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Bimodal Logics with a “Weakly Connected”
Component without the Finite Model Property

Agi Kurucz

Abstract There are two known general results on the finite model property
(fmp) of commutators ŒL0; L1� (bimodal logics with commuting and confluent
modalities). If L is finitely axiomatizable by modal formulas having universal
Horn first-order correspondents, then both ŒL;K� and ŒL;S5� are determined
by classes of frames that admit filtration, and so they have the fmp. On the
negative side, if both L0 and L1 are determined by transitive frames and have
frames of arbitrarily large depth, then ŒL0; L1� does not have the fmp. In this
paper we show that commutators with a “weakly connected” component often
lack the fmp. Our results imply that the above positive result does not generalize
to universally axiomatizable component logics, and even commutators without
“transitive” components such as ŒK3;K� can lack the fmp. We also generalize the
above negative result to cases where one of the component logics has frames of
depth one only, such as ŒS4:3;S5� and the decidable product logic S4:3�S5. We
also show cases when already half of commutativity is enough to force infinite
frames.

1 Introduction

A normal multimodal logicL is said to have the finite model property (fmp, for short)
if, for every L-falsifiable formula ', there is a finite model (or, equivalently, a finite
frame; see Segerberg [19]) for L where ' fails to hold. The fmp can be a useful tool
in proving the decidability and/or Kripke completeness of a multimodal logic. While
in general it is undecidable whether a finitely axiomatizable modal logic has the fmp
(see Chagrov and Zakharyaschev [3]), there are several general results on the fmp
of unimodal logics (see Chagrov and Zakharyaschev [4], Wolter and Zakharyaschev
[24] for surveys and references). In particular, by Bull’s [2] theorem all extensions
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of S4:3 have the fmp. S4:3 is the finitely axiomatizable modal logic determined by
frames .W;R/, where R is reflexive, transitive, and weakly connected:

8x; y; z 2 W
�
xRy ^ xRz ! .y D z _ yRz _ zRy/

�
:

The property of weak connectedness is a consequence of linearity and consequently
has been studied in temporal and dynamic logics, modal-like logical formalisms over
point-based models of time, and sequential computation (see Goldblatt [10]).

Here we are interested in the extent to which Bull’s theorem holds in the bimodal
case, that is, we study the fmp of bimodal logics with a weakly connected unimodal
component. In general, it is of course much more difficult to understand the behavior
of bimodal logics having two possibly differently behaving modal operators, espe-
cially when they interact. Without interaction, there is a general transfer theorem
(see Fine and Schurz [5], Kracht and Wolter [13]): if both L0 and L1 are modal log-
ics having the fmp, then their fusion (also known as independent join) L0 ˚L1 also
has the fmp. Here we study bimodal logics with a certain kind of interaction. Given
unimodal logics L0 and L1, their commutator ŒL0; L1� is the smallest bimodal logic
containing their fusion L0 ˚ L1 plus the interaction axioms

�1�0p ! �0�1p; �0�1p ! �1�0p; ˙0�1p ! �1˙0p: (1)

These bimodal formulas have the respective first-order frame-correspondents of left
commutativity, right commutativity, and confluence (or the Church–Rosser prop-
erty):

.lcom/ 8x; y; z .xR0yR1z ! 9u xR1uR0z/;

.rcom/ 8x; y; z .xR1yR0z ! 9u xR0uR1z/;

.conf/ 8x; y; z
�
xR1y ^ xR0z ! 9u .yR0u ^ zR1u/

�
:

These three properties always hold in special two-dimensional structures called prod-
uct frames, and so commutators always have product frames among their frames.
Product frames are natural constructions modelling interaction between different
domains that might represent time, space, knowledge, actions, and so on. Prop-
erties of product frames and product logics (logics determined by classes of prod-
uct frames) have been extensively studied (see Gabbay and Shehtman [7], Gabbay,
Kurucz, Wolter, and Zakharyaschev [6], Kurucz [14] for surveys and references).
Here we summarize the known results related to the fmp of commutators and prod-
ucts.

(I) It is easy to find bimodal formulas that “force” infinite ascending or descend-
ing chains of points in product frames under very mild assumptions (see Section 2
for details). Therefore, commutators often do not have the fmp with respect to prod-
uct frames. However, commutators and product logics do have other frames, often
ones that are not even p-morphic images of product frames, or finite frames that are p-
morphic images of infinite product frames only (see Section 2). So in general the lack
of the fmp for a logic does not obviously follow from the lack of the fmp with respect
to its product frames. In fact, there are known examples, say, ŒK4;K� D K4�K and
ŒS4;S5� D S4�S5, that do have the fmp, but lack the fmp with respect to product
frames.

(II) The above two examples are special cases of general results in [7] and Sheht-
man [20]: if L is finitely Horn axiomatizable (i.e., finitely axiomatizable by modal
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formulas having universal Horn first-order correspondents), then both ŒL;K� and
ŒL;S5� are determined by classes of frames that admit filtration, and so have the
fmp.

(III) Shehtman [21] shows that products of some modal logics of finite depth with
both S5 and Diff have the fmp. He also obtains the fmp for the product logic Diff�K.

(IV) On the negative side, if both L0 and L1 are determined by transitive frames
and have frames of arbitrarily large depth, then no logic between ŒL0; L1� andL0�L1

has the fmp (see Gabelaia, Kurucz, Wolter, and Zakharyaschev [9]). So, for example,
neither ŒK4:3;K4:3� nor ŒK4:3;K4� has the fmp.

(V) Reynolds [17] considers the bimodal tense extension K4:3t of K4:3 as the first
component. (That is, besides the usual “future” �, the language of K4:3t contains
a “past” modal operator as well, interpreted along the inverse of the accessibility
relation of �.) He shows that the 3-modal product logic K4:3t�S5 does not have the
fmp.

In this paper we show that commutators with a “weakly connected” component
often lack the fmp. Our results imply that (II) above cannot be generalized to compo-
nent logics having weakly connected frames only: even commutators without “tran-
sitive” components such as ŒK3;K� can lack the fmp. (Here K3 is the logic deter-
mined by all—not necessarily transitive—weakly connected frames.) On the other
hand, we generalize (IV) (and (V)) above for cases where one of the component log-
ics has frames of modal depth one only. In particular, we show (without using the
“past” operator) that the (decidable; see [17]) product logics K4:3�S5 and S4:3�S5
do not have the fmp. Precise formulations of our results are given in Section 3. These
results give negative answers to questions in [7] and to [6, Questions 6.43, 6.62].

The structure of the paper is as follows. Section 2 provides the relevant definitions
and notation, and we discuss the fmp with respect to product frames in more detail.
Our results are listed in Section 3 and proved in Section 4. Finally, in Section 5 we
discuss the obtained results and formulate some open problems.

2 Bimodal Logics and Product Frames

In what follows we assume that the reader is familiar with the basic notions in modal
logic and its possible world semantics (for reference, see, e.g., Blackburn, de Rijke,
and Venema [1], [4]). Below we summarize some of the necessary notions and
notation for the bimodal case. Similarly to (propositional) unimodal formulas, by
a bimodal formula we mean any formula built up from propositional variables using
the Booleans and the unary modal operators �0, �1 and ˙0, ˙1. Bimodal formulas
are evaluated in 2-frames: relational structures of the form F D .W;R0; R1/, having
two binary relationsR0 andR1 on a nonempty setW . A Kripke model based on F is
a pair M D .F; #/, where # is a function mapping propositional variables to subsets
of W . The truth relation “M; w ˆ ',” connecting points in models and formulas,
is defined as usual by induction on '. We say that ' is valid in F if M; w ˆ ' for
every model M based on F and for every w 2 W . If every formula in a set † is
valid in F, then we say that F is a frame for †. We let Fr† denote the class of all
frames for †.

A setL of bimodal formulas is called a (normal) bimodal logic (or logic, for short)
if it contains all propositional tautologies and the formulas �i .p ! q/ ! .�ip !

�iq/, for i < 2, and is closed under the rules of Substitution, Modus Ponens, and



290 Agi Kurucz

Necessitation '=�i', for i < 2. Given a class C of 2-frames, we always obtain a
logic by taking

Log C D ¹' W ' is a bimodal formula valid in every member of Cº:

We say that Log C is determined by C and call such a logic Kripke complete. (We
write just Log F for Log¹Fº.)

Let L0 and L1 be two unimodal logics formulated using the same propositional
variables and Booleans, but having different modal operators (˙0, �0 for L0, and
˙1, �1 for L1). Their fusion L0 ˚ L1 is the smallest bimodal logic that contains
both L0 and L1. The commutator ŒL0; L1� of L0 and L1 is the smallest bimodal
logic that contains L0 ˚ L1 and the formulas in (1). Next, we introduce some spe-
cial “two-dimensional” 2-frames for commutators. Given unimodal Kripke frames
F0 D .W0; R0/ and F1 D .W1; R1/, their product is defined to be the 2-frame

F0�F1 D .W0�W1; R0; R1/;

where W0 �W1 is the Cartesian product of W0 and W1 and, for all u; u0 2 W0,
v; v0 2 W1,

.u; v/R0.u
0; v0/ iff uR0u

0 and v D v0;

.u; v/R1.u
0; v0/ iff vR1v

0 and u D u0:

Throughout this paper, 2-frames of this form will be called product frames. For
classes C0 and C1 of unimodal frames, we define

C0�C1 D ¹F0�F1 W Fi 2 Ci ; for i D 0; 1º:

Now, for i < 2, let Li be a Kripke complete unimodal logic in the language with
˙i and �i . The product of L0 and L1 is defined as the (Kripke complete) bimodal
logic

L0 � L1 D Log.FrL0�FrL1/:

As we briefly discussed in Section 1, product frames always validate the formulas in
(1), and so ŒL0; L1� � L0 �L1 always holds. If both L0 and L1 are Horn axiom-
atizable, then ŒL0; L1� D L0 �L1 (see [7]). In general, ŒL0; L1� can be properly
contained in L0 �L1. In particular, the universal (but not Horn) property of weak
connectedness can result in such behavior: ŒK4:3;K� is properly contained in the
nonfinitely axiomatizable K4:3�K (see Kurucz and Marcelino [15]; for more exam-
ples, see [6, Theorems 5.15, 5.17] and Hampson and Kurucz [12]). (Here K and
K4:3 denote the unimodal logics determined, respectively, by all frames and by all
transitive and weakly connected frames.)

It is not hard to force infinity in product frames. The following formula (see [6,
Theorem 5.32]) forces an infinite ascending R0-chain of distinct points in product
frames with a transitive first component:

�C
0 ˙1p ^ �C

0 �1.p ! ˙0�C
0 :p/; (2)

where �C
0  is shorthand for  ^ �0 . Also, the formula
˙1˙0p ^ �1.˙0p ! ˙0˙0p/ ^ �1�0.p ! �0:p/ ^ �0˙1p (3)

forces a rooted infinite descending R0-chain of points in product frames with a tran-
sitive and weakly connected first component (see Gabelaia [8, Theorem 6.12] for a
similar formula). It is not hard to see that both (2) and (3) can be satisfied in infi-
nite product frames, where the second component is a one-step rooted frame .W;R/.
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(That is, there is r 2 W such that rRw for every w 2 W , w ¤ r .) As a consequence,
a wide range of bimodal logics fail to have the fmp with respect to product frames.
If every finite frame for a logic is the p-morphic image of one of its finite product
frames, then the lack of fmp follows. As is shown in [8], such examples are the logics
ŒGL:3; L� and GL:3�L, for any L having one-step rooted frames. (Here GL:3 is the
logic determined by all Noetherian strict linear orders.) However, in general this is
not the case for bimodal logics with frames having weakly connected components.
Take, say, the 2-frame F D .W;�;W�W /, whereW D ¹x; yº and x � x � y � y.
Then it is easy to see that F is a p-morphic image of .!;�/ � .!; ! � !/, but F is
not a p-morphic image of any finite product frame.

3 Results

We denote by K3 the unimodal logic determined by all weakly connected (but not
necessarily transitive) frames.

Theorem 1 Let L be a bimodal logic such that
� ŒK3;K� � L, and
� .!C1;>/�F is a frame forL, where F is a countably infinite one-step rooted

frame.
Then L does not have the fmp.

Weak connectedness is a property of linear orders, and .!C1;>/ is a frame for K4:3.
Most “standard” modal logics have infinite one-step rooted frames, in particular,
S5 (the logic of all equivalence frames) and Diff (the logic of all difference frames
.W;¤/). So we have the following result.

Corollary 1.1 Let L0 be either K3 or K4:3, and let L1 be any of K, S5, or Diff .
Then no logic between ŒL0; L1� and L0�L1 has the fmp.

However, .!C1;>/ is not a frame for “linear” logics whose frames are serial, reflex-
ive, and/or dense, such as Log.!;</, S4:3, or the logic Log.Q; </ D Log.R; </ of
the usual orders over the rationals or the reals. Our next theorem deals with these
kinds of logics as first components. We say that a frame F D .W;R/ contains an
.! C 1;>/-type chain if there are distinct points xn, for n � !, in W such that
xnRxm if and only if n > m, for all n;m � !, n ¤ m. Observe that this is less
than saying that F has a subframe isomorphic to .! C 1;>/, because, for each n,
xnRxn might or might not hold. So F can be reflexive and/or dense and still have
this property.

Theorem 2 Let L be a bimodal logic such that
� ŒK4:3;K� � L, and
� F0 �F1 is a frame for L, where F0 contains an .! C 1;>/-type chain and

F1 is a countably infinite one-step rooted frame.
Then L does not have the fmp.

Corollary 2.1 Let L0 be any of Log.!;</, Log.!;�/, S4:3, or Log.Q; </, and
let L1 be any of K, S5, or Diff . Then no logic between ŒL0; L1� and L0�L1 has the
fmp.
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Our last theorem is about bimodal logics having less interaction than commuta-
tors. Let ŒL0; L1�

lcom denote the smallest bimodal logic containing L0 ˚ L1 and
�1�0p ! �0�1p. We denote by K4� the unimodal logic determined by all
frames that are pseudotransitive:

8x; y; z 2 W
�
xRyRz ! .x D z _ xRz/

�
:

Difference frames .W;¤/ are examples of pseudotransitive frames where the acces-
sibility relation ¤ is also symmetric. (Note that, in 2-frames with a symmetric sec-
ond relation, (rcom) is equivalent to (conf).)

Theorem 3 Let L be a bimodal logic such that
� ŒK3;K4��lcom � L, and
� .! C 1;>/�.!;¤/ is a frame for L.

Then L does not have the fmp.

Corollary 3.1 Neither ŒK3;K4��lcom nor ŒK3;Diff�lcom has the fmp.

4 Proofs

Proof of Theorem 1 For every bimodal formula ' and every n < !, we let

˙=n
0 ' D ˙n

0' ^ �nC1
0 :' D

n‚ …„ ƒ
˙0 � � � ˙0 ' ^

nC1‚ …„ ƒ
�0 � � � �0 :':

We will use a “refinement” of the formula (3). Let '1 be the conjunction of the
following formulas:

˙1˙0.p ^ �0?/; (4)

�1.˙0p ! ˙0˙=1
0 p/; (5)

�0

�
˙1˙=1

0 p ! ˙1.p ^ �0:p ^ �0�0:p/
�
: (6)

Lemma 4 Let F D .W;R0; R1/ be any 2-frame such thatR0 is weakly connected
and R0, R1 are confluent and commute. If '1 is satisfiable in F, then F is infinite.

Proof We will only use the following consequence of weak connectedness:
.wcon�/ 8x; y; z

�
xR0y ^ xR0z !

�
yR0z _ zR0y _ 8w .yR0w $ zR0w/

��
:

Suppose that M; r ˆ '1 for some model M based on F. First, we inductively
define three sequences un, vn, xn of points in F such that, for every n < !,

(a) vnR0un,
(b) rR0xnR1vn, and if n > 0, then xn�1R1un,
(c) M; un ˆ p ^ �0:p ^ �0�0:p,
(d) M; vn ˆ ˙=1

0 p.
If n D 0, then by (4) there are y0, u0 such that rR1y0R0u0 and

M; u0 ˆ p ^ �0?; (7)
and so (c) holds. By (5), there is v0 such that y0R0v0 and M; v0 ˆ ˙=1

0 p, and so
v0R0u0 follows by .wcon�/ and (7). By .rcom/, we have x0 with rR0x0R1v0.

Now suppose that, for some n < !, ui , vi , xi with (a)–(d) have already been
defined for all i � n. By (b) and (d) of the IH, rR0xn and M; xn ˆ ˙1˙=1

0 p. So by
(6), there is unC1 such that xnR1unC1 and

M; unC1 ˆ p ^ �0:p ^ �0�0:p: (8)
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By .lcom/, there is ynC1 with rR1ynC1R0unC1. By (5), there is vnC1 such that
ynC1R0vnC1 and M; vnC1 ˆ ˙=1

0 p, and so vnC1R0unC1 follows by .wcon�/ and
(8). By .rcom/, we have xnC1 with rR0xnC1R1vnC1.

Next, we show that all the un’s are different, and so F is infinite. We show by
induction on n that, for all n < !,

M; un ˆ ˙=n
0 >: (9)

For n D 0, (9) holds by (7). Suppose inductively that (9) holds for some n < !. We
have vnR0un, by (a) above. We claim that

8u .vnR0u ! M; u ˆ �nC1
0 ?/: (10)

Indeed, suppose that vnR0u. By .wcon�/, we have either uR0un, or unR0u, or
8w .unR0w $ uR0w/. As M; un ˆ p by (c) and M; vn ˆ �0�0:p by (d), we
cannot have uR0un. As we have M; un ˆ �nC1

0 ? by the IH, in the other two cases
M; u ˆ �nC1

0 ? follows, proving (10). As M; un ˆ ˙n
0> by the IH, we obtain

M; vn ˆ ˙=nC1
0 > (11)

by (10) and (a). By (b), we have rR0xnR1vn and xnR1unC1. So M; xn ˆ ˙nC1
0 >

follows by .rcom/ and (11). Also, by .conf/ and (11), we have M; xn ˆ �nC2
0 ?.

Now we have M; unC1 ˆ ˙nC1
0 > by .conf/, and M; unC1 ˆ �nC2

0 ? by .rcom/.
Therefore, M; unC1 ˆ ˙=nC1

0 >, as required.

Lemma 5 Let F be a countably infinite one-step rooted frame. Then '1 is satis-
fiable in .! C 1;>/�F.

Proof Suppose that F D .W;R/, and let r; y0; y1; : : : be an arbitrary enumeration
of W . Define a model M over .! C 1;>/�F by taking

M; .n; y/ ˆ p iff n < !; y D yn:

Then it is straightforward to check that M; .!; r/ ˆ '1.

Now Theorem 1 follows from Lemmas 4 and 5.

Proof of Theorem 2 We will employ a variant of the formula '1 used in the pre-
vious proof. The problem is that, in reflexive and/or dense frames, a formula of the
form ˙=1

0 p is clearly not satisfiable. To fix this, we use a version of the “tick trick,”
introduced in Spaan [22] and [9]. We fix a propositional variable t and define a new
modal operator by setting, for every formula  ,

�0 D
�
t ! ˙0

�
:t ^ . _ ˙0 /

��
^

�
:t ! ˙0

�
t ^ . _ ˙0 /

��
; and

�0� D :�0: :

Now let M be a model based on some 2-frame F D .W;R0; R1/. We define a new
binary relation RM

0 on W by taking, for all x; y 2 W ,

xR
M

0 y

iff

9z 2 W
�
xR0z and .M; x ˆ t $ M; z ˆ :t / and .z D y or zR0y/

�
:

We will write x:R
M

0 y whenever xRM

0 y does not hold. It is straightforward to check
the following.
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Claim 1 If R0 is transitive, then RM

0 is transitive as well, RM

0 � R0, R0 ı R
M

0 �

R
M

0 , and RM

0 ıR0 � R
M

0 .

Also, �0 behaves like a modal diamond with respect to RM

0 ; that is, for all x 2 W ,

M; x ˆ �0 iff 9y 2 W .xR
M

0 y and M; y ˆ  /:

However,RM

0 is not necessarily weakly connected wheneverR0 is weakly connected,
but if R0 is also transitive, then it does have

.wcon�/M 8x; y; z
�
xR

M

0 y ^ xR
M

0 z

!
�
yR

M

0 z _ zR
M

0 y _ 8w .yR
M

0 w $ zR
M

0 w/
��
:

Claim 2 If R0 is transitive and weakly connected, then .wcon�/M holds in M.

Proof Suppose that xRM

0 y and xRM

0 z. By Claim 1 and the weak connected-
ness of R0, we have that either y D z, or yR0z, or zR0y. If y D z, then
8w .yR

M

0 w $ zR
M

0 w/ clearly holds. Next, suppose that yR0z and y:R
M

0 z. We
claim that 8w .yR

M

0 w $ zR
M

0 w/ follows. Indeed, suppose first that zRM

0 w for
some w. Then we have yRM

0 w by Claim 1. Now suppose that yRM

0 w for some w,
and suppose that M; y ˆ t . (The case when M; y ˆ :t is similar.) As yR0z and
y:R

M

0 z, we also have M; z ˆ t . Further, there is u such that M; u ˆ :t , yR0u,
and either u D w or uR0w. As R0 is weakly connected, either u D z, or uR0z, or
zR0u. As yR0z and y:R

M

0 z, we cannot have u D z or uR0z, and so zR0u follows,
implying zRM

0 w as required. The case when zR0y and z:RM

0 y is similar.

In case R0 and R1 interact, we would like to force similar interactions between RM

0

and R1. To this end, suppose that M; r ˆ (12), where

.t _ ˙1t ! t ^ �1t / ^ �0.t _ ˙1t ! t ^ �1t /; (12)

and consider the following properties:

.lcom/M 8y; z .rR
M

0 yR1z ! 9u rR1uR
M

0 z/;

.rcom/M 8x; y; z
�
.x D r _ rR0x/ ^ xR1yR

M

0 z ! 9u xR
M

0 uR1z
�
;

.conf/M 8x; y; z
�
rR0xR

M

0 z ^ xR1y ! 9u .yR
M

0 u ^ zR1u/
�
:

Claim 3 Suppose that R0 is transitive and M; r ˆ (12).
(i) If .lcom/ holds in F, then .lcom/M holds in M.
(ii) If .rcom/ holds in F, then .rcom/M holds in M.
(iii) If .conf/ holds in F, then .conf/M holds in M.

Proof We show (ii). (The proofs of the other two items are similar and left to the
reader.) Suppose that x D r or rR0x, xR1yR

M

0 z, and M; x ˆ t . Then by (12), we
have M; y ˆ t . As yRM

0 z, there is v such that M; v ˆ :t , yR0v, and v D z or
vR0z. By .rcom/, there is w with xR0wR1v, and so M; w ˆ :t by the transitivity
of R0 and (12). If v D z, then xRM

0 wR1z, as required. If vR0z, then, again by
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.rcom/, there is u with wR0uR1z. Therefore, xRM

0 uR1z, as required. The case
when M; x ˆ :t is similar.

Let '�
1 be the conjunction of (12) and the formulas obtained from (4)–(6) by replac-

ing each ˙0 with �0 and each �0 with �0. Now, because of Claims 2 and 3, the
following lemma is proved analogously to Lemma 4, by replacing R0 by RM

0 every-
where in its proof.

Lemma 6 Let F D .W;R0; R1/ be any 2-frame such that R0 is transitive and
weakly connected and R0, R1 are confluent and commute. If '�

1 is satisfiable in F,
then F is infinite.

Lemma 7 Let F0 be a frame for K4:3 that contains an .! C 1;>/-type chain,
and let F1 be a countably infinite one-step rooted frame. Then '�

1 is satisfiable in
F0�F1.

Proof Suppose that Fi D .Wi ; Ri / for i D 0; 1. Let xn, for n � !, be distinct
points in W0 such that, for all n;m � !, n ¤ m, we have xnR0xm if and only if
n > m. For every n < !, we let

ŒxnC1; xn/ D
�
¹x 2 W0 W xnC1R0xR0xnº [ ¹xnC1º

�
� ¹x W x D xn or xnR0xº:

Let r; y0; y1; : : : be an arbitrary enumeration ofW1. Define a model M over F0�F1

by taking

M; .x; y/ ˆ t iff x 2 ŒxnC1; xn/; n < !; n is odd; y 2 W1;

M; .x; y/ ˆ p iff x 2 ŒxnC1; xn/; y D yn; n < !:

Then it is easy to check that M; .x! ; r/ ˆ '�
1.

Now Theorem 2 follows from Lemmas 6 and 7.

Proof of Theorem 3 Let  1 be the conjunction of the following formulas:

˙0.p ^ :q ^ �0:q ^ �1:q/; (13)

�C
1 ˙0.q ^ �1:q/; (14)

�C
1 �0

�
q ! ˙1.p ^ :q ^ �0:q ^ ˙1q/

�
; (15)

�C
1 �0�0.p ! �0:p/; (16)

where �C
1  D  ^ �1 , for any formula  .

Lemma 8 Let F D .W;R0; R1/ be any 2-frame such thatR0 is weakly connected,
R1 is pseudotransitive, and R0, R1 left commute. If  1 is satisfiable in F, then F
is infinite.

Proof Suppose that M; r ˆ  1 for some model M based on F. First, we induc-
tively define three sequences yn, un, vn of points in F such that, for every n < !,

(e) yn D r or rR1yn, and ynR0vnR0un,
(f) if n > 0, then vn�1R1un and unR1vn�1,
(g) M; un ˆ p,
(h) M; vn ˆ q ^ �1:q.
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If n D 0, then let y0 D r . By (13), there is u0 such that y0R0u0 and

M; u0 ˆ p ^ :q ^ �0:q ^ �1:q: (17)

By (14), there is v0 such that y0R0v0 and M; v0 ˆ q ^ �1:q. Thus, v0R0u0

follows by the weak connectedness of R0 and (17).
Now suppose that, for some n < !, yi , ui , vi with (e)–(h) have already been

defined for all i � n. By (e) and (h) of the IH, either yn D r or rR1yn, ynR0vn and
M; vn ˆ q ^ �1:q. Also, by (15) there is unC1 such that vnR1unC1 and

M; unC1 ˆ p ^ :q ^ �0:q ^ ˙1q; (18)

and so unC1R1vn follows by the pseudotransitivity of R1. By .lcom/, there is ynC1

such that ynR1ynC1R0unC1. By the pseudotransitivity of R1 and (e) of the IH, we
have ynC1 D r or rR1ynC1. Now by (14), there is vnC1 such that ynC1R0vnC1 and
M; vnC1 ˆ q ^ �1:q. As M; unC1 ˆ :q ^ �0:q by (18), vnC1R0unC1 follows
by the weak connectedness of R0.

Next, we show that all the un’s are different, and so F is infinite. We show by
induction on n that, for all n < !,

M; un ˆ �n ^

^
i<n

:�i ; (19)

where �0 D �1:q, and for n > 0,

�n D ˙1

�
q ^ ˙0.p ^ �n�1/

�
:

For n D 0, (19) holds by (17). Suppose inductively that (19) holds for some n < !.
On the one hand, as M; un ˆ �n by the IH and unC1R1vnR0un by (e) and (f), we
have M; unC1 ˆ �nC1 by (h) and (g). On the other hand, as vnR1unC1 by (f) and
M; vn ˆ �1:q by (h), by the pseudotransitivity of R1 we have

8w .unC1R1w ^ M; w ˆ q ! w D vn/: (20)

Also, by (e), (g), (16), and the weak connectedness of R0, we have

8w .vnR0w ^ M; w ˆ p ! w D un/: (21)

As M; un ˆ
V

i<n :�i by the IH, we obtain that M; unC1 ˆ
V

i<nC1 :�i by (20)
and (21).

Lemma 9 The formula  1 is satisfiable in .! C 1;>/�.!;¤/.

Proof We define a model M over .! C 1;>/�.!;¤/ by taking

M; .m; n/ ˆ p iff m D n; n < !;

M; .m; n/ ˆ q iff m D nC 1; n < !:

Then it is easy to check that M; .!; 0/ ˆ  1.

Now Theorem 3 follows from Lemmas 8 and 9.
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5 Discussion and Open Problems

We showed that commutators and products with a “weakly connected component”
(that is, a component logic having only weakly connected frames) often lack the fmp.
We conclude the paper with a discussion of related results and open problems.

(I) First, we discuss the decision problem of the logics under the scope of our
results.

� If L0 is any of K4:3, S4:3, or Log.Q; </ and L1 is either S5 or K, then
L0 �L1 is decidable (see [17], Wolter [6], [23]). The known proofs build
product models or quasimodels (two-dimensional structures of types) from
finitely many repeating small pieces (mosaics). Can mosaic-style proofs be
used to show that the corresponding commutators are decidable?

� The decidability of Log.¹.!;</º�Fr S5/ can also be shown by a mosaic-
style proof (see [6]). However, in [6, Theorem 6.29] it is wrongly stated
that this logic is the same as Log.!;</� S5. Unlike richer temporal lan-
guages, the unimodal language having a single ˙ (and its �) is not capable
of capturing the discreteness of a linear order. (Though, it can forbid the
existence of infinite ascending chains between any two points.) In particular,
Log.!;</ does have frames containing .! C 1;>/-type chains. Therefore,
the formula '�

1 used in the proof of Theorem 2 is Log.!;</�S5-satisfiable
by Lemma 7. However, '�

1 is not Log.¹.!;</º�Fr S5/-satisfiable, since, by
the proof of Lemma 6, any 2-frame with a linear first component satisfying
'�

1 must contain an .!C1;>/-type chain. So in fact it is not known whether
Log.!;</�S5 or ŒLog.!;</; S5� is decidable. Do they have the fmp? Also,
are GL:3�S5 and ŒGL:3;S5� decidable? Similar questions for K in place of
S5 are also open.

� If L is any bimodal logic such that ŒK4:3;Diff� � L and the product of an
infinite linear order and and infinite difference frame is a frame for L, then L
is undecidable (see Hampson and Kurucz [11]). Can this result be generalized
to the logics in Theorem 3? In particular, is ŒK4:3;Diff�lcom decidable?

� It is shown by Marx and Reynolds [16] and Reynolds and Zakharyaschev [18]
that if both L0 and L1 are determined by linear frames and have frames of
arbitrary size, then L0 �L1 is undecidable. These results are generalized in
[9]: if both L0 and L1 are determined by transitive frames and have frames
of arbitrarily large depth, then all logics between ŒL0; L1� and L0 �L1 are
undecidable.

(II) As the formulas in (1) of Section 1 are Sahlqvist formulas, the commutator
of two Sahlqvist axiomatizable logics is always Kripke complete. In general, this
is not the case. Several of the commutators under the scope of the undecidability
results in [9] are in fact …1

1-hard, even when both component logics are finitely
axiomatizable (e.g., ŒGL:3;K4� and ŒLog.!;</;K4� are such). As the commutator
of two finitely axiomatizable logics is clearly recursively enumerable, the Kripke
incompleteness of these commutators follows. It is not known, however, whether
any of the commutators ŒGL:3;S5�, ŒGL:3;K�, ŒLog.!;</; S5�, or ŒLog.!;</;K� is
Kripke complete.

(III) Apart from Theorem 3 above, not much is known about the fmp of bimodal
logics with a weakly connected component that are properly between fusions and
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commutators. Say, does the logic of two commuting (but not necessarily confluent)
K4:3-operators have the fmp?
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