D ¹� 2 2<! W .9� 2 E/.� � � ^ j� j D j� j C m/º. Then
�.JEK/ D limm!1 �.Em/.

Proof For all m 2 !, �.EmC1/ � �.Em/. Thus it suffices to show that for every
k 2 ! there is some m 2 ! such that �.Em/ � �.JEK/ C 1=k.

Recall that, for all � 2 2<! , �.�/ D infm

P
¹�.�/ W � � � ^j� j D j� jCmº. Thus

if E is finite, then for all k 2 ! there is an m 2 ! such that �.Em/ � �.JEK/ C 1=k.
Suppose instead that E is infinite, and let k 2 !. The fact that E is prefix-free implies
that �.E/ is finite. Thus there is an ` 2 ! such that

P
¹�.�/ W � 2 E ^ j� j > `º <

1=2k. Now let E0 D ¹� 2 E W j� j � `º, let E1 D ¹� 2 E W j� j > `º, and let m be
such that �.Em

0 / � �.JE0K/ C 1=2k. Then

�.Em/ D �.Em
0 / C �.Em

1 /

� �.Em
0 / C �.E1/

� �
�
JE0K

�
C 1=2k C 1=2k

� �
�
JEK

�
C 1=k;

as required.

Theorem 6.15 Let � be a left-c.e. semimeasure. Then X 2 2! is weakly 2-random
for � if and only if X is blindly weakly 2-random for �.

Proof For every E � 2<! , �.JEK/ � �.E/, and therefore every generalized
�-Martin-Löf test is also a blind generalized �-Martin-Löf test. Thus if X is blindly
weakly 2-random for �, then X is weakly 2-random for �.

Conversely, suppose that X is not blindly weakly 2-random for �. Let .Un/n2! be
a blind generalized �-Martin-Löf test capturing X , and let .En/n2! be a uniformly
c.e. sequence of prefix-free subsets of 2<! such that, for all n 2 !, Un D JEnK.
Let .Fn/n2! be the uniformly c.e. sequence of prefix-free subsets of 2<! , where �

is enumerated in Fn if and only if every Ei with i � n enumerates a �i � � , and
j� j D max¹j�i j W i � nº C n. Then, for all n 2 !, JFnK D

T
i�nJEi K. Therefore
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X 2
T

n2!JEnK D
T

n2!JFnK. Furthermore, for all n 2 !, �.FnC1/ � �.Fn/. It
remains to show that limn!1 �.Fn/ D 0. To see this, observe that, for all m; n 2 !,
�.FnCm/ � �.EnCm

n /. Thus, for all n 2 !,
lim

m!1
�.Fm/ D lim

m!1
�.FnCm/

� lim
m!1

�.EnCm
n /

D �
�
JEnK

�
;

where the last equality is by Lemma 6.14. Thus, for all n 2 !, limn!1 �.Fn/ �

�.JEnK/. Since limn!1 �.JEnK/ D 0, we must have limn!1 �.Fn/ D 0 as
well.

The relationships between the various notions considered here are summarized by the
following diagram, where a strict inequality means that there is some semimeasure �

separating the two notions:
W2R� ¨ MLR�

¨ ¨

bW2R� ¨ bMLR�

D ¨

W2R� ¨ MLR�

6.4 The no randomness ex nihilo principle for weak 2-randomness with respect
to a semimeasure As we showed in Section 5.3, for each left-c.e. semimeasure �,
�-weak 2-randomness satisfies coherence, randomness preservation, and the com-
putable sequence condition. The status of the no randomness ex nihilo principle,
however, is still open.

Question 6.16 Let � be a left-c.e. semimeasure. If ˆ is a Turing functional that
induces � and Y 2 W2R�, is there some X 2 W2R such that ˆ.X/ D Y ?

A positive answer to Question 6.16 would also allow us to answer Shen’s question
for weak 2-randomness, which also remains open.

Question 6.17 If ˆ and ‰ are Turing functionals such that �ˆ.�/ D �‰.�/ for
every � 2 2<! , does it follow that ˆ.W2R/ D ‰.W2R/?

Some partial progress on answering Question 6.16 has been made. We show that the
no randomness ex nihilo principle holds for weak 2-randomness with respect to any
computable measure.

Theorem 6.18 Let ˆ be an almost-total Turing functional. If Y 2 W2R�ˆ
, there

is some X 2 W2R such that ˆ.X/ D Y .

Proof Let .Ue
i /e;i2! be a (noneffective) listing of all generalized �-Martin-

Löf tests. That is, every generalized Martin-Löf test is of the form .Ue
i /i2! for

some e. Without loss of generality, we can assume that the first test .U0
i /i2!

is the universal Martin-Löf test. Let Y 2 W2R�ˆ
. Since Y is in particular

�ˆ-Martin-Löf random, by Theorem 2.4, ˆ�1.Y / \ MLR ¤ ;. In other words,
for some i0, the preimage of Y under ˆ meets the …0

1 class C0 D .U0
i0

/c. We
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further note that ˆ is total on C0. Indeed, ˆ is almost total, which means that
dom.ˆ/c has measure 0. But dom.ˆ/c is a †0

2 set, that is, a union of effectively
closed sets, which thus must all have measure 0. Since no Martin-Löf random real
can be contained in an effectively closed set of measure 0 and since C0 contains
only Martin-Löf random elements, this shows that C0 \ dom.ˆ/c D ;, that is,
C0 � dom.ˆ/.

We now build a sequence of nonempty …0
1 classes C1; C2; : : : in such a way

that
– Ci � CiC1 for every i � 0,
– for all n, all members of Cn pass all the tests .Ue

i /i2! for e � n,
and

– for all n, ˆ�1.Y / \ Cn ¤ ;.
Note that since all Ci ’s are contained in C0, this in particular means that ˆ is
total on all Ci ’s. Suppose that C0; : : : ; Cn with these properties have already
been built. To build CnC1, we do the following. Suppose that for all i we
have

Y 2 ˆ.Cn/ n ˆ
�
Cn \ .UnC1

i /c
�
:

The preimage of the set ˆ.Cn/ n ˆ.Cn \ .UnC1
i /c/ under ˆ is contained in UnC1

i

and therefore its measure tends to 0 as i tends to infinity. By the definition of the
induced measure �ˆ, this implies that

�ˆ

�
ˆ.Cn/ n ˆ

�
Cn \ .UnC1

i /c
��

! 0

and thus the set
T

i .ˆ.Cn/ n ˆ.Cn \ .UnC1
i /c// is a …0

2 set of �ˆ-measure 0 con-
taining Y , contradicting the fact that Y is �ˆ-weakly 2-random. Thus, there exists j

such that Y 2 ˆ.Cn \ .UnC1
j /c/, and we set CnC1 D Cn \ .UnC1

j /c. This ensures
that all elements pass the .n C 1/st generalized Martin-Löf test. This finishes the
construction of the Cn’s.

To finish the proof, since ˆ�1.Y / \ Ci ¤ ; for every i 2 !, choose
Xi 2 ˆ�1.Y / \ Ci for each i . By the compactness of 2! , one can assume, up
to extraction of a subsequence, that the sequence .Xi /i2! converges to a limit X�.
For any given n, almost all i are greater than n, and thus Xi 2 Ci � Cn. Since Cn

is closed, it implies that the limit X� belongs to Cn. This being true for all n, by the
construction of the Cn’s, X� passes all generalized Martin-Löf tests and, therefore,
is weakly 2-random. Moreover, by the continuity of Turing functionals on their
domain:

lim
i!1

ˆ.Xi / D ˆ.X�/;

but ˆ.Xi / D Y for all i ; therefore, ˆ.X�/ D Y . This establishes the exis-
tence of a weakly 2-random sequence in ˆ�1.¹Y º/ and completes the proof.

The above proof of Theorem 6.18 is essentially analytic. Let us mention that a com-
pletely different proof, of computability-theoretic flavor, can also be given. Suppose
that Y is �ˆ-weakly 2-random. Then by Theorem 2.6, Y does not compute any non-
computable �0

2 set. Let C0 be the set defined in the previous proof (on which ˆ is
total), and let P D C0 \ ˆ�1.Y /, so that P � MLR \ ˆ�1.Y /. It is well known
that, given a …0

1 class and a countable collection of reals .Ai /i2! , there is a member
of the …0

1 class which does not compute any Ai . (Jockusch and Soare [5] proved this
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fact for a single A, but it is easy to see that their construction, a forcing argument,
can be extended to a countable collection of Ai ’s.) Taking the collection .Ai /i2! to
consist of the noncomputable �0

2 sets, relativizing the previous theorem to Y , and
using the fact that each Ai is not Y -computable, there exists a member X of P which
does not compute any Ai . Thus, X 2 ˆ�1.¹Y º/ is Martin-Löf random and does not
compute any noncomputable �0

2 set. Applying Theorem 2.6 again, this shows that
X is weakly 2-random.

Note

1. Another possible approach would be to adapt the Levin–Schnorr theorem. When � is a
computable measure, X is �-Martin-Löf random if and only if

K.X�n/ > � log �.X�n/ � O.1/;

where K is the prefix-free Kolmogorov complexity. Hence one could also use this
inequality as a definition of randomness for left-c.e. measures �. We will not consider
this approach here.
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