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Indiscernible Extraction and Morley Sequences

Sebastien Vasey

Abstract We present a new proof of the existence of Morley sequences in sim-
ple theories. We avoid using the Erdős–Rado theorem and instead use only Ram-
sey’s theorem and compactness. The proof shows that the basic theory of forking
in simple theories can be developed using only principles from “ordinary math-
ematics,” answering a question of Grossberg, Iovino, and Lessmann, as well as a
question of Baldwin.

1 Introduction

Shelah [12, Lemma 9.3] has shown that, in a simple first-order theory T , Morley
sequences exist for every type. The proof proceeds by first building an independent
sequence of length Æ.2jT j/C for the given type and then using the Erdős–Rado theo-
rem together with Morley’s method to extract the desired indiscernibles.

After slightly improving on the length of the original independent sequence in
[5, Appendix A], Grossberg, Iovino, and Lessmann observed that, in contrast, most
of the theory of forking in a stable first-order theory T does not need the existence
of such “big” cardinals. These authors then asked whether the same could be said
about simple theories; in particular, they asked whether there was another way to
build Morley sequences there. Baldwin (see [2] and [3, Question 3.9]) similarly
asked1 whether the equivalence between forking and dividing in simple theories had
an alternative proof.

We answer those questions in the affirmative by showing how to extract a Morley
sequence from any infinite independent sequence. Our construction relies on a prop-
erty of forking we call dual finite character. We show that it holds in simple theories
and that the converse is also true. (The latter statement was noticed by Itay Kaplan.)
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2 Preliminaries

For the rest of this paper, fix a complete first-order theory T in a language L.T /
and work inside its monster model C. We write jT j for jL.T /j C @0. We denote by
Fml.L.T // the set of first-order formulas in the language L.T /. If A is a set, we say
a formula is over A if it has parameters from A. For a tuple Na in C and � a formula,
we write ˆ �Œ Na� instead of C ˆ �Œ Na�.

When I is a linearly ordered set, . Nai /i2I are tuples, and i 2 I , we write Na<i for
. Naj /j <i . It is often assumed without comment that all the Nai ’s have the same (finite)
arity.

We assume the reader is familiar with forking. We will use the combinatorial
definition stated, for example, in [12, Definition 1.2]. It turns out that our construc-
tion of Morley sequences does not rely on this exact definition, but only on abstract
properties of forking such as invariance, extension, and symmetry.

Recall also the definition of a Morley sequence.

Definition 1 Let I be a linearly ordered set. Let I WD h Nai j i 2 I i be a sequence
of finite tuples of the same arity. Let A � B be sets, and let p 2 S.B/ be a type that
does not fork over A. We say that I is an independent sequence for p over A if

1. for all i 2 I , Nai ˆ p;
2. for all i 2 I , tp. Nai=B Na<i / does not fork over A.

We say that I is a Morley sequence for p over A if
1. I is an independent sequence for p over A;
2. I is indiscernible over B .

3 Morley Sequences in Simple Theories

It is well known that independent sequences can be built by repeated use of the
extension property of forking. If the theory is stable, then the existence of Morley
sequences follows, because in such theories any sufficiently long sequence contains
indiscernibles. The latter fact is no longer true in general, and in fact, there are coun-
terexamples among both simple and dependent theories (see [13, p. 209], [9], resp.).
Thus, a different approach is needed in the unstable case. Recall from the Introduc-
tion that we do not want to use big cardinals, so Morley’s method cannot be used.
We can, however, make use of the following variation of the Ehrenfeucht–Mostowski
theorem.

Fact 2 ([14, Lemma 5.1.3]) Let A be a set, and let I be a linearly ordered set. Let
J WD h Naj j j < !i be a sequence of finite tuples of the same arity. Then there exists
a sequence I WD h Nbi j i 2 I i indiscernible over A such that, for any i0 < � � � < in�1

in I , for all finite q � tp. Nbi0 � � � Nbin�1
=A/, there exist j0 < � � � < jn�1 < ! so that

Naj0
� � � Najn�1

ˆ q.

Do we get a Morley sequence if we apply Fact 2 to an independent sequence? In
general, we see no reason why it should be true. However, we will see that it is true
if we assume the following local definability property of forking.

Definition 3 (Dual finite character) Forking is said to have dual finite character
(DFC) if, whenever tp. Nc=A Nb/ forks over A, there is a formula �. Nx; Ny/ over A such
that
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� ˆ �Œ Nc; Nb�, and
� ˆ �Œ Nc; Nb0� implies tp. Nc=A Nb0/ forks over A.

A variation of DFC appears as [11, Property A.70], but we have not found any other
explicit occurrence in the literature. Notice that DFC immediately implies something
stronger.

Proposition 4 Assume that forking has DFC. Assume that p WD tp. Nc=A Nb/ forks
over A, and �. Nx; Ny/ is as given by Definition 3. Then tp. Nc0=A/ D tp. Nc=A/ and
ˆ �Œ Nc0; Nb0� imply that tp. Nc0=A Nb0/ forks over A.

Proof Assume tp. Nc0=A/ D tp. Nc=A/. Let f be an automorphism of C fixing A
such that f . Nc0/ D Nc. Assume ˆ �Œ Nc0; Nb0�. By applying f , ˆ �Œ Nc; f . Nb0/�. Since
� witnesses DFC, tp. Nc=Af . Nb0// forks over A. By applying f �1 and by using the
invariance of forking, tp. Nc0=A Nb0/ forks over A.

Theorem 5 Assume that forking has DFC. Let A � B be sets. Let p 2 S.B/

be a type that does not fork over A. Let I be a linearly ordered set. Then there is a
Morley sequence I WD h Nbi j i 2 I i for p over A.

Proof By repeated use of the extension property of forking, build an independent
sequence J WD h Naj j j < !i for p over A. Let I WD h Nbi j i 2 I i be indiscernible
over B as described by Fact 2. We claim I is as required.

It is indiscernible over B , and for every i 2 I , every Nbi realizes p: if Nbi 6ˆ p, fix a
formula �. Nx; Nb/ 2 p so that ˆ :�Œ Nbi ; Nb�. By the defining property of I, there exists
j < ! so that ˆ :�Œ Naj ; Nb�, so Naj 6ˆ p, which is a contradiction.

It remains to see that, for every i 2 I , pi WD tp. Nbi=B Nb<i / does not fork over A.
Assume not, and fix i 2 I so that pi forks overA. Fix Nb 2 B and i0 < � � � < in�1 < i

such that p0
i WD tp. Nbi=A Nbi0 � � � Nbin�1

Nb/ forks over A. Fix �. Nx; Nbi0 � � � Nbin�1
Nb/ 2 p0

i ,
a formula over A witnessing DFC.

Find j0 < � � � < jn < ! such that ˆ �Œ Najn
; Naj0

� � � Najn�1
Nb�. Since it has already

been observed that tp. Najn
=A/ D tp. Nbi=A/ D p � A, Proposition 4 implies that

tp. Najn
=A Naj0

� � � Najn�1
Nb/ forks over A, contradicting the independence of J.

We now show that a simple theory has DFC. (This was essentially already observed
by Makkai [11].) Recall from [10, Theorem 2.4] that T is simple exactly when
forking has the symmetry property. Moreover, the methods of [1] show that the
equivalence can be proven without using Morley sequences. The key is [1, Theorem
3.6], which shows (without using Morley sequences) that if the D-rank is bounded,
then symmetry holds.

Lemma 6 Assume that T is simple. Then forking has DFC.

Proof Assume p WD tp. Nc=A Nb/ forks over A. By symmetry, q WD tp. Nb=A Nc/ forks
over A. Fix  . Ny; Nx/ over A such that  . Ny; Nc/ 2 q witnesses forking; that is, if
ˆ  Œ Nb0; Nc�, then tp. Nb0=A Nc/ forks over A.

Let �. Nx; Ny/ WD  . Ny; Nx/. Then �. Nx; Nb/ 2 p, and if ˆ �Œ Nc; Nb0�, then ˆ  Œ Nb0; Nc�.
Hence, tp. Nb0=A Nc/ forks over A, so by symmetry, tp. Nc=A Nb0/ forks over A. This shows
�. Nx; Ny/ witnesses DFC.

Corollary 7 (Existence of Morley sequences in simple theories) Assume that T is
simple. Let A � B be sets. Let p 2 S.B/ be a type that does not fork over A. Let I
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be a linearly ordered set. Then there is a Morley sequence I WD h Nbi j i 2 I i for p
over A.

Proof Combine Lemma 6 and Theorem 5.

We end by closing the loop in our study of DFC: Lemma 6 shows that simplicity
implies DFC, but it turns out that they are equivalent! This was pointed out by Itay
Kaplan [8] in a personal communication. Definition 9 and the statement that (2)
implies (3) implies (1) in Theorem 10 below are due to Kaplan, and I am grateful to
him for allowing me to include them here. The key is to observe that symmetry fails
very badly when the theory is not simple.

Fact 8 ([4, Lemma 6.16]) Assume that T is not simple. Then there are a modelM
and tuples Nb; Nc such that tp. Nb=M Nc/ is finitely satisfiable inM , but tp. Nc=M Nb/ divides
over M .

We are now ready to prove that forking has DFC exactly when the theory is simple.
In fact, we only need the following version of DFC.

Definition 9 Forking is said to have weak DFC if, whenever M is a model and
tp. Nc=M Nb/ divides over M , there is a formula �. Nx; Ny/ over M such that

� ˆ �Œ Nc; Nb�, and
� ˆ �Œ Nc; Nb0� implies tp. Nc=M Nb0/ is not finitely satisfiable in M .

Theorem 10 The following are equivalent.
1. T is simple.
2. Forking has DFC.
3. Forking has weak DFC.

Proof That (1) implies (2) is Lemma 6, and that (2) implies (3) is because finite
satisfiability implies nonforking. We show that (3) implies (1). Assume that T is not
simple. Fix M , Nb, and Nc as given by Fact 8. In particular, p WD tp. Nc=M Nb/ divides
over M . Let �. Nx; Ny/ be a formula over M such that ˆ �Œ Nc; Nb�. By assumption,
tp. Nb=M Nc/ is finitely satisfiable in M , so in particular there is Nb0 2 M such that
ˆ �Œ Nc; Nb0�. Thus, tp. Nc=M Nb0/ D tp. Nc=M/ must be finitely satisfiable overM ; hence,
�. Nx; Ny/ cannot witness weak DFC for p. Since � was arbitrary, this shows weak
DFC fails.

We end by pointing out that all the results of this paper could be formalized in a
weak fragment of ZFC, such as ZFC � Replacement � Power set C “for any set X
of size � jT j, P .P .X// exists.”2 To go further, it would be interesting to extend
Harnik’s [6], [7] work on the reverse mathematics of stability theory by finding the
exact proof-theoretic strength of the existence of Morley sequences.

Notes

1. Akito Tsuboi [15] has independently answered this question.

2. Formally, we have to work in a language containing a constant symbol standing for jT j.
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