Bimodal Logics with a "Weakly Connected" Component without the Finite Model Property

Agi Kurucz

Abstract

There are two known general results on the finite model property (fmp) of commutators [L_{0}, L_{1}] (bimodal logics with commuting and confluent modalities). If L is finitely axiomatizable by modal formulas having universal Horn first-order correspondents, then both $[L, \mathbf{K}]$ and $[L, \mathbf{S 5}]$ are determined by classes of frames that admit filtration, and so they have the fmp. On the negative side, if both L_{0} and L_{1} are determined by transitive frames and have frames of arbitrarily large depth, then [L_{0}, L_{1}] does not have the fmp. In this paper we show that commutators with a "weakly connected" component often lack the fmp. Our results imply that the above positive result does not generalize to universally axiomatizable component logics, and even commutators without "transitive" components such as $[\mathbf{K} 3, \mathbf{K}]$ can lack the fmp. We also generalize the above negative result to cases where one of the component logics has frames of depth one only, such as $[\mathbf{S 4 . 3}, \mathbf{S 5}]$ and the decidable product logic $\mathbf{S 4 . 3} \times \mathbf{S 5}$. We also show cases when already half of commutativity is enough to force infinite frames.

1 Introduction

A normal multimodal logic L is said to have the finite model property (fmp, for short) if, for every L-falsifiable formula φ, there is a finite model (or, equivalently, a finite frame; see Segerberg [19]) for L where φ fails to hold. The fmp can be a useful tool in proving the decidability and/or Kripke completeness of a multimodal logic. While in general it is undecidable whether a finitely axiomatizable modal logic has the fmp (see Chagrov and Zakharyaschev [3]), there are several general results on the fmp of unimodal logics (see Chagrov and Zakharyaschev [4], Wolter and Zakharyaschev [24] for surveys and references). In particular, by Bull's [2] theorem all extensions

Received May 9, 2014; accepted October 14, 2014
First published online March 9, 2017
2010 Mathematics Subject Classification: Primary 03B45; Secondary 03B62, 03B44
Keywords: multimodal logic, finite model property, linear orders
© 2017 by University of Notre Dame 10.1215/00294527-3870247
formulas having universal Horn first-order correspondents), then both $[L, \mathbf{K}]$ and [$L, \mathbf{S 5}$] are determined by classes of frames that admit filtration, and so have the fmp.
(III) Shehtman [21] shows that products of some modal logics of finite depth with both S5 and Diff have the fmp. He also obtains the fmp for the product logic Diff $\times \mathbf{K}$.
(IV) On the negative side, if both L_{0} and L_{1} are determined by transitive frames and have frames of arbitrarily large depth, then no logic between $\left[L_{0}, L_{1}\right]$ and $L_{0} \times L_{1}$ has the fmp (see Gabelaia, Kurucz, Wolter, and Zakharyaschev [9]). So, for example, neither $[\mathrm{K4.3}, \mathrm{~K} 4.3]$ nor $[\mathbf{K 4 . 3}, \mathrm{K4}]$ has the fmp.
(V) Reynolds [17] considers the bimodal tense extension K4.3 ${ }_{t}$ of $\mathbf{K 4 . 3}$ as the first component. (That is, besides the usual "future" \square, the language of $\mathbf{K} 4 . \mathbf{3}_{t}$ contains a "past" modal operator as well, interpreted along the inverse of the accessibility relation of \square.) He shows that the 3-modal product logic $\mathbf{K 4 . 3} \times \mathbf{S 5}$ does not have the fmp.

In this paper we show that commutators with a "weakly connected" component often lack the fmp. Our results imply that (II) above cannot be generalized to component logics having weakly connected frames only: even commutators without "transitive" components such as $[\mathbf{K 3}, \mathbf{K}]$ can lack the fmp. (Here $\mathbf{K 3}$ is the logic determined by all-not necessarily transitive-weakly connected frames.) On the other hand, we generalize (IV) (and (V)) above for cases where one of the component logics has frames of modal depth one only. In particular, we show (without using the "past" operator) that the (decidable; see [17]) product logics K4.3 \times S5 and $\mathbf{S 4 . 3} \times \mathbf{S 5}$ do not have the fmp. Precise formulations of our results are given in Section 3. These results give negative answers to questions in [7] and to [6, Questions 6.43, 6.62].

The structure of the paper is as follows. Section 2 provides the relevant definitions and notation, and we discuss the fmp with respect to product frames in more detail. Our results are listed in Section 3 and proved in Section 4. Finally, in Section 5 we discuss the obtained results and formulate some open problems.

2 Bimodal Logics and Product Frames

In what follows we assume that the reader is familiar with the basic notions in modal logic and its possible world semantics (for reference, see, e.g., Blackburn, de Rijke, and Venema [1], [4]). Below we summarize some of the necessary notions and notation for the bimodal case. Similarly to (propositional) unimodal formulas, by a bimodal formula we mean any formula built up from propositional variables using the Booleans and the unary modal operators \square_{0}, \square_{1} and $\diamond_{0}, \diamond_{1}$. Bimodal formulas are evaluated in 2-frames: relational structures of the form $\mathfrak{F}=\left(W, R_{0}, R_{1}\right)$, having two binary relations R_{0} and R_{1} on a nonempty set W. A Kripke model based on \mathfrak{F} is a pair $\mathfrak{M}=(\mathfrak{F}, \vartheta)$, where ϑ is a function mapping propositional variables to subsets of W. The truth relation " $\mathfrak{M}, w \vDash \varphi$," connecting points in models and formulas, is defined as usual by induction on φ. We say that φ is valid in \mathfrak{F} if $\mathfrak{M}, w \models \varphi$ for every model \mathfrak{M} based on \mathfrak{F} and for every $w \in W$. If every formula in a set Σ is valid in \mathfrak{F}, then we say that \mathfrak{F} is a frame for Σ. We let $\operatorname{Fr} \Sigma$ denote the class of all frames for Σ.

A set L of bimodal formulas is called a (normal) bimodal logic (or logic, for short) if it contains all propositional tautologies and the formulas $\square_{i}(p \rightarrow q) \rightarrow\left(\square_{i} p \rightarrow\right.$ $\square_{i} q$), for $i<2$, and is closed under the rules of Substitution, Modus Ponens, and

Necessitation $\varphi / \square_{i} \varphi$, for $i<2$. Given a class φ of 2-frames, we always obtain a logic by taking

$$
\log \mathscr{C}=\{\varphi: \varphi \text { is a bimodal formula valid in every member of } \mathscr{C}\}
$$

We say that $\log \mathscr{C}$ is determined by \mathscr{C} and call such a logic Kripke complete. (We write just $\log \mathfrak{F}$ for $\log \{\mathfrak{F}\}$.)

Let L_{0} and L_{1} be two unimodal logics formulated using the same propositional variables and Booleans, but having different modal operators (Δ_{0}, \square_{0} for L_{0}, and $\diamond_{1}, \square_{1}$ for $\left.L_{1}\right)$. Their fusion $L_{0} \oplus L_{1}$ is the smallest bimodal logic that contains both L_{0} and L_{1}. The commutator $\left[L_{0}, L_{1}\right]$ of L_{0} and L_{1} is the smallest bimodal logic that contains $L_{0} \oplus L_{1}$ and the formulas in (1). Next, we introduce some special "two-dimensional" 2-frames for commutators. Given unimodal Kripke frames $\mathfrak{F}_{0}=\left(W_{0}, R_{0}\right)$ and $\mathfrak{F}_{1}=\left(W_{1}, R_{1}\right)$, their product is defined to be the 2 -frame

$$
\mathfrak{F}_{0} \times \mathfrak{F}_{1}=\left(W_{0} \times W_{1}, \bar{R}_{0}, \bar{R}_{1}\right),
$$

where $W_{0} \times W_{1}$ is the Cartesian product of W_{0} and W_{1} and, for all $u, u^{\prime} \in W_{0}$, $v, v^{\prime} \in W_{1}$,

$$
\begin{array}{lll}
(u, v) \bar{R}_{0}\left(u^{\prime}, v^{\prime}\right) & \text { iff } & u R_{0} u^{\prime} \text { and } v=v^{\prime}, \\
(u, v) \bar{R}_{1}\left(u^{\prime}, v^{\prime}\right) & \text { iff } & v R_{1} v^{\prime} \text { and } u=u^{\prime} .
\end{array}
$$

Throughout this paper, 2-frames of this form will be called product frames. For classes \mathscr{C}_{0} and $\mathscr{\zeta}_{1}$ of unimodal frames, we define

$$
\mathscr{C}_{0} \times \mathscr{C}_{1}=\left\{\mathfrak{F}_{0} \times \mathfrak{F}_{1}: \mathfrak{F}_{i} \in \mathscr{C}_{i}, \text { for } i=0,1\right\} .
$$

Now, for $i<2$, let L_{i} be a Kripke complete unimodal logic in the language with \diamond_{i} and \square_{i}. The product of L_{0} and L_{1} is defined as the (Kripke complete) bimodal logic

$$
L_{0} \times L_{1}=\log \left(\operatorname{Fr} L_{0} \times \operatorname{Fr} L_{1}\right)
$$

As we briefly discussed in Section 1, product frames always validate the formulas in (1), and so $\left[L_{0}, L_{1}\right] \subseteq L_{0} \times L_{1}$ always holds. If both L_{0} and L_{1} are Horn axiomatizable, then $\left[L_{0}, L_{1}\right]=L_{0} \times L_{1}$ (see [7]). In general, $\left[L_{0}, L_{1}\right]$ can be properly contained in $L_{0} \times L_{1}$. In particular, the universal (but not Horn) property of weak connectedness can result in such behavior: $[\mathbf{K 4 . 3}, \mathbf{K}]$ is properly contained in the nonfinitely axiomatizable $\mathbf{K 4 . 3} \times \mathbf{K}$ (see Kurucz and Marcelino [15]; for more examples, see [6, Theorems 5.15, 5.17] and Hampson and Kurucz [12]). (Here \mathbf{K} and K4.3 denote the unimodal logics determined, respectively, by all frames and by all transitive and weakly connected frames.)

It is not hard to force infinity in product frames. The following formula (see [6, Theorem 5.32]) forces an infinite ascending \bar{R}_{0}-chain of distinct points in product frames with a transitive first component:

$$
\begin{equation*}
\square_{0}^{+} \diamond_{1} p \wedge \square_{0}^{+} \square_{1}\left(p \rightarrow \diamond_{0} \square_{0}^{+} \neg p\right), \tag{2}
\end{equation*}
$$

where $\square_{0}^{+} \psi$ is shorthand for $\psi \wedge \square_{0} \psi$. Also, the formula

$$
\begin{equation*}
\diamond_{1} \diamond_{0} p \wedge \square_{1}\left(\diamond_{0} p \rightarrow \diamond_{0} \diamond_{0} p\right) \wedge \square_{1} \square_{0}\left(p \rightarrow \square_{0} \neg p\right) \wedge \square_{0} \diamond_{1} p \tag{3}
\end{equation*}
$$

forces a rooted infinite descending \bar{R}_{0}-chain of points in product frames with a transitive and weakly connected first component (see Gabelaia [8, Theorem 6.12] for a similar formula). It is not hard to see that both (2) and (3) can be satisfied in infinite product frames, where the second component is a one-step rooted frame (W, R).
(That is, there is $r \in W$ such that $r R w$ for every $w \in W, w \neq r$.) As a consequence, a wide range of bimodal logics fail to have the fmp with respect to product frames. If every finite frame for a logic is the p-morphic image of one of its finite product frames, then the lack of fmp follows. As is shown in [8], such examples are the logics $[\mathbf{G L} . \mathbf{3}, L]$ and $\mathbf{G L} . \mathbf{3} \times L$, for any L having one-step rooted frames. (Here GL. $\mathbf{3}$ is the logic determined by all Noetherian strict linear orders.) However, in general this is not the case for bimodal logics with frames having weakly connected components. Take, say, the 2-frame $\mathfrak{F}=(W, \leq, W \times W)$, where $W=\{x, y\}$ and $x \leq x \leq y \leq y$. Then it is easy to see that \mathfrak{F} is a p-morphic image of $(\omega, \leq) \times(\omega, \omega \times \omega)$, but \mathfrak{F} is not a p-morphic image of any finite product frame.

3 Results

We denote by $\mathbf{K} \mathbf{3}$ the unimodal logic determined by all weakly connected (but not necessarily transitive) frames.

Theorem 1 Let L be a bimodal logic such that

- $[\mathbf{K 3}, \mathbf{K}] \subseteq L$, and
- $(\omega+1,>) \times \mathfrak{F}$ is a frame for L, where \mathfrak{F} is a countably infinite one-step rooted frame.
Then L does not have the fmp.
Weak connectedness is a property of linear orders, and $(\omega+1,>)$ is a frame for $\mathbf{K 4 . 3}$. Most "standard" modal logics have infinite one-step rooted frames, in particular, $\mathbf{S 5}$ (the logic of all equivalence frames) and Diff (the logic of all difference frames $(W, \neq))$. So we have the following result.

Corollary 1.1 Let L_{0} be either K3 or K4.3, and let L_{1} be any of K, S5, or Diff. Then no logic between $\left[L_{0}, L_{1}\right]$ and $L_{0} \times L_{1}$ has the fmp.

However, $(\omega+1,>)$ is not a frame for "linear" logics whose frames are serial, reflexive, and/or dense, such as $\log (\omega,<), \mathbf{S 4 . 3}$, or the $\operatorname{logic} \log (\mathbb{Q},<)=\log (\mathbb{R},<)$ of the usual orders over the rationals or the reals. Our next theorem deals with these kinds of logics as first components. We say that a frame $\mathfrak{F}=(W, R)$ contains an $(\omega+1,>)$-type chain if there are distinct points x_{n}, for $n \leq \omega$, in W such that $x_{n} R x_{m}$ if and only if $n>m$, for all $n, m \leq \omega, n \neq m$. Observe that this is less than saying that \mathfrak{F} has a subframe isomorphic to $(\omega+1,>)$, because, for each n, $x_{n} R x_{n}$ might or might not hold. So \mathfrak{F} can be reflexive and/or dense and still have this property.

Theorem 2 Let L be a bimodal logic such that

- $[\mathbf{K 4 . 3}, \mathrm{K}] \subseteq L$, and
- $\mathfrak{F}_{0} \times \mathfrak{F}_{1}$ is a frame for L, where \mathfrak{F}_{0} contains an $(\omega+1,>)$-type chain and \mathfrak{F}_{1} is a countably infinite one-step rooted frame.
Then L does not have the fmp.
Corollary $2.1 \quad$ Let L_{0} be any of $\log (\omega,<), \log (\omega, \leq), \mathbf{S 4 . 3}$, or $\log (\mathbb{Q},<)$, and let L_{1} be any of $\mathbf{K}, \mathbf{S 5}$, or $\mathbf{D i f f}$. Then no logic between $\left[L_{0}, L_{1}\right]$ and $L_{0} \times L_{1}$ has the fmp.

Our last theorem is about bimodal logics having less interaction than commutators. Let $\left[L_{0}, L_{1}\right]^{\text {liom }}$ denote the smallest bimodal logic containing $L_{0} \oplus L_{1}$ and $\square_{1} \square_{0} p \rightarrow \square_{0} \square_{1} p$. We denote by $\mathbf{K 4}^{-}$the unimodal logic determined by all frames that are pseudotransitive:

$$
\forall x, y, z \in W(x R y R z \rightarrow(x=z \vee x R z))
$$

Difference frames (W, \neq) are examples of pseudotransitive frames where the accessibility relation \neq is also symmetric. (Note that, in 2 -frames with a symmetric second relation, (rcom) is equivalent to (conf).)
Theorem 3 Let L be a bimodal logic such that

- $\left[\mathbf{K 3}, \mathbf{K 4}^{-}\right]^{\mathrm{lcom}} \subseteq L$, and
- $(\omega+1,>) \times(\omega, \neq)$ is a frame for L.

Then L does not have the fimp.
Corollary 3.1 Neither $\left.[\mathbf{K 3}, \mathbf{K 4}]^{-}\right]^{\text {lcom }}$ nor $[\mathbf{K 3} 3 \text {, Diff }]^{\text {lcom }}$ has the fmp.

4 Proofs

Proof of Theorem 1 For every bimodal formula φ and every $n<\omega$, we let

$$
\diamond_{0}^{=\mathbf{n}} \varphi=\diamond_{0}^{n} \varphi \wedge \square_{0}^{n+1} \neg \varphi=\overbrace{\nabla_{0} \cdots \nabla_{0}}^{n} \varphi \wedge \overbrace{\square_{0} \cdots \square_{0}}^{n+1} \neg \varphi .
$$

We will use a "refinement" of the formula (3). Let φ_{∞} be the conjunction of the following formulas:

$$
\begin{align*}
& \diamond_{1} \diamond_{0}\left(p \wedge \square_{0} \perp\right) \tag{4}\\
& \square_{1}\left(\diamond_{0} p \rightarrow \diamond_{0} \diamond_{0}^{=1} p\right) \tag{5}\\
& \square_{0}\left(\diamond_{1} \diamond_{0}^{=1} p \rightarrow \diamond_{1}\left(p \wedge \square_{0} \neg p \wedge \square_{0} \square_{0} \neg p\right)\right) \tag{6}
\end{align*}
$$

Lemma $4 \quad$ Let $\mathfrak{F}=\left(W, R_{0}, R_{1}\right)$ be any 2 -frame such that R_{0} is weakly connected and R_{0}, R_{1} are confluent and commute. If φ_{∞} is satisfiable in \mathfrak{F}, then \mathfrak{F} is infinite.
Proof We will only use the following consequence of weak connectedness:
(wcon $\left.{ }^{-}\right) \forall x, y, z\left(x R_{0} y \wedge x R_{0} z \rightarrow\left(y R_{0} z \vee z R_{0} y \vee \forall w\left(y R_{0} w \leftrightarrow z R_{0} w\right)\right)\right)$.
Suppose that $\mathfrak{M}, r \vDash \varphi_{\infty}$ for some model \mathfrak{M} based on \mathfrak{F}. First, we inductively define three sequences u_{n}, v_{n}, x_{n} of points in \mathfrak{F} such that, for every $n<\omega$,
(a) $v_{n} R_{0} u_{n}$,
(b) $r R_{0} x_{n} R_{1} v_{n}$, and if $n>0$, then $x_{n-1} R_{1} u_{n}$,
(c) $\mathfrak{M}, u_{n} \models p \wedge \square_{0} \neg p \wedge \square_{0} \square_{0} \neg p$,
(d) $\mathfrak{M}, v_{n} \models \diamond_{0}^{=1} p$.

If $n=0$, then by (4) there are y_{0}, u_{0} such that $r R_{1} y_{0} R_{0} u_{0}$ and

$$
\begin{equation*}
\mathfrak{M}, u_{0} \models p \wedge \square_{0} \perp, \tag{7}
\end{equation*}
$$

and so (c) holds. By (5), there is v_{0} such that $y_{0} R_{0} v_{0}$ and $\mathfrak{M}, v_{0} \models \diamond_{0}^{=1} p$, and so $v_{0} R_{0} u_{0}$ follows by (wcon ${ }^{-}$) and (7). By (rcom), we have x_{0} with $r R_{0} x_{0} R_{1} v_{0}$.

Now suppose that, for some $n<\omega, u_{i}, v_{i}, x_{i}$ with (a)-(d) have already been defined for all $i \leq n$. By (b) and (d) of the IH, $r R_{0} x_{n}$ and $\mathfrak{M}, x_{n} \models \diamond_{1} \diamond_{0}^{=1} p$. So by (6), there is u_{n+1} such that $x_{n} R_{1} u_{n+1}$ and

$$
\begin{equation*}
\mathfrak{M}, u_{n+1} \models p \wedge \square_{0} \neg p \wedge \square_{0} \square_{0} \neg p . \tag{8}
\end{equation*}
$$

By (lcom), there is y_{n+1} with $r R_{1} y_{n+1} R_{0} u_{n+1}$. By (5), there is v_{n+1} such that $y_{n+1} R_{0} v_{n+1}$ and $\mathfrak{M}, v_{n+1} \models \diamond_{0}^{=1} p$, and so $v_{n+1} R_{0} u_{n+1}$ follows by (wcon^{-}) and (8). By (rcom), we have x_{n+1} with $r R_{0} x_{n+1} R_{1} v_{n+1}$.

Next, we show that all the u_{n} 's are different, and so \mathfrak{F} is infinite. We show by induction on n that, for all $n<\omega$,

$$
\begin{equation*}
\mathfrak{M}, u_{n} \models \diamond_{0}^{=\mathrm{n}} \top . \tag{9}
\end{equation*}
$$

For $n=0$, (9) holds by (7). Suppose inductively that (9) holds for some $n<\omega$. We have $v_{n} R_{0} u_{n}$, by (a) above. We claim that

$$
\begin{equation*}
\forall u\left(v_{n} R_{0} u \rightarrow \mathfrak{M}, u \models \square_{0}^{n+1} \perp\right) . \tag{10}
\end{equation*}
$$

Indeed, suppose that $v_{n} R_{0} u$. By (wcon ${ }^{-}$), we have either $u R_{0} u_{n}$, or $u_{n} R_{0} u$, or $\forall w\left(u_{n} R_{0} w \leftrightarrow u R_{0} w\right)$. As $\mathfrak{M}, u_{n} \vDash p$ by (c) and $\mathfrak{M}, v_{n} \vDash \square_{0} \square_{0} \neg p$ by (d), we cannot have $u R_{0} u_{n}$. As we have $\mathfrak{M}, u_{n} \models \square_{0}^{n+1} \perp$ by the IH , in the other two cases $\mathfrak{M}, u \vDash \square_{0}^{n+1} \perp$ follows, proving (10). As $\mathfrak{M}, u_{n} \models \diamond_{0}^{n} \top$ by the IH, we obtain

$$
\begin{equation*}
\mathfrak{M}, v_{n} \models \diamond_{0}^{=\mathbf{n}+1} \top \tag{11}
\end{equation*}
$$

by (10) and (a). By (b), we have $r R_{0} x_{n} R_{1} v_{n}$ and $x_{n} R_{1} u_{n+1}$. So $\mathfrak{M}, x_{n} \models \diamond_{0}^{n+1} \top$ follows by (rcom) and (11). Also, by (conf) and (11), we have $\mathfrak{M}, x_{n} \vDash \square_{0}^{n+2} \perp$. Now we have \mathfrak{M}, $u_{n+1} \models \diamond_{0}^{n+1} \top$ by (conf), and \mathfrak{M}, $u_{n+1} \vDash \square_{0}^{n+2} \perp$ by (rcom). Therefore, $\mathfrak{M}, u_{n+1} \models \diamond_{0}^{=\mathbf{n + 1}} \mathrm{T}$, as required.

Lemma 5 Let \mathfrak{F} be a countably infinite one-step rooted frame. Then φ_{∞} is satisfiable in $(\omega+1,>) \times \mathfrak{F}$.
Proof Suppose that $\mathfrak{F}=(W, R)$, and let r, y_{0}, y_{1}, \ldots be an arbitrary enumeration of W. Define a model \mathfrak{M} over $(\omega+1,>) \times \mathfrak{F}$ by taking

$$
\mathfrak{M},(n, y) \models p \quad \text { iff } \quad n<\omega, y=y_{n} .
$$

Then it is straightforward to check that $\mathfrak{M},(\omega, r) \models \varphi_{\infty}$.
Now Theorem 1 follows from Lemmas 4 and 5.
Proof of Theorem 2 We will employ a variant of the formula φ_{∞} used in the previous proof. The problem is that, in reflexive and/or dense frames, a formula of the form $\nabla_{0}^{=1} p$ is clearly not satisfiable. To fix this, we use a version of the "tick trick," introduced in Spaan [22] and [9]. We fix a propositional variable t and define a new modal operator by setting, for every formula ψ,

$$
\begin{aligned}
& \diamond_{0} \psi=\left[t \rightarrow \diamond_{0}\left(\neg t \wedge\left(\psi \vee \nabla_{0} \psi\right)\right)\right] \wedge\left[\neg t \rightarrow \diamond_{0}\left(t \wedge\left(\psi \vee \diamond_{0} \psi\right)\right)\right], \quad \text { and } \\
& \boldsymbol{\square}_{0} \phi=\neg \leqslant_{0} \neg \psi .
\end{aligned}
$$

Now let \mathfrak{M} be a model based on some 2 -frame $\mathfrak{F}=\left(W, R_{0}, R_{1}\right)$. We define a new binary relation $\bar{R}_{0}^{\mathfrak{M}}$ on W by taking, for all $x, y \in W$,

$$
x \overline{R_{0}} y
$$

iff

$$
\exists z \in W\left(x R_{0} z \text { and }(\mathfrak{M}, x \models t \leftrightarrow \mathfrak{M}, z \models \neg t) \text { and }\left(z=y \text { or } z R_{0} y\right)\right) .
$$

We will write $x \neg \bar{R}_{0}^{\mathfrak{M}} y$ whenever $x \bar{R}_{0}^{\mathfrak{M}} y$ does not hold. It is straightforward to check the following.

Claim 1 If R_{0} is transitive, then $\bar{R}_{0}^{\mathfrak{M}}$ is transitive as well, $\bar{R}_{0}^{\mathfrak{M}} \subseteq R_{0}, R_{0} \circ \bar{R}_{0}^{\mathfrak{M}} \subseteq$ $\bar{R}_{0}^{\mathfrak{M}}$, and $\bar{R}_{0}^{\mathfrak{M}} \circ R_{0} \subseteq \bar{R}_{0}^{\mathfrak{M}}$.
Also, \checkmark_{0} behaves like a modal diamond with respect to $\bar{R}_{0}^{\mathfrak{M}}$; that is, for all $x \in W$,

$$
\mathfrak{M}, x \models{ }_{0} \psi \quad \text { iff } \quad \exists y \in W\left(x \bar{R}_{0}^{\mathfrak{M}} y \text { and } \mathfrak{M}, y \models \psi\right) .
$$

However, $\bar{R}_{0}^{\mathfrak{M}}$ is not necessarily weakly connected whenever R_{0} is weakly connected, but if R_{0} is also transitive, then it does have

$$
\begin{aligned}
\left(\text { wcon }^{-}\right)^{\mathfrak{M}} \quad \forall x, y, z(& x \bar{R}_{0}^{\mathfrak{M}} y \wedge x \bar{R}_{0}^{\mathfrak{M}} z \\
& \left.\rightarrow\left(y \bar{R}_{0}^{\mathfrak{M}} z \vee z \bar{R}_{0}^{\mathfrak{M}} y \vee \forall w\left(y \bar{R}_{0}^{\mathfrak{M}} w \leftrightarrow z \bar{R}_{0}^{\mathfrak{M}} w\right)\right)\right) .
\end{aligned}
$$

Claim 2 If R_{0} is transitive and weakly connected, then (wcon $)^{\mathfrak{M}}$ holds in \mathfrak{M}.
Proof Suppose that $x \bar{R}_{0}^{\mathfrak{M}} y$ and $x \bar{R}_{0}^{\mathfrak{M}} z$. By Claim 1 and the weak connectedness of R_{0}, we have that either $y=z$, or $y R_{0} z$, or $z R_{0} y$. If $y=z$, then $\forall w\left(y \bar{R}_{0}^{\mathfrak{M}} w \leftrightarrow z \bar{R}_{0}^{\mathfrak{M}} w\right)$ clearly holds. Next, suppose that $y R_{0} z$ and $y \neg \bar{R}_{0}^{M} z$. We claim that $\forall w\left(y \bar{R}_{0}^{\mathfrak{M}} w \leftrightarrow z \bar{R}_{0}^{\mathfrak{M}} w\right)$ follows. Indeed, suppose first that $z \bar{R}_{0}^{\mathfrak{M}} w$ for some w. Then we have $y \bar{R}_{0}^{\mathfrak{M}} w$ by Claim 1. Now suppose that $y \bar{R}_{0}^{\mathfrak{M}} w$ for some w, and suppose that $\mathfrak{M}, y \models t$. (The case when $\mathfrak{M}, y \models \neg t$ is similar.) As $y R_{0} z$ and $y \neg \bar{R}_{0}^{\mathfrak{M}} z$, we also have $\mathfrak{M}, z \vDash t$. Further, there is u such that $\mathfrak{M}, u \vDash \neg t, y R_{0} u$, and either $u=w$ or $u R_{0} w$. As R_{0} is weakly connected, either $u=z$, or $u R_{0} z$, or $z R_{0} u$. As $y R_{0} z$ and $y \neg \bar{R}_{0}^{\mathfrak{M}} z$, we cannot have $u=z$ or $u R_{0} z$, and so $z R_{0} u$ follows, implying $z \bar{R}_{0}^{\mathfrak{M}} w$ as required. The case when $z R_{0} y$ and $z \neg \bar{R}_{0}^{\mathfrak{M}} y$ is similar.

In case R_{0} and R_{1} interact, we would like to force similar interactions between $\bar{R}_{0}^{\mathfrak{M}}$ and R_{1}. To this end, suppose that $\mathfrak{M}, r \models(12)$, where

$$
\begin{equation*}
\left(t \vee \diamond_{1} t \rightarrow t \wedge \square_{1} t\right) \wedge \square_{0}\left(t \vee \diamond_{1} t \rightarrow t \wedge \square_{1} t\right) \tag{12}
\end{equation*}
$$

and consider the following properties:

$$
\begin{array}{ll}
(\mathrm{lcom})^{\mathfrak{M}} & \forall y, z\left(r \bar{R}_{0}^{\mathfrak{M}} y R_{1} z \rightarrow \exists u r R_{1} u \bar{R}_{0}^{\mathfrak{M}} z\right), \\
(\mathrm{rcom})^{\mathfrak{M}} & \forall x, y, z\left(\left(x=r \vee r R_{0} x\right) \wedge x R_{1} y \bar{R}_{0}^{\mathfrak{M}} z \rightarrow \exists u x \bar{R}_{0}^{\mathfrak{M}} u R_{1} z\right), \\
(\mathrm{conf})^{\mathfrak{M}} & \forall x, y, z\left(r R_{0} x \bar{R}_{0}^{\mathfrak{M}} z \wedge x R_{1} y \rightarrow \exists u\left(y \bar{R}_{0}^{\mathfrak{M}} u \wedge z R_{1} u\right)\right) .
\end{array}
$$

Claim 3 Suppose that R_{0} is transitive and $\mathfrak{M}, r \vDash(12)$.
(i) If (lcom) holds in \mathfrak{F}, then (lcom) ${ }^{\mathfrak{M}}$ holds in \mathfrak{M}.
(ii) If (rcom) holds in \mathfrak{F}, then (rcom) ${ }^{\mathfrak{M}}$ holds in \mathfrak{M}.
(iii) If (conf) holds in \mathfrak{F}, then (conf) ${ }^{\mathfrak{M}}$ holds in \mathfrak{M}.

Proof We show (ii). (The proofs of the other two items are similar and left to the reader.) Suppose that $x=r$ or $r R_{0} x, x R_{1} y \bar{R}_{0}^{\mathfrak{M}} z$, and $\mathfrak{M}, x \models t$. Then by (12), we have $\mathfrak{M}, y \models t$. As $y \bar{R}_{0}^{\mathfrak{M}} z$, there is v such that $\mathfrak{M}, v \models \neg t, y R_{0} v$, and $v=z$ or $v R_{0} z$. By (rcom), there is w with $x R_{0} w R_{1} v$, and so $\mathfrak{M}, w \models \neg t$ by the transitivity of R_{0} and (12). If $v=z$, then $x \bar{R}_{0}^{\mathfrak{M}} w R_{1} z$, as required. If $v R_{0} z$, then, again by
(rcom), there is u with $w R_{0} u R_{1} z$. Therefore, $x \bar{R}_{0}^{M} u R_{1} z$, as required. The case when $\mathfrak{M}, x \models \neg t$ is similar.

Let $\varphi_{\infty}^{\bullet}$ be the conjunction of (12) and the formulas obtained from (4)-(6) by replacing each \diamond_{0} with \diamond_{0} and each \square_{0} with \square_{0}. Now, because of Claims 2 and 3 , the following lemma is proved analogously to Lemma 4 , by replacing R_{0} by $\bar{R}_{0}^{\mathfrak{M}}$ everywhere in its proof.

Lemma 6 Let $\mathfrak{F}=\left(W, R_{0}, R_{1}\right)$ be any 2-frame such that R_{0} is transitive and weakly connected and R_{0}, R_{1} are confluent and commute. If $\varphi_{\infty}^{\bullet}$ is satisfiable in \mathfrak{F}, then \mathfrak{F} is infinite.

Lemma 7 Let \mathfrak{F}_{0} be a frame for $\mathbf{K} 4.3$ that contains an $(\omega+1,>)$-type chain, and let \mathfrak{F}_{1} be a countably infinite one-step rooted frame. Then $\varphi_{\infty}^{\bullet}$ is satisfiable in $\mathfrak{F}_{0} \times \mathfrak{F}_{1}$.

Proof Suppose that $\mathfrak{F}_{i}=\left(W_{i}, R_{i}\right)$ for $i=0,1$. Let x_{n}, for $n \leq \omega$, be distinct points in W_{0} such that, for all $n, m \leq \omega, n \neq m$, we have $x_{n} R_{0} x_{m}$ if and only if $n>m$. For every $n<\omega$, we let

$$
\left[x_{n+1}, x_{n}\right)=\left(\left\{x \in W_{0}: x_{n+1} R_{0} x R_{0} x_{n}\right\} \cup\left\{x_{n+1}\right\}\right)-\left\{x: x=x_{n} \text { or } x_{n} R_{0} x\right\}
$$

Let r, y_{0}, y_{1}, \ldots be an arbitrary enumeration of W_{1}. Define a model \mathfrak{M} over $\mathfrak{F}_{0} \times \mathfrak{F}_{1}$ by taking

$$
\begin{array}{lll}
\mathfrak{M},(x, y) \models t & \text { iff } & x \in\left[x_{n+1}, x_{n}\right), n<\omega, n \text { is odd, } y \in W_{1}, \\
\mathfrak{M},(x, y) \models p & \text { iff } & x \in\left[x_{n+1}, x_{n}\right), y=y_{n}, n<\omega .
\end{array}
$$

Then it is easy to check that $\mathfrak{M},\left(x_{\omega}, r\right) \models \varphi_{\infty}^{\bullet}$.
Now Theorem 2 follows from Lemmas 6 and 7.
Proof of Theorem 3 Let ψ_{∞} be the conjunction of the following formulas:

$$
\begin{align*}
& \diamond_{0}\left(p \wedge \neg q \wedge \square_{0} \neg q \wedge \square_{1} \neg q\right), \tag{13}\\
& \square_{1}^{+} \diamond_{0}\left(q \wedge \square_{1} \neg q\right), \tag{14}\\
& \square_{1}^{+} \square_{0}\left(q \rightarrow \diamond_{1}\left(p \wedge \neg q \wedge \square_{0} \neg q \wedge \diamond_{1} q\right)\right), \tag{15}\\
& \square_{1}^{+} \square_{0} \square_{0}\left(p \rightarrow \square_{0} \neg p\right), \tag{16}
\end{align*}
$$

where $\square_{1}^{+} \psi=\psi \wedge \square_{1} \psi$, for any formula ψ.
Lemma 8 Let $\mathfrak{F}=\left(W, R_{0}, R_{1}\right)$ be any 2 -frame such that R_{0} is weakly connected, R_{1} is pseudotransitive, and R_{0}, R_{1} left commute. If ψ_{∞} is satisfiable in \mathfrak{F}, then \mathfrak{F} is infinite.

Proof \quad Suppose that $\mathfrak{M}, r \models \psi_{\infty}$ for some model \mathfrak{M} based on \mathfrak{F}. First, we inductively define three sequences y_{n}, u_{n}, v_{n} of points in \mathfrak{F} such that, for every $n<\omega$,
(e) $y_{n}=r$ or $r R_{1} y_{n}$, and $y_{n} R_{0} v_{n} R_{0} u_{n}$,
(f) if $n>0$, then $v_{n-1} R_{1} u_{n}$ and $u_{n} R_{1} v_{n-1}$,
(g) $\mathfrak{M}, u_{n} \vDash p$,
(h) $\mathfrak{M}, v_{n} \models q \wedge \square_{1} \neg q$.

If $n=0$, then let $y_{0}=r$. By (13), there is u_{0} such that $y_{0} R_{0} u_{0}$ and

$$
\begin{equation*}
\mathfrak{M}, u_{0} \models p \wedge \neg q \wedge \square_{0} \neg q \wedge \square_{1} \neg q . \tag{17}
\end{equation*}
$$

By (14), there is v_{0} such that $y_{0} R_{0} v_{0}$ and $\mathfrak{M}, v_{0} \vDash q \wedge \square_{1} \neg q$. Thus, $v_{0} R_{0} u_{0}$ follows by the weak connectedness of R_{0} and (17).

Now suppose that, for some $n<\omega, y_{i}, u_{i}$, v_{i} with (e)-(h) have already been defined for all $i \leq n$. By (e) and (h) of the IH, either $y_{n}=r$ or $r R_{1} y_{n}, y_{n} R_{0} v_{n}$ and $\mathfrak{M}, v_{n} \vDash q \wedge \square_{1} \neg q$. Also, by (15) there is u_{n+1} such that $v_{n} R_{1} u_{n+1}$ and

$$
\begin{equation*}
\mathfrak{M}, u_{n+1} \vDash p \wedge \neg q \wedge \square_{0} \neg q \wedge \diamond_{1} q, \tag{18}
\end{equation*}
$$

and so $u_{n+1} R_{1} v_{n}$ follows by the pseudotransitivity of R_{1}. By (lcom), there is y_{n+1} such that $y_{n} R_{1} y_{n+1} R_{0} u_{n+1}$. By the pseudotransitivity of R_{1} and (e) of the IH , we have $y_{n+1}=r$ or $r R_{1} y_{n+1}$. Now by (14), there is v_{n+1} such that $y_{n+1} R_{0} v_{n+1}$ and $\mathfrak{M}, v_{n+1} \vDash q \wedge \square_{1} \neg q$. As $\mathfrak{M}, u_{n+1} \vDash \neg q \wedge \square_{0} \neg q$ by (18), $v_{n+1} R_{0} u_{n+1}$ follows by the weak connectedness of R_{0}.

Next, we show that all the u_{n} 's are different, and so \mathfrak{F} is infinite. We show by induction on n that, for all $n<\omega$,

$$
\begin{equation*}
\mathfrak{M}, u_{n} \models \chi_{n} \wedge \bigwedge_{i<n} \neg \chi_{i} \tag{19}
\end{equation*}
$$

where $\chi_{0}=\square_{1} \neg q$, and for $n>0$,

$$
\chi_{n}=\diamond_{1}\left(q \wedge \nabla_{0}\left(p \wedge \chi_{n-1}\right)\right)
$$

For $n=0$, (19) holds by (17). Suppose inductively that (19) holds for some $n<\omega$. On the one hand, as $\mathfrak{M}, u_{n} \models \chi_{n}$ by the IH and $u_{n+1} R_{1} v_{n} R_{0} u_{n}$ by (e) and (f), we have $\mathfrak{M}, u_{n+1} \vDash \chi_{n+1}$ by (h) and (g). On the other hand, as $v_{n} R_{1} u_{n+1}$ by (f) and $\mathfrak{M}, v_{n} \models \square_{1} \neg q$ by (h), by the pseudotransitivity of R_{1} we have

$$
\begin{equation*}
\forall w\left(u_{n+1} R_{1} w \wedge \mathfrak{M}, w \models q \rightarrow w=v_{n}\right) . \tag{20}
\end{equation*}
$$

Also, by (e), (g), (16), and the weak connectedness of R_{0}, we have

$$
\begin{equation*}
\forall w\left(v_{n} R_{0} w \wedge \mathfrak{M}, w \models p \rightarrow w=u_{n}\right) . \tag{21}
\end{equation*}
$$

As $\mathfrak{M}, u_{n} \models \bigwedge_{i<n} \neg \chi_{i}$ by the IH , we obtain that $\mathfrak{M}, u_{n+1} \vDash \bigwedge_{i<n+1} \neg \chi_{i}$ by (20) and (21).

Lemma 9 The formula ψ_{∞} is satisfiable in $(\omega+1,>) \times(\omega, \neq)$.
Proof We define a model \mathfrak{M} over $(\omega+1,>) \times(\omega, \neq)$ by taking

$$
\begin{array}{lll}
\mathfrak{M},(m, n) \models p & \text { iff } & m=n, n<\omega, \\
\mathfrak{M},(m, n) \models q & \text { iff } & m=n+1, n<\omega .
\end{array}
$$

Then it is easy to check that $\mathfrak{M},(\omega, 0) \models \psi_{\infty}$.

Now Theorem 3 follows from Lemmas 8 and 9 .

5 Discussion and Open Problems

We showed that commutators and products with a "weakly connected component" (that is, a component logic having only weakly connected frames) often lack the fmp. We conclude the paper with a discussion of related results and open problems.
(I) First, we discuss the decision problem of the logics under the scope of our results.

- If L_{0} is any of $\mathbf{K 4 . 3}, \mathbf{S 4 . 3}$, or $\log (\mathbb{Q},<)$ and L_{1} is either $\mathbf{S 5}$ or \mathbf{K}, then $L_{0} \times L_{1}$ is decidable (see [17], Wolter [6], [23]). The known proofs build product models or quasimodels (two-dimensional structures of types) from finitely many repeating small pieces (mosaics). Can mosaic-style proofs be used to show that the corresponding commutators are decidable?
- The decidability of $\log (\{(\omega,<)\} \times \operatorname{Fr} \mathbf{S 5})$ can also be shown by a mosaicstyle proof (see [6]). However, in [6, Theorem 6.29] it is wrongly stated that this logic is the same as $\log (\omega,<) \times \mathbf{S 5}$. Unlike richer temporal languages, the unimodal language having a single \diamond (and its \square) is not capable of capturing the discreteness of a linear order. (Though, it can forbid the existence of infinite ascending chains between any two points.) In particular, $\log (\omega,<)$ does have frames containing $(\omega+1,>)$-type chains. Therefore, the formula $\varphi_{\infty}^{\bullet}$ used in the proof of Theorem 2 is $\log (\omega,<) \times \mathbf{S 5}$-satisfiable by Lemma 7 . However, $\varphi_{\infty}^{\bullet}$ is not $\log (\{(\omega,<)\} \times \operatorname{Fr} \mathbf{S 5})$-satisfiable, since, by the proof of Lemma 6, any 2-frame with a linear first component satisfying $\varphi_{\infty}^{\bullet}$ must contain an ($\omega+1,>$)-type chain. So in fact it is not known whether $\log (\omega,<) \times \mathbf{S 5}$ or $[\log (\omega,<), \mathbf{S 5}]$ is decidable. Do they have the fmp? Also, are $\mathbf{G L} . \mathbf{3} \times \mathbf{S 5}$ and $[\mathbf{G L} .3, \mathbf{S 5}$] decidable? Similar questions for \mathbf{K} in place of S5 are also open.
- If L is any bimodal logic such that $[\mathbf{K 4 . 3}, \mathbf{D i f f}] \subseteq L$ and the product of an infinite linear order and and infinite difference frame is a frame for L, then L is undecidable (see Hampson and Kurucz [11]). Can this result be generalized to the logics in Theorem 3? In particular, is [K4.3, Diff] $]^{\text {lcom }}$ decidable?
- It is shown by Marx and Reynolds [16] and Reynolds and Zakharyaschev [18] that if both L_{0} and L_{1} are determined by linear frames and have frames of arbitrary size, then $L_{0} \times L_{1}$ is undecidable. These results are generalized in [9]: if both L_{0} and L_{1} are determined by transitive frames and have frames of arbitrarily large depth, then all logics between $\left[L_{0}, L_{1}\right]$ and $L_{0} \times L_{1}$ are undecidable.
(II) As the formulas in (1) of Section 1 are Sahlqvist formulas, the commutator of two Sahlqvist axiomatizable logics is always Kripke complete. In general, this is not the case. Several of the commutators under the scope of the undecidability results in [9] are in fact Π_{1}^{1}-hard, even when both component logics are finitely axiomatizable (e.g., $[\mathbf{G L} . \mathbf{3}, \mathbf{K 4}]$ and $[\log (\omega,<), \mathbf{K 4}]$ are such). As the commutator of two finitely axiomatizable logics is clearly recursively enumerable, the Kripke incompleteness of these commutators follows. It is not known, however, whether any of the commutators $[\mathbf{G L} .3, \mathbf{S 5}],[\mathbf{G L} .3, \mathbf{K}],[\log (\omega,<), \mathbf{S 5}]$, or $[\log (\omega,<), \mathbf{K}]$ is Kripke complete.
(III) Apart from Theorem 3 above, not much is known about the fmp of bimodal logics with a weakly connected component that are properly between fusions and
commutators. Say, does the logic of two commuting (but not necessarily confluent) K4.3-operators have the fmp?

References

[1] Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, vol. 53 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge, 2001. MR 1837791. DOI 10.1017/CBO9781107050884. 289
[2] Bull, R. A., "That all normal extensions of S4.3 have the finite model property," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 12 (1966), pp. 341-44. Zbl 0154.00407. MR 0221914. DOI 10.1002/malq.19660120129. 287
[3] Chagrov, A., and M. Zakharyaschev, "The undecidability of the disjunction property of propositional logics and other related problems," Journal of Symbolic Logic, vol. 58 (1993), pp. 967-1002. Zbl 0799.03009. MR 1242050. DOI 10.2307/2275108. 287
[4] Chagrov, A., and M. Zakharyaschev, Modal Logic, vol. 35 of Oxford Logic Guides, Clarendon Press, New York, 1997. Zbl 0871.03007. MR 1464942. 287, 289
[5] Fine, K., and G. Schurz, "Transfer theorems for stratified modal logics," pp. 169-213 in Logic and Reality: Essays on the Legacy of Arthur Prior, edited by J. Copeland, Oxford University Press, New York, 1996. 288
[6] Gabbay, D. M., A. Kurucz, F. Wolter, and M. Zakharyaschev, Many-Dimensional Modal Logics: Theory and Applications, vol. 148 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 2003. MR 2011128. 288, 289, 290, 297
[7] Gabbay, D. M., and V. Shehtman, "Products of modal logics, I," Logic Journal of the IGPL, vol. 6 (1998), pp. 73-146. Zbl 0902.03008. MR 1600432. DOI 10.1093/jigpal/ 6.1.73. 288, 289, 290
[8] Gabelaia, D., "Topological, algebraic and spatio-temporal semantics for multidimensional modal logics," Ph.D. dissertation, King's College London, London, 2004. 290, 291
[9] Gabelaia, D., A. Kurucz, F. Wolter, and M. Zakharyaschev, "Products of 'transitive' modal logics," Journal of Symbolic Logic, vol. 70 (2005), pp. 993-1021. Zbl 1103.03020. MR 2155277. DOI 10.2178/js1/1122038925. 289, 293, 297
[10] Goldblatt, R., Logics of Time and Computation, vol. 7 in CSLI Lecture Notes, Stanford University, Center for the Study of Language and Information, Stanford, Calif., 1987. MR 0887946. 288
[11] Hampson, C., and A. Kurucz, "Undecidable propositional bimodal logics and onevariable first-order linear temporal logics with counting," ACM Transactions on Computational Logic, vol. 16 (2015), art. 27, 1-36. DOI 10.1145/2757285. 297
[12] Hampson, C., and A. Kurucz, "Axiomatisation problems of modal product logics with the difference operator," preprint, 2014. 290
[13] Kracht, M., and F. Wolter, "Properties of independently axiomatizable bimodal logics," Journal of Symbolic Logic, vol. 56 (1991), pp. 1469-85. Zbl 0743.03013. MR 1136469. DOI 10.2307/2275487. 288
[14] Kurucz, A., "Combining modal logics," pp. 869-924 in Handbook of Modal Logic, edited by P. Blackburn, J. van Benthem, and F. Wolter, vol. 3 of Studies in Logic and Practical Reasoning, Elsevier, Amsterdam, 2007. 288
[15] Kurucz, A., and S. Marcelino, "Non-finitely axiomatisable two-dimensional modal logics," Journal of Symbolic Logic, vol. 77 (2012), pp. 970-86. Zbl 1259.03032. DOI 10.2178/js1/1344862170. 290
[16] Marx, M., and M. Reynolds, "Undecidability of compass logic," Journal of Logic and Computation, vol. 9 (1999), pp. 897-914. Zbl 0941.03018. DOI 10.1093/logcom/ 9.6.897. 297
[17] Reynolds, M., "A decidable temporal logic of parallelism," Notre Dame Journal of Formal Logic, vol. 38 (1997), pp. 419-36. Zbl 0904.03010. MR 1624966. DOI 10.1305/ ndjfl/1039700748. 289, 297
[18] Reynolds, M., and M. Zakharyaschev, "On the products of linear modal logics," Journal of Logic and Computation, vol. 11 (2001), pp. 909-31. Zbl 1002.03017. MR 1879590. DOI 10.1093/logcom/11.6.909. 297
[19] Segerberg, K., An Essay in Classical Modal Logic, vol. 13 of Filosofiska Studier, Filosofiska Föreningen och Filosofiska Institutionen vid Uppsala Universitet, Uppsala, 1971. MR 0339999. 287
[20] Shehtman, V., "Filtration via bisimulation," pp. 289-308 in Advances in Modal Logic, Vol. 5, edited by R. Schmidt, I. Pratt-Hartmann, M. Reynolds, and H. Wansing, King's College Publications, London, 2005. Zbl 1102.03021. 288
[21] Shehtman, V., "Canonical filtrations and local tabularity," pp. 498-512 in Advances in Modal Logic, Vol. 10, edited by R. Goré, B. Kooi, and A. Kurucz, College Publications, Milton Keynes, United Kingdom, 2014. 289
[22] Spaan, E., "Complexity of modal logics," Ph.D. dissertation, Department of Mathematics and Computer Science, University of Amsterdam, Amsterdam, 1993. 293
[23] Wolter, F., "The product of converse PDL and polymodal K," Journal of Logic and Computation, vol. 10 (2000), pp. 223-51. Zbl 0959.03013. DOI 10.1093/logcom/10.2.223. 297
[24] Wolter, F., and M. Zakharyaschev, "Modal decision problems," pp. 427-89 in Handbook of Modal Logic, edited by P. Blackburn, J. van Benthem, and F. Wolter, vol. 3 of Studies in Logic and Practical Reasoning, Elsevier, Amsterdam, 2007. 287

Acknowledgment

I am grateful to the anonymous referee for their thorough (and quick) reading of the manuscript.

Department of Informatics
King's College London
Strand
London WC2R 2LS
United Kingdom
agi.kurucz@kcl.ac.uk
https://nms.kcl.ac.uk/agi.kurucz

