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Ramsey Algebras and Formal Orderly Terms

Wen Chean Teh

Abstract Hindman’s theorem says that every finite coloring of the natural num-
bers has a monochromatic set of finite sums. A Ramsey algebra is a structure that
satisfies an analogue of Hindman’s theorem. In this paper, we present the basic
notions of Ramsey algebras by using terminology from mathematical logic. We
also present some results regarding classification of Ramsey algebras.

1 Introduction

The set of natural numbers ¹0; 1; 2; : : : º is denoted by !. Suppose that hxi ii2! is
a sequence of natural numbers. Let FS.hxi ii2!/ denote ¹

P
i2F xi j F 2 Pf .!/n

¹;º º, where Pf .!/ is the set of all finite subsets of !. Hindman’s theorem [8,
Theorem 3.1] says that, for every finite partition of the set of positive natural numbers
N D X0 [� X1 [� � � �[� XN , there exists a sequence hxi ii2! of positive natural numbers
such that, for some 0 � j � N , we have FS.hxi ii2!/ � Xj . In fact, such a sequence
hxi ii2! can be chosen to be a sum subsystem of any given sequence hyi ii2! of
natural numbers.

To us an algebra is a structure that consists of a set together with a collection of
operations on the set. A Ramsey algebra is a structure which possesses the property
analogous to that possessed by the semigroup .N; C/ as in Hindman’s theorem. The
definition of Ramsey algebra was suggested by Carlson and introduced in [14] by
using standard set-theoretic notation. In this paper, we will define Ramsey algebras
by using the notation and terminology commonly employed in mathematical logic.
We give a characterization of Ramsey algebras by using this alternative method.

In the remainder of this section, we give a historical account and motivation for
Ramsey algebras. In addition, we point out the connection between Ramsey algebras
and idempotent ultrafilters.
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In 1988 Carlson [1] presented an abstract version of Ellentuck’s theorem [4, The-
orem 9]. He called structures that have properties analogous to those of Ellentuck’s
space Ramsey spaces. The main objects of study there were certain spaces of infinite
sequences of multivariable words. In particular, the fact that the spaces of infinite
sequences of variable words—single variable—are Ramsey ([1, Theorem 2]), has
as corollaries many earlier Ramsey-theoretic results including Hindman’s theorem,
Ellentuck’s theorem, the dual Ellentuck theorem [2, Theorem 4.1], the Galvin–Prikry
theorem [6, Theorem 2], and the Hales–Jewett theorem [7, Theorem 1]. Since then,
there has been active study of Ramsey spaces (see [15]).

Carlson’s interesting spaces of infinite sequences of variable words can be associ-
ated to some algebras of variable words. Conversely, every algebra induces a space
of infinite sequences under the analogous Ellentuck topology. His abstract Ellen-
tuck’s theorem reduces the topological question of whether such a space is Ramsey
to a more combinatorial question. The notion of Ramsey algebras is formulated pre-
cisely to capture this combinatorial property, and hence, such a space is Ramsey if
and only if the associated algebra is Ramsey. This relation between Ramsey algebras
and Ramsey spaces is addressed in [14, Section 6].

Therefore, there are interesting Ramsey algebras of variable words which are not
semigroups. The collection of operations in each of these algebras is finite but can be
arbitrarily large depending on the size of the underlying finite alphabet. Because no
infinite integral domain—involving two associative binary operations—is a Ramsey
algebra [14], there appears to be a nice interplay among the operations in a Ram-
sey algebra of variable words. This fine interplay allows the construction of certain
idempotent ultrafilters, a key feature in Carlson’s proof. These ultrafilters in turn
allow the construction of sequences with certain homogeneity properties, showing
that the corresponding algebra of variable words is Ramsey. This approach general-
izes the Galvin–Glazer proof (see [3] or [10]) of Hindman’s theorem.

Hindman [9] showed that no ultrafilter on N is idempotent for addition and mul-
tiplication simultaneously. On the other hand, the ultrafilter constructed in Carlson’s
proof is idempotent for every operation in the corresponding Ramsey algebra of vari-
able words. Furthermore, this author [13] has shown that assuming Martin’s axiom
every nondegenerate Ramsey algebra has a nonprincipal strongly reductible ultra-
filter, analogous to the existence of strongly summable ultrafilters under Martin’s
axiom (see [11]). Strongly reductible ultrafilters are necessarily idempotent. Hence,
a positive answer to the following open problem, which is due to Carlson, is a gener-
alization of the existence of idempotent ultrafilters for a semigroup.

Question Can the existence of idempotent ultrafilters for a Ramsey algebra be
proven in ZFC (Zermelo–Fraenkel set theory with the axiom of choice)?

2 Preliminaries

Suppose that A is any set. The set of infinite sequences in A is denoted by !A. The
collection of subsets of A of size ! is denoted by ŒA�! . For n 2 !, let ŒA�n denote
the collection of subsets of A of size n.

An algebra is a pair .A; F /, where A is a nonempty set and F is a collection
of operations on A, none of which is nullary. If f is a binary operation on A, then
.A; ¹f º/ is commonly known as a groupoid, and we will write it as .A; f /.
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We do not assume the reader is familiar with the syntax and semantics of first-
order logic. Hence, we will introduce the logical notions that we will use in this
paper. As we do not need relation symbols or constant symbols in our languages, our
definitions will differ from the standard ones for our purposes. For interested readers,
a standard introductory textbook for logic is that of Enderton [5].

We assume that a fixed list of distinct symbols, called the syntactic variables,
v0; v1; v2; : : : , is given. The index of vi is i . Henceforth, we will simply refer to the
vi ’s as variables when it is understood.

To us a language L is a set L (disjoint from the set of syntactic variables) along
with a function � from L into the set of positive natural numbers. The elements of
the set L are referred to as the function symbols of the language L. The image of a
function symbol f of L under � is referred to as the arity of f . The set of terms of a
language L is the set of expressions that can be built up by finitely many applications
of the following rules:

1. vi is a term for every i 2 !;
2. if f is an n-ary function symbol of L, then the expression f t1t2 � � � tn is a

term whenever t1; t2; : : : ; tn are terms.
An L-algebra A is a pair .jAj; ¹f Aºf 2L/ such that jAj is a set, called the universe

of A, and such that, for each function symbol f of L, if f is n-ary, then f A is an
n-ary operation on jAj. Suppose that A is an L-algebra. An assignment is (identified
with) an infinite sequence in jAj. The interpretation of a term t under A via the
assignment Ea, denoted by tAŒEa�, is defined inductively as follows:

1. vi
AŒEa� D Ea.i/ for each variable vi ;

2. if f is an n-ary function symbol of L and t1; : : : ; tn are terms, then

.f t1 � � � tn/AŒEa� D f A
�
tA
1 ŒEa�; : : : ; tA

n ŒEa�
�
:

Note that tAŒEa� depends only on the values of Ea.i/ for i such that vi appears
in t . Suppose that the variables appearing in t are exactly vi1 ; : : : ; vip . We will write
tAŒvi1 ; : : : ; vip j x1; : : : ; xp� to mean tAŒEa� for some (or any) Ea such that Ea.ik/ D xk

for 1 � k � p.
Suppose that A is an algebra .A; F /. Note that A can be regarded as an L-algebra

for some language L. More explicitly, for each f 2 F let f denote ¹f º. Note that
f and g are distinct whenever f and g are distinct. Let LF denote the language
with ¹ f j f 2 F º being the collection of function symbols such that f has the
same arity as f whenever f 2 F . We will identify A with an LF -algebra B with
universe A such that f B

D f for every function symbol f of LF .

3 Orderly Terms

In this section, we define orderly terms and Ramsey algebras.

Definition 3.1 Suppose that .A; F / is an algebra. An operation f on A is an
orderly composition of F if and only if there exist g; h1; : : : ; hn 2 F such that
f . Nx1; : : : ; Nxn/ D g.h1. Nx1/; : : : ; hn. Nxn//.1 We say that F is closed under orderly
composition if and only if f 2 F whenever f is an orderly composition of F .
The collection of orderly terms over F is the smallest collection of operations on
A that contains F and the identity function on A and that is closed under orderly
composition.
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Equivalently, the collection of orderly terms over F is the collection of operations
on A that can be generated by finitely many applications of the following rules:

1. the identity function on A is an orderly term;
2. every operation in F is an orderly term;
3. if f is an operation on A given by f . Nx1; : : : ; Nxn/ D g.h1. Nx1/; : : : ; hn. Nxn/

for some g 2 F and some orderly terms h1; : : : ; hn, then f is an orderly
term.

Remark 3.2 The definition of orderly composition is due to Carlson [1]. In fact,
Carlson’s definition is more general because it is defined for any heterogeneous alge-
bra, that is, an indexed collection of distinct sets with a collection of operations on it.

Before introducing the syntactical version of orderly terms, we try to shed some light
on orderly composition. Fix a finite alphabet/set L and a distinct variable v not
contained in L. A variable word of L is a finite sequence w of elements of L [ ¹vº

such that the variable v occurs at least once in w. Denote the set of variable words of
L by W . Assume that w 2 W and a 2 L [ ¹vº. Then w.a/ is the result of replacing
every occurrence of v in w by a. In particular, w.v/ D w. A particular Ramsey
algebra in [1] has the form .W; F / for some F , where an n-ary operation f on W is
an orderly term over F if and only if there exist a1; : : : ; an 2 L[¹vº (with v among
the list of ai ’s) such that

f .s1; : : : ; sn/ D s1.a1/ � � � � � sn.an/:

Notice that f is composed from the concatenation operation � and the unary func-
tions w ! w.a/ for a 2 L in some orderly fashion.

The general notion of idempotentness of ultrafilters is not needed in this paper.
Nevertheless, it is worth pointing out that idempotentness of ultrafilters is preserved
under orderly composition. In other words, if an ultrafilter is idempotent for a col-
lection of operations F , then it is idempotent for the collection of orderly terms over
F (see [1, Lemma 3.7]).

Definition 3.3 Suppose that L is a language. An orderly term of L is a term of
L such that the indices of the variables appearing in it from left to right are strictly
increasing. The set of orderly terms of L is denoted by OT.L/.

The next proposition justifies that the two usages of orderly terms are compatible.
Before that, we need a definition.

Definition 3.4 Suppose that A is an L-algebra and that t is an orderly term of L

such that the variables appearing in t from left to right are exactly vi1 ; : : : ; vip . Let 't

denote the p-ary operation on jAj given by 't .x1; : : : ; xp/ D tAŒvi1 ; : : : ; vip j x1;

: : : ; xp� for all x1; : : : ; xp 2 jAj.

Proposition 3.5 Suppose that A is an algebra .A; F /, and suppose that f is an
operation on A. The following are equivalent.

1. f is a p-ary orderly term over F .
2. f D 't for some orderly term t of LF such that p many variables appear

in t .
3. For every list of p distinct variables vi1 ; vi2 ; : : : ; vip , there exists an

orderly term t of LF such that the variables appearing in t are exactly
vi1 ; vi2 ; : : : ; vip and f D 't .
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Proof (3 ) 2) This is immediate.
(2 ) 1) It suffices to show that 't is an orderly term over F whenever

t 2 OT.LF /. We prove this by induction on the complexity of the orderly term t .
Suppose that t is a variable. Then 't is the identity function on A and, hence,
trivially is an orderly term over F . Suppose that t D gt1 � � � tn for some n-ary
(possibly unary) function symbol g of LF and some orderly terms t1; : : : ; tn of LF

such that t1 < � � � < tn. By the induction hypothesis, 'ti is an orderly term over
F for each 1 � i � n. Suppose that, for each 1 � i � n, we have a list Nvi of
the variables appearing in ti from left to right. Clearly, Nv1; : : : ; Nvn is a list of the
variables appearing in t from left to right. Thus, we have

't . Nx1; : : : ; Nxn/ D tAŒ Nv1; : : : ; Nvn j Nx1; : : : ; Nxn�

D gA
�
tA
1 Œ Nv1 j Nx1�; : : : ; tA

n Œ Nvn j Nxn�
�

D g
�
't1. Nx1/; : : : ; 'tn. Nxn/

�
:

Therefore, 't is an orderly term over F , since g 2 F and the collection of orderly
terms is closed under orderly composition.

(1 ) 3) We prove this by induction on the generation of orderly terms over F .
If f is the identity function on A, then take t to be the variable vi1 . Likewise,
if f is a p-ary operation in F , then we can take t to be f vi1 � � � vip . Now, sup-
pose that f . Nx1; : : : ; Nxn/ D g.h1. Nx1/; : : : ; hn. Nxn// for some g 2 F and some
orderly terms h1; : : : ; hn over F . Suppose that Nv1; : : : ; Nvn is a list of variables
with increasing indices such that for each 1 � i � n the length of Nvi equals the
arity of hi . By the induction hypothesis, for each 1 � i � n we can choose
ti 2 OT.LF / such that hi . Nxi / D 'ti . Nxi / D ti

AŒ Nvi j Nxi �, and Nvi is exactly
the list of variables appearing in ti from left to right. Take t to be gt1 � � � tn.
It is clear that t is an orderly term of LF as t1 < � � � < tn. Furthermore,
f . Nx1; : : : ; Nxn/ D gA.tA

1 Œ Nv1 j Nx1 �; : : : ; tA
n Œ Nvn j Nxn �/ D tAŒ Nv1; : : : ; Nvn j Nx1; : : : ; Nxn�.

Therefore, f D 't .

Definition 3.6 Suppose that t , t 0 are orderly terms of L. Define t < t 0 to mean
that the index of the last variable in t is less than the index of the first variable in t 0.

Definition 3.7 Suppose that A is an algebra .A; F /, and suppose that Ea, Eb are
infinite sequences in A. We say that Ea is a reduction of Eb (with respect to F ), and
write Ea �F

Eb if and only if there exists an infinite sequence Et in OT.LF / that is
<-increasing such that Ea.k/ D Et .k/AŒEb� for all k 2 !.

Remark 3.8 Definition 3.7 is a rephrase, using the syntactical orderly terms, of
the definition of a reduction that appears in [14, Definition 3.2], which itself is a
special case of [1, Definition 4.11].

It is easy to check that �F is a reflexive and transitive relation on !A.
Our definition of �F is equivalent to a special case of the one given in [1, Defi-

nition 4.11], where the collection of operations contains all projections.

Definition 3.9 Suppose that A is an algebra .A; F /, and suppose that Ea is an
infinite sequence in A. The set FRF .Ea/ of finite reductions of Ea (with respect to F )
is defined by

FRF .Ea/ D
®

tAŒEa�
ˇ̌

t 2 OT.LF /
¯
:
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Definition 3.10 Suppose that .A; F / is an algebra. We say that .A; F / is Ramsey
if and only if, for every Ea 2 !A and every X � A, there exists Eb �F Ea such that Eb

is homogeneous for X (with respect to F ); that is, FRF .Eb/ is either contained in or
disjoint from X .

When F D ¹f º, we will write �f for �¹f º, Lf for L¹f º, and FRf .Ea/ for
FR¹f º.Ea/.

The following (see [12, Part V, Section 2]) is a consequence of Hindman’s theo-
rem.

Theorem 3.11 Every semigroup is a Ramsey algebra. Hence, every group is a
Ramsey algebra.

4 Main Results

Definition 4.1 Suppose that A is a groupoid .A; f /, and suppose that Ea 2 !A.
We say that f is orderly associative on Ea if and only if, for every t1; t2; t3 2 OT.Lf /

such that t1 < t2 < t3, we have

.f f t1t2t3/AŒEa� D .f t1f t2t3/AŒEa�:

Lemma 4.2 Suppose that A is a groupoid .A; f /, that Ea 2 !A, and that f is
orderly associative on Ea. Suppose that s; t 2 OT.Lf /. If the same variables appear
in both terms, then sAŒEa� D tAŒEa�.

Proof We proceed by induction on the number of variables appearing in t . The
result is trivial if a single variable appears in t because then both s and t are equal
to the variable itself. Suppose that the variables appearing in t are exactly vi0 ; vi1 ;

: : : ; vin , where i0 < i1 < � � � < in. It suffices to show that tAŒEa� D .f vi0 t 0/AŒEa�

for some orderly term t 0 (over Lf )2 such that the variables appearing in t 0 are
exactly vi1 ; vi2 ; : : : ; vin . This is sufficient because .f vi0 t 0/AŒEa� D f .Ea.i0/; t 0AŒEa�/

and, by the induction hypothesis, t 0AŒEa� is independent of t 0 provided that the
variables appearing in t 0 are exactly vi1 ; vi2 ; : : : ; vin . Now, t must be equal to
f t1t2 for some orderly terms t1 and t2. If t1 is vi0 , then we can take t 0 to be t2.
Otherwise, by the induction hypothesis, tA

1 ŒEa� D .f vi0 t 0
1/AŒEa� for every orderly

term t 0
1 such that the variables appearing in t 0

1 are exactly those appearing in t1,
excluding vi0 . Choose one such t 0

1. Since f is orderly associative on Ea, we
have tAŒEa� D f .tA

1 ŒEa�; tA
2 ŒEa�/ D f ..f vi0 t 0

1/AŒEa�; tA
2 ŒEa�/ D .f f vi0 t 0

1t2/AŒEa� D

.f vi0f t 0
1t2/AŒEa�. We can take t 0 to be f t 0

1t2.

In other words, say, the groupoid operation is denoted by multiplication, orderly asso-
ciativity on ha0; a1; a2; : : : i implies that the product ai0ai1 � � � ain is independent of
the bracketing whenever i0 < i1 < � � � < in.

The property that f being orderly associative on a sequence ha0; a1; a2; : : : i

is not equivalent to the property that f .f .ai ; aj /; ak/ D f .ai ; f .aj ; ak// when-
ever i < j < k. Here is a simple example. Suppose thatf .1; 1/ D 2 and
f .1; 2/ D f .2; 1/ D f .2; 2/ D 1. Then f .f .1; 1/; 1/ D f .1; f .1; 1//. Never-
theless, f is not orderly associative on h1; 1; 1; : : : i because f .f .f .1; 1/; 1/; 1/ ¤

f .f .1; 1/; f .1; 1//.
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Theorem 4.3 Suppose that A is a groupoid .A; f /, that Ea 2 !A, and that f is
orderly associative on Ea. Then for every X � A, there exists Eb �f Ea such that Eb is
homogeneous for X .
Proof Suppose that Ea D hai ii2! is as stated. Let T W Pf .!/n¹;º ! A be the func-
tion defined by T .¹i0; i1; : : : ; inº/ D f .ai0 ; f .ai1 ; � � � f .ain�1

; ain/ � � � //, where
i0 < i1 < � � � < in, with the understanding that T .¹i0º/ D ai0 . Fix X � A.
Since .Pf .!/n¹;º; [/ is a semigroup, it is a Ramsey algebra by Theorem 3.11.
Hence, we can choose a reduction hSi ii2! of h¹0º; ¹1º; ¹2º; : : : i with respect to [

that is homogeneous for T �1ŒX�. Note that max Si < min Sj whenever i < j . Take
Eb.i/ D T .Si / for all i 2 !. It is easy to see that Eb �f Ea. The homogeneity of
Eb for X follows immediately from the homogeneity of hSi ii2! for T �1ŒX� and the
following claim, since it implies that FRf .Eb/ � T ŒFR[.hSi ii2!/�.

Claim Suppose that t is an orderly term of the language Lf . Then tAŒEb� D T .S/,
where S D

S
¹ Si j vi appears in t º.

We will prove the claim inductively on the complexity of the orderly term t .
The conclusion holds if t is a variable, say vi , as vi

AŒEb� D Eb.i/ D T .Si /.
Suppose that t is equal to f t1t2 for some orderly terms t1 and t2 such that
t1 < t2. By the induction hypothesis, tA

1 ŒEb� D T .S 0/ and tA
2 ŒEb� D T .S 00/,

where S 0 D
S

¹ Si j vi appears in t1 º and S 00 D
S

¹ Si j vi appears in t2 º.
Since t1 < t2, by the choice of hSi ii2! , we have max S 0 < min S 00. Now,
tAŒEb� D .f t1t2/AŒEb� D f .tA

1 ŒEb�; tA
2 ŒEb�/ D f .T .S 0/; T .S 00//. Since f is orderly

associative on Ea and max S 0 < min S 00, by Lemma 4.2, we have f .T .S 0/; T .S 00// D

T .S 0 [ S 00/. It remains to see that S 0 [ S 00 D
S

¹ Si j vi appears in t º.

Corollary 4.4 Suppose that .A; f / is a groupoid. Suppose that, for every Ea 2 !A,
there exists Eb �f Ea such that f is orderly associative on Eb. Then .A; f / is a Ramsey
algebra.
Proof This follows from Theorem 4.3 and the transitivity of �f .

Example 4.5 Suppose that C � !2. Let

f .x; y/ D

´
x; .x; y/ 2 C;

y; .x; y/ 2 !2nC:

The groupoid .!; f / is trivially Ramsey. To see this, suppose that X � ! and
Ea 2 !!. By the pigeonhole principle, choose a subsequence Eb of Ea that is either a
sequence in X or a sequence in !nX . It follows that Eb is a reduction of Ea homoge-
neous for X because FRf .Eb/ D ¹ Eb.i/ j i 2 ! º.

Alternatively, .!; f / is Ramsey due to Corollary 4.4. Suppose that Ea D hai ii2! 2

!!. We will find Eb �f Ea such that f is orderly associative on Eb. Consider the
coloring cW Œ!�2 ! ¹0; 1º defined by

c
�
¹i; j º

�
D

´
0; .ai ; aj / 2 C;

1; .ai ; aj / 2 !2nC;

where i < j . By the Ramsey theorem for pairs, we can choose H 2 Œ!�! such
that ŒH �2 is monochromatic. Suppose that i0 < i1 < i2 < � � � is an increasing
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enumeration of the elements of H . Let Eb.k/ D aik for all k 2 !. Then Eb, being a
subsequence of Ea, is a reduction of Ea. It remains to show that f is orderly associative
on Eb. We may assume ŒH �2 is colored 0; that is, c.¹i; j º/ D 0 whenever i; j 2 H

such that i < j . Then it is not hard to prove by induction on the complexity of
the orderly term that if vk is the first variable appearing in an orderly term t , then
tAŒEb� D Eb.k/. Thus, f is orderly associative on Eb.

Corollary 4.4 implies and Example 4.5 illustrates that a nonassociative groupoid can
be a Ramsey algebra due to orderly associativity on sequences. Hence, the class of
Ramsey algebras would not be more appealing than the class of semigroups if the
converse of Corollary 4.4 holds. This is not the case, as our next example shows.

Example 4.6 Let f W !2 � !2 ! !2 be defined by f ..x1; y1/; .x2; y2// D .y2;

x1/. First, we show that .!2; f / is a Ramsey algebra. Fix a sequence h.ai ; bi /ii2!

in !2 and a subset X of !2. Consider the coloring cW Œ!�2 ! ¹0; 1º defined by

c
�
¹i; j º

�
D

´
0; .aj ; ai / 2 X;

1; .aj ; ai / 2 !2nX;

where i < j . By the Ramsey theorem for pairs, choose H 2 Œ!�! such that ŒH �2

is monochromatic. Suppose that i0 < i1 < i2 < � � � is an increasing enumera-
tion of the elements of H . We may assume that ikC1 � ik � 2. We claim that
h.ai2kC1

; ai2k
/ik2! is a reduction of h.ai ; bi /ii2! that is homogeneous for X .

To show homogeneity, we may assume that ŒH �2 is colored 0. It is easy to ver-
ify that every finite reduction of h.ai2kC1

; ai2k
/ik2! is of the form .aij ; aij 0 /, where

j > j 0. Therefore, by the color of ŒH �2, we have FRf .h.ai2kC1
; ai2k

/ik2!/ � X .
Meanwhile, since f ..x1; y1/; f ..x2; y2/; .x3; y3/// D .x2; x1/, it is not hard to
show that h.ai2kC1

; ai2k
/ik2! is a reduction of h.ai ; bi /ii2! , provided the set of ik’s

is sparse enough. This is achieved by our convenient assumption that ikC1 � ik � 2.
Suppose that h.ai ; bi /ii2! is a sequence in !2 such that b0 < a0 < b1 < a1 <

b2 < a2 < � � � . We will show that f is not orderly associative on any reduction
h.ci ; di /ii2! of h.ai ; bi /ii2! . Suppose that h.ci ; di /ii2! is such a reduction. Then
it is not hard to see that d0 < c0 < d1 < c1 < d2 < c2 < � � � . Therefore,
.d3; d2/ D f .f ..c1; d1/; .c2; d2//; .c3; d3// ¤ f ..c1; d1/; f ..c2; d2/; .c3; d3/// D

.c2; c1/.

Definition 4.7 Suppose that A is an algebra .A; F /, that Ea 2 !A, and that X � A.
We say that Ea is prehomogeneous for X (with respect to F ) if and only if, for every
t1; t2 2 OT.LF / such that the same variables appear in both orderly terms, we have

tA
1 ŒEa� 2 X if and only if tA

2 ŒEa� 2 X:

If f is orderly associative on Ea, then for each X � A the sequence Ea is clearly
prehomogeneous for X . As far as finding homogeneous sequences is concerned,
the following theorem and its corollary suggest that prehomogeneity is an optimal
generalization of orderly associativity.

Theorem 4.8 Suppose that A is an algebra .A; F / such that F contains a binary
operation on A. Suppose that Ea 2 !A and X � A such that Ea is prehomogeneous
for X . Then there exists Eb �F Ea such that Eb is homogeneous for X .
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Proof The proof is similar to that of Theorem 4.3. Fix Ea 2 !A and X � A.
Consider a subset Y of Pf .!/n¹;º defined as follows: for i0 < i1 < � � � < im, the
set ¹i0; i1; : : : ; imº is in Y if and only if tAŒEa� 2 X for every orderly term t such that
the variables appearing in t are exactly vi0 ; vi1 ; : : : ; vim . Since .Pf .!/n¹;º; [/ is
a semigroup, it is a Ramsey algebra. Hence, we can choose a reduction hSi ii2! of
h¹0º; ¹1º; ¹2º; : : : i with respect to [ that is homogeneous for Y . For each i 2 !,
choose an orderly term si such that the set of indices of the variables appearing in
si is exactly Si . Such si exists since there is a binary function symbol in LF . Take
Eb.i/ D sA

i ŒEa� for all i 2 !. It is clear that Eb �f Ea since s0 < s1 < s2 < � � � .

Claim Suppose that t is an orderly term of LF . Then tAŒEb� D t 0AŒEa�, for
some orderly term t 0 such that the set of indices of the variables appearing in t 0

is
S

¹ Si j vi appears in t º.

We will prove the claim inductively on the complexity of the orderly term t .
The conclusion holds if t is a variable, say vi , as vi

AŒEb� D Eb.i/ D sA
i ŒEa�.

Suppose that t D f t1 � � � tn for some n-ary function symbol f of LF and
some orderly terms t1; : : : ; tn of LF such that t1 < � � � < tn. By the induc-
tion hypothesis, for each 1 � j � n, we have tA

j ŒEb� D t 0
j

A
ŒEa� for some

orderly term t 0
j such that the set of indices of the variables appearing in t 0

j is
S .j / D

S
¹ Si j vi appears in tj º. Since t1 < � � � < tn, by the choice of hSi ii2! ,

we have max S .j1/ < min S .j2/ whenever 1 � j1 < j2 � n and so t 0
1 < � � � < t 0

n.
Now, tAŒEb� D .f t1 � � � tn/AŒEb� D f .tA

1 ŒEb�; : : : ; tA
n ŒEb�/ D f .t 0

1
A

ŒEa�; : : : ; t 0
n

A
ŒEa�/ D

.f t 0
1 � � � t 0

n/AŒEa�. We can take t 0 to be f t 0
1 � � � t 0

n. It remains to observe that the set
of indices of the variables appearing in t 0 is S .1/ [ � � � [ S .n/, which is equal toS

¹ Si j vi appears in t º. The claim is proved.
Finally, to see that Eb is homogeneous for X , we may assume FR[.hSi ii2!/ is

disjoint from Y . (The other case is similar and easier.) We will show that FRF .Eb/

is disjoint from X . Suppose that t is an orderly term. By the claim, tAŒEb� D t 0AŒEa�

for some orderly term t 0 such that the set of indices of the variables appearing in t 0 is
S D

S
¹ Si j vi appears in t º. Clearly, S is in FR[.hSi ii2!/ and hence is not in Y .

Therefore, t 00AŒEa� … X for some orderly term t 00 such that the set of indices of the
variables appearing in t 00 is exactly S . Since Ea is prehomogeneous for X , we know
t 0AŒEa� 2 X if and only if t 00AŒEa� 2 X . It follows that tAŒEb� … X as required.

Of course, Theorem 4.3 is a corollary of Theorem 4.8.

Corollary 4.9 Suppose that .A; F / is an algebra such that F contains a binary
operation on A. Then .A; F / is Ramsey if and only if, for every Ea 2 !A and every
X � A, there exists Eb �F Ea such that Eb is prehomogeneous for X .

Proof The forward direction follows from the definition of a Ramsey algebra and
the simple fact that a homogeneous sequence is prehomogeneous. The backward
direction is obtained by Theorem 4.8 and the transitivity of �F .

Remark 4.10 The assumption that F contains a binary operation on A in Corol-
lary 4.9 is necessary. The algebra .!; C3/, where C3.x; y; z/ D x C y C z, is not
Ramsey, although for every X � !, every infinite sequence Ea of natural numbers is
clearly prehomogeneous for X .
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5 Conclusion

Certainly, one would aim for a complete and natural classification of Ramsey alge-
bras. Our characterization of Ramsey algebras in this paper is a step forward toward
that goal. A further direction for research is to look into the construction of new
Ramsey algebras from the known ones. In particular, we hope to address whether the
Cartesian product of two Ramsey groupoids is Ramsey.

Notes

1. For notational convenience, we will use a symbol with a bar over it to indicate a list.

2. Henceforth, to increase readability, the underlying language will be omitted when it is
understood from the context.
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