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Functional Dependence in Strategic Games

Kristine Harjes and Pavel Naumov

Abstract The article studies properties of functional dependencies between
strategies of players in Nash equilibria of multiplayer strategic games. The main
focus is on the properties of functional dependencies in the context of a fixed
dependency graph for payoff functions. A logical system describing properties
of functional dependence for any given graph is proposed and is proven to be
complete.

1 Introduction

Functional dependence. In this article we study dependency between players’ strate-
gies in Nash equilibria. For example, the coordination game described by Table 1
has two Nash equilibria: .a1; b1/ and .a2; b2/. Knowing the strategy of player a in a
Nash equilibrium of this game, one can predict the strategy of player b. We say that
player a functionally determines player b and denote this by a B b.

Note that, in the case of the coordination game, we also have b B a. However, for
the game described by Table 2, the statement a B b is true, but b B a is false.

The main focus of this article is functional dependence in multiplayer games.
For example, consider a “parity” game with three players a, b, c. Each of the players
picks 0 or 1, and all players are rewarded if the sum of all three numbers is even. This
game has four different Nash equilibria: .0; 0; 0/, .0; 1; 1/, .1; 0; 1/, and .1; 1; 0/. It
is easy to see that knowledge of any two players’ strategies in a Nash equilibrium

Table 1 Coordination game.

b1 b2

a1 1; 1 0; 0

a2 0; 0 1; 1
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Table 2 Strategic game.

b1 b2

a1 1; 1 0; 0

a2 0; 0 1; 1

a3 1; 1 0; 0

Figure 1 Dependency graph �1.

reveals the third. Thus, using our notation, for example, a; b B c. At the same time,
:.a B c/.

As another example, consider a game between three players in which each player
picks 0 or 1, and all players are rewarded if they have chosen the same strategy.
This game has only two Nash equilibria: .0; 0; 0/ and .1; 1; 1/. Thus, knowledge of
the strategy of player a in a Nash equilibrium reveals the strategies of the two other
players. We write this as a B b; c.

Functional dependence as a relation has been studied previously, especially in
the context of database theory. Armstrong [1] presented the following sound and
complete axiomatization of this relation:

(1) Reflexivity: A B B if B � A,
(2) Augmentation: A B B ! A;C B B;C ,
(3) Transitivity: A B B ! .B B C ! A B C/,

where here and everywhere belowA;B denotes the union of setsA andB . The above
axioms are known in database literature as Armstrong’s axioms (see Garcia-Molina,
Ullman, and Widom [5]). Beeri, Fagin, and Howard [2] suggested a variation of
Armstrong’s axioms that describe properties of multivalued dependence.

Dependency graphs. As a side result, we will show that the logical system formed
by the Armstrong axioms is sound and complete with respect to the strategic game
semantics. Our main result, however, is a sound and complete axiomatic system for
the relation B in games with a given dependency graph.

Dependency graphs (see Kearns, Littman, and Singh [7], [8] and Elkind, Gold-
berg, and Goldberg [3], [4]) put restrictions on the payoff functions that can be used
in the game. For example, dependency graph �1, depicted in Figure 1, specifies that
the payoff function of player a can only depend on the strategy of player b in addition
to the strategy of player a himself. The payoff function for player b can only depend
on the strategies of players a and c in addition to the strategy of player b himself,
and so on.

An example of a game over graph �1 is a game between players a, b, c, and d
in which these players choose real numbers as their strategies. The payoff function
of players a and d is the constant 0. Player b is rewarded if his value is equal to the
mean of the values of players a and c. Player c is rewarded if his value is equal to
the mean of the values of players b and d . Thus, Nash equilibria of this game are all
quadruples .a; b; c; d/ such that 2b D a C c and 2c D b C d . Hence, in this game
a; b B c; d and a; c B b; d , but :.a B b/.
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Note that although the statement a; b B c; d is true for the game described above,
it is not true for many other games with the same dependency graph �1. In this article
we study properties of functional dependence that are common to all games with the
same dependency graph. An example of such a statement for the graph �1, as we
will show in Proposition 1, is a B d ! b; c B d .

Informally, this property is true for any game over graph �1 because any depen-
dencies between players a and d must be established through players b and c. This
intuitive approach, however, does not always lead to the right conclusion. For exam-
ple, in graph �2 depicted in Figure 2, players b and c also separate players a and d .
Thus, according to the same intuition, the statement a B d ! b; c B d must also be
true for any game over graph �2. This, however, is not true. Consider, for example,
a game in which all four players have three strategies: rock, paper, and scissors. The
payoff function of players a and d is the constant 0. If a and d pick the same strategy,
then neither b nor c is paid. If players a and d pick different strategies, then players b
and c are paid according to the rules of the standard rock-paper-scissors game. In this
game, Nash equilibrium is only possible if a and d pick the same strategy. Hence,
a B d . At the same time, in any such equilibria b and c can have any possible com-
bination of values. Thus, :.b; c B d/. Therefore, the statement a B d ! b; c B d

is not true for this game.
As our final example, consider the graph �3 depicted in Figure 3. We will show

that a B c ! b B c is not true for at least one game over graph �3. Indeed, consider
the game in which players a; b, and c use real numbers as possible strategies. Players
a and c have a constant payoff of 0. The payoff of player b is equal to 0 if players a
and c choose the same real number. Otherwise, it is equal to the number chosen by
player b himself. Note that, in any Nash equilibrium of this game, the strategies of
players a and c are equal. Therefore, a B c, but :.b B c/.

The main result of this article is a sound and complete axiomatization of all
properties of functional dependence for any given dependency graph. This result
is closely related to work by More and Naumov [9] on functional dependence of
secrets over hypergraphs. However, the logical system presented in this article is
significantly different from theirs. Another form of dependency between players in
strategic games is rationally functional dependence introduced and completely ax-
iomatized by Naumov and Nicholls [10]. A set of players A rationally determines a

Figure 2 Dependency graph �2.

Figure 3 Dependency graph �3.
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set of players B if, for each public commitment of all players in set A to a particular
choice of strategies, players in set B have only one rational choice of strategies. As
shown in [10], neither the Augmentation axiom nor the Transitivity axiom is valid
for rationally functional dependence, which makes it a significantly different rela-
tion from the one studied in this article. A preliminary version of the current work
(without proof of completeness) appeared as [6].

The counterexample that we have constructed for the game in Figure 3 signifi-
cantly relies on the fact that player b has infinitely many strategies. However, in this
article we show completeness with respect to the semantics of finite games, making
the result stronger.

2 Syntax and Semantics

The graphs that we consider in this article contain no loops, multiple edges, or di-
rected edges.

Definition 1 For any set of vertices U of a graph .V;E/, the border B.U / is the
set

¹v 2 U j .v; w/ 2 E for some w 2 V n U º:

A cut .U;W / of a graph .V;E/ is a partition U tW of the set V . For any vertex v
in a graph, by Adj.v/ we mean the set of all vertices adjacent to v. By AdjC.v/ we
mean the set Adj.v/ [ ¹vº.

Definition 2 For any graph � D .V;E/, by ˆ.�/ we mean the minimal set of
formulas such that (i) ? 2 ˆ.�/, (ii) A B B 2 ˆ.�/ for each A � V and B � V ,
and (iii) � !  2 ˆ.�/ for each �; 2 ˆ.�/.

Definition 3 By a game over graph � D .V;E/ we mean any strategic game
G D .V; ¹Svºv2V ; ¹uvºv2V / such that (i) the finite set of players in the game is the
set of vertices V , (ii) the finite set of strategies Sv of any player v is an arbitrary set,
and (iii) the payoff function uv of any player v only depends on the strategies of the
players in AdjC.v/.

By NE.G/we denote the set of all Nash equilibria in the gameG. The next definition
is the core definition of this article. The second item in the list below gives a precise
meaning of the functional dependence predicate A B B .

Definition 4 For any game G over graph � and any � 2 ˆ.�/, we define the
binary relation G � � as follows: (i) G ² ?, (ii) G � A B B if s DA t implies
s DB t for each s; t 2 NE.G/, and (iii) G �  1 !  2 if G ²  1 or G �  2,
where here and everywhere below hsviv2V DX htviv2V means that sx D tx for each
x 2 X .

3 Axioms

The following is the set of axioms of our logical system. It consists of the original
Armstrong axioms and an additional Contiguity axiom that captures properties of
functional dependence specific to a given graph � .

(1) Reflexivity: A B B , where B � A.
(2) Augmentation: A B B ! A;C B B;C .
(3) Transitivity: A B B ! .B B C ! A B C/.
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(4) Contiguity: A;B B C ! B.U /;B.W /; B B C , where .U;W / is a cut of
the graph such that A � U and C � W .

Note that the Contiguity axiom, unlike the Gateway axiom (see [9]), effectively re-
quires “double layer” divider B.U /;B.W / between sets A and C . This is because,
in our setting, values are assigned to the vertices and not to the edges of the graph.

We write `� � if � 2 ˆ.�/ is provable from the combination of the axioms above
and propositional tautologies in the languageˆ.�/ using the modus ponens inference
rule. We write X `� � if � is provable using the additional set of axioms X . We
often omit the parameter � when its value is clear from the context.

4 Examples

In this section we give examples of proofs in our formal system. The soundness and
the completeness of this system will be shown in the next two sections.

Proposition 1 `�1
a B d ! b; c B d , where �1 is the graph depicted in

Figure 1.

Proof Consider cut .U;W / of the graph �1 such that U D ¹a; bº andW D ¹c; dº.
Thus, B.U / D ¹bº and B.W / D ¹cº. Therefore, by the Contiguity axiom,
a B d ! b; c B d .

Proposition 2 `�1
a; c B d ! .d; b B a ! b; c B a; d/, where �1 is the

graph depicted in Figure 1.

Proof Assume that a; c B d and d; b B a. Consider cut .U;W / of the graph �1

such that U D ¹a; bº and W D ¹c; dº. Thus, B.U / D ¹bº and B.W / D ¹cº.
Therefore, by the Contiguity axiom with A D ¹aº, B D ¹cº, and C D ¹dº,
a; c B d ! b; c B d . Thus,

b; c B d (1)
by the first assumption. Similarly, using the second assumption, b; c B a. Hence, by
the Augmentation axiom,

b; c B a; b; c: (2)
Thus, from statement (1) by the Augmentation axiom, a; b; c B a; d . Finally, by
statement (2) and the Transitivity axiom, b; c B a; d .

Proposition 3 `�4
a; c B e ! b; c; d B e, where �4 is the graph depicted in

Figure 4.

Proof Consider cut .U;W / of the graph �4 such that U D ¹a; b; cº and
W D ¹d; eº. Thus, B.U / D ¹b; cº and B.W / D ¹dº. Therefore, a; c B e ! b;

c; d B e by the Contiguity axiom with A D ¹aº, B D ¹cº, and C D ¹eº.

Figure 4 Dependency graph �4.
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Figure 5 Dependency graph �5.

Proposition 4 `�5
a B b ! .b B c ! .c B a ! d; e; f B a; b; c//, where

�5 is depicted in Figure 5.

Proof Assume a B b, b B c, and c B a. Consider cut .U;W / of the graph
�5 such that U D ¹c; f º and W D ¹a; b; d; eº. Thus, B.U / D ¹f º and
B.W / D ¹d; eº. Therefore, by the Contiguity axiom with A D ¹cº, B D ¿,
and C D ¹aº, c B a ! d; e; f B a. Hence, d; e; f B a by the third assump-
tion. Similarly, one can show that d; e; f B b and that d; e; f B c. By applying
the Augmentation axiom to the last three statements, d; e; f B a; d; e; f , and
a; d; e; f B a; b; d; e; f , and a; b; d; e; f B a; b; c. Therefore, d; e; f B a; b; c

by the Transitivity axiom applied twice.

Propositions 2 and 4 are special cases of a more general principle. We will say that a
subset of vertices is sparse if the shortest path between any two vertices in this subset
contains at least three edges. The general principle states that ifW is a sparse subset
of vertices in the graph .V;E/ and each vertex w 2 W is functionally determined by
the set V n ¹wº, then the subset V nW functionally determines the subset W :^

w2W

..V n ¹wº// B w ! .V nW / B W:

For example, the set ¹a; dº in the graph �1 depicted in Figure 1 is sparse. Due to the
general principle, a; b; c B d ! .d; c; b B a ! b; c B a; d/. Thus, by Lemma 6,
a; c B d ! .d; b B a ! b; c B a; d/, which is the statement of Proposition 2. In
the case of Proposition 4, the sparse set is ¹a; b; cº. The proof of the general principle
is similar to the proof of Proposition 4.

5 Soundness

We prove the soundness of our logical system by proving the soundness of each of
our four axioms separately.

Lemma 1 (Reflexivity) G � A B B for each game G over a graph � D .V;E/

and each B � A � V .

Proof For any s; t 2 NE.G/, if s DA t, then s DB t because A � B .

Lemma 2 (Augmentation) IfG � A B B , thenG � A;C B B;C for each game
G over a graph � D .V;E/ and each A;B;C � V .
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Proof Suppose that G � A B B , and consider any s; t 2 NE.G/ such that
s DA;C t. We will show that s DB;C t. Indeed, s DA;C t implies that s DA t
and s DC t. Thus, s DB t by the assumptionG � A B B . Therefore, s DB;C t.

Lemma 3 (Transitivity) If G � A B B and G � B B C , then G � A B C for
each game G over a graph � D .V;E/ and each A;B;C � V .

Proof Suppose that G � A B B and G � B B C . Consider any s; t 2 NE.G/
such that s DA t. We will show that s DC t. Indeed, s DB t due to the first
assumption. Hence, by the second assumption, s DC t.

Lemma 4 (Contiguity) If G � A;B B C , then G � B.S/;B.T /; B B C , for
each game G D .V;E/ over a graph � , each cut .U;W / of � , and each A � U ,
B � V , and C � W .

Proof Suppose that G � A;B B C . Consider any s D hsviv2V 2 NE.G/ and
t D htviv2V 2 NE.G/ such that s DB.U /;B.W /;B t. We will prove that s DC t.
Indeed, consider the strategy profile e D heviv2V such that

ev D

´
sv if v 2 U ,
tv if v 2 W :

We will first prove that e 2 NE.G/. Assuming the opposite, let v 2 V be a player
in the game G that can increase his payoff by changing strategy in profile e. Without
loss of generality, let v 2 U . Then, e DAdj.v/[¹vº s. Thus, player v can also increase
his payoff by changing strategy in profile s, which is a contradiction with the choice
of s 2 NE.G/.

Note that e DU;B s and e DW;B t. Thus, e DA;B s and e DC t. Hence, e DC s
by the assumption G � A;B B C . Therefore, s DC e DC t.

6 Completeness

In this section we prove the completeness of our logical system with respect to the
game semantics described above. Given a fixed dependency graph � and a formula
' 2 ˆ.�/, not provable in our logical system for the graph � , the proof constructs
a canonical strategic game over � that falsifies formula '. The canonical game is
composed of several smaller games over � played concurrently and independently.
The composition operation is the same as the one used in the proof of completeness
for rational functional dependency (see [10, p. 612]) and similar to the construction
in the proof of completeness for functional dependence of secrets over hypergraphs
(see [9, p. 36]). The smaller games, however, are significantly different from [10].
Each of the smaller games, in turn, consists of matching pennies games played over
edges of the dependency graph � . We start the proof with several technical lemmas.

Lemma 5 B.X [ Y / � B.X/ [ B.Y /.

Proof Let v 2 B.X [ Y /. Thus, v 2 X [ Y and there is w … X [ Y such that
.v; w/ 2 E. Without loss of generality, assume that v 2 X . Hence, v 2 X and
w … X . Therefore, v 2 B.X/.

Lemma 6 ` A B C ! A;B B C .

Proof Assume A B C . By the Reflexivity axiom, A;B B A. Thus, by the
Transitivity axiom, A;B B C .
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Lemma 7 ` A B B;C ! A B B .

Proof Assume A B B;C . By the Reflexivity axiom, B;C B B . Thus, by the
Transitivity axiom, A B B .

Theorem 1 For any graph � D .V;E/ and any formula � 2 ˆ.V /, if °� �, then
there must exist a game .V; ¹Svºv2V ; ¹uvºv2V / over graph � such that G ² �.

Proof Suppose that °� �. Let M be any maximal consistent subset of formulas
in ˆ.�/ such that :� 2 M .

Definition 5 For any set of vertices A, let A� be the set ¹v 2 V j M ` A B vº.

Lemma 8 A � A�, for any A � V .

Proof Let a 2 A. By the Reflexivity axiom, ` A B a. Hence, a 2 A�.

Lemma 9 M ` A B A�, for any A � V .

Proof Let A� D ¹a1; : : : ; anº. By the definition of A�, M ` A B ai , for any
i � n. We will prove, by induction on k, that M ` .A B a1; : : : ; ak/ for any
0 � k � n.

Base case. M ` A B ¿ by the Reflexivity axiom.
Induction step. Assume that M ` .A B a1; : : : ; ak/. By the Augmentation

axiom,
M ` A; akC1 B a1; : : : ; ak ; akC1: (3)

Recall that M ` A B akC1. Again by the Augmentation axiom, M ` .A B A;

akC1/. Hence,M ` .A B a1; : : : ; ak ; akC1/, by (3) and the Transitivity axiom.

For any set of vertices A, we will now define the strategic game

GA D .V; ¹Svºv2V ; ¹uvºv2V /

over graph � . For the purposes of this definition only, we assume that a direction is
assigned to each edge of the graph � in an arbitrary way.

Any player v 2 A� may either choose strategy pass or opt to play “pennies” with
all of his adjacent players. In the latter case, he decides on either heads or tails for
each adjacent player. The player cannot choose to pass with one player and to play
pennies with others. Formally, if v 2 A�, then

Sv D ¹passº [ ¹f j f W Adj.v/ ! ¹heads; tailsºº:

Similarly, any player v … A� may either choose between strategies 0 and 1 or decide
to play pennies with all of his adjacent players. Thus, if v … A�, then

Sv D ¹0; 1º [ ¹f j f W Adj.v/ ! ¹heads; tailsºº:

Furthermore, it will be assumed that any isolated (one that has no adjacent vertices)
vertex of the graph is prohibited from playing the pennies game. Thus such vertices
either have a single strategy pass or a set of just two strategies: 0 and 1.

We define the payoff function of any player v as the sum of rewards in individual
pennies minigames on the edges adjacent to v or a possible penalty imposed on v for
not playing the pennies.

Penalty. If there are u;w 2 AdjC.v/nA� such that u plays strategy 0 and w plays
strategy 1, then a penalty in the amount of 1 is imposed on v unless v plays pennies.
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For example, consider the strategy profile depicted in Figure 6. We will assume
that elements of A� are the shaded vertices. Vertices w, x, and y are subject to the
penalty because player x plays 0 and player y plays 1. Players u and v have chosen
to play pennies, and thus are not subject to any penalties.

More formally, for any profile s D hsviv2V , penalty of the player v 2 V is defined
as follows:

penaltyv.s/ D

8̂<̂
:
1 if there are u;w 2 AdjC.v/ n A� such that

su D 0; sw D 1; and sv 2 ¹0; 1; passº;
0 otherwise:

Rewards. In an individual minigame along any edge of the graph � , rewards are
only given if both players are playing pennies. The rewards are given according to
the rules of a variation of the standard matching pennies game: the player who is,
say, at the beginning of the directed edge is rewarded 1 for matching his opponent’s
strategy and the player at the opposite end of the edge is rewarded 1 for not matching
his opponent’s strategy.

For example, in the strategy profile depicted in Figure 6, player u gets the reward
1 for matching player v. Player v is not rewarded. Players x, y, and w also do not
receive any rewards since they are not playing pennies.

More formally, for any profile s D hsviv2V , reward of the player v 2 V is defined
as follows:

rewardv.s/ D ju 2 ¹.v; u/ 2 E j su ¤ svºj C ju 2 ¹.u; v/ 2 E j su D svºj:

Finally, the payoff function of player v is uv.s/ D rewardv.s/ � penaltyv.s/. This
concludes the definition of the game GA.

Lemma 10 In any Nash equilibrium of the game GA, no player is playing the
pennies game.

Proof Assume that a vertex v is playing pennies games in a strategy profile s. Due
to the definition of the set of strategies in the gameGA, vertex v cannot be an isolated
vertex in the graph � . Let u be any vertex adjacent to v. If player u is not playing
pennies in s, then he can increase his payoff by playing pennies. If player u is playing
pennies in s, then either player u or player v would want to switch his strategy in the
minigame along edge .u; v/ since the two-player matching pennies game has no Nash
equilibria. Therefore, strategy profile s is not a Nash equilibrium.

Figure 6 Strategy profile.
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Lemma 11 sw1
D sw2

for each w1; w2 2 AdjC.v/ n A�, each v 2 V , and each
s D hswiw2V 2 NE.GA/.

Proof By Lemma 10, no player is playing pennies in profile s. Suppose that
sw1

¤ sw2
for some w1; w2 2 AdjC.v/ n A�. Thus, player v is subject to penalty

in the strategy profile s. Then, he can increase his payoff by starting to play pennies
and avoiding the penalty. Therefore, s … NE.GA/.

Definition 6 For any u; v 2 V , let u � v if there is a path from u to v in graph �
such that no two consecutive vertices of the path belong to the set A�.

Lemma 12 Relation � is an equivalence relation on the set V .

By Œv� we will denote the equivalence class of vertex v with respect to this relation.

Lemma 13 If u � v, then su D sv , for each u; v … A� and each hswiw2V 2

NE.GA/.

Proof Let � D .w0; w1; : : : ; wk/ be a path connecting vertices u and v (w0 D u

and wk D v) such that no two consecutive vertices in � belong to A�. We prove the
statement by induction on k. If k D 0, then u D v. Thus, su D sv . Suppose now
that k > 0.

Case I: w1 … A�. Thus, by Lemma 11, su D sw1
. By the induction hypothesis,

sw1
D sv . Therefore, su D sv .

Case II: w1 2 A�. Thus, w1 ¤ v and, since no two consecutive vertices in �
belong to A�, we have w2 … A�. Hence, su D sw2

by Lemma 11 and sw2
D sv by

the induction hypothesis. Therefore, su D sv .

Lemma 14 B.Œv�/ � A� for each v 2 V .

Proof Let w 2 B.Œv�/, but w … A�. By Definition 1, there is u … Œv� such
that .w; u/ 2 E. Consider the two-vertex path � D .w; u/. Since w … A�, no
two consecutive vertices in � belong to A�. Hence, w � u. Note that v � w by
Definition 1. Thus, v � u, which is a contradiction.

Lemma 15 If C B D 2 M , then GA � C B D.

Proof Let s D hsviv2V ; s0 D hs0
viv2V 2 NE.GA/ such that s DC s0. It will be

sufficient to show that sd D s0
d

for each d 2 D. Consider any d 2 D. If d 2 A�,
then player d has only two options in the game GA: to play pennies or to decide to
pass. By Lemma 10, player d chooses the strategy pass under strategy profiles s and
s0. Therefore, sd D s0

d
. We will now assume that d … A�.

If d � c0 for some c0 2 C n A�, then, by Lemma 13, sd D sc0
D s0

c0
D s0

d
.

We will now assume that d œ c for each c 2 C n A�. Thus, C n A� �
S

v…Œd�Œv�.
Consider cut .

S
v…Œd�Œv�; Œd �/. By the Contiguity axiom,

C n A�; A� B d ! B
� [

v…Œd�

Œv�
�
;B.Œd �/; A� B d:

Due to the assumption M ` C B D and Lemmas 6 and 7,
M ` C n A�; A� B d:

Thus,
M ` B

� [
v…Œd�

Œv�
�
;B.Œd �/; A� B d:
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By Lemma 5, B.
S

v…Œd�Œv�/ �
S

v…Œd� B.Œv�/. Hence, by Lemma 6,

M `

[
v…Œd�

B.Œv�/;B.Œd �/; A� B d:

Then, by Lemma 14, M ` A� B d . Thus, by Lemma 9 and the Transitivity axiom,
M ` A B d . Therefore, d 2 A�, which is a contradiction.

Definition 7 For any A � V and any k 2 ¹0; 1º, let strategy profile sk;A be
defined as

sk;A
v D

´
pass if v 2 A�,
k otherwise:

Lemma 16 sk;A 2 NE.GA/ for each k 2 ¹0; 1º.

Proof By the definition of the game GA, no player is paying a penalty in the strat-
egy profile sk;A. At the same time, no player can get a reward by unilaterally switch-
ing to playing pennies.

Lemma 17 If GA � A B b, then b 2 A�.

Proof Assume that b … A�. By Lemma 8, s0;A DA s1;A. At the same time,
s

0;A
b

D 0 ¤ 1 D s
1;A
b

since b … A�. Therefore, GA ² A B b.

The product construction below defines a way to combine several games played over
the same graph into a single game. The payoff for a given player in the combined
game is the sum of his payoffs in the individual games.

Definition 8 Let Gi D .V; ¹S i
vºv2V ; ¹u

i
vºv2V / for i 2 I be any family

of games over the same graph � D .V;E/. By
Q

i2I G
i we mean game

.V; ¹Svºv2V ; ¹uvºv2V / such that
(1) Sv is the Cartesian product

Q
i2I S

i
v ,

(2) uv D
P

i2I u
i
p .

Lemma 18 If hhsi
vii2I iv2V 2 NE.

Q
i2I G

i /, then hs
i0
v iv2V 2 NE.Gi0/ for each

i0 2 I .

Lemma 19 If hsi
viv2V 2 NE.Gi / for each i 2 I , then

hhsi
vii2I iv2V 2 NE

� Y
i2I

Gi
�
:

Lemma 20 If ¹Gi ºi2I is a family of games over a graph � such that each of these
games has a nonempty set of Nash equilibria, then

Q
i2I G

i � C B D if and only
if, for each i 2 I , Gi � C B D.

Proof .)/: Assume that si0 D hs
i0
v iv2V 2 NE.Gi0/ and ti0 D ht

i0
v iv2V 2

NE.Gi0/ are such that si0 DC ti0 . We will show that si0 DD ti0 .
By the assumption of the lemma, for each i 2 I , the game Gi has at least one

Nash equilibrium. We denote an arbitrary one of them by ei D hei
viv2V . Consider
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strategy profiles S D hhsi
vii2I iv2V and T D hht ivii2I iv2V for the game

Q
i2I G

i

such that

si
v D

´
s

i0
v if i D i0,
ei

v otherwise;

t iv D

´
t
i0
v if i D i0,
ei

v otherwise:

By Lemma 19, we have S;T 2 NE.
Q

i2I G
i /. Note that S DC T due to the as-

sumption si0 DC ti0 . Hence, S DD T by the assumption of the lemma. Therefore,
si0 DD ti0 .
.(/: Consider Nash equilibria S D hhsi

vii2I iv2V and T D hht ivii2I iv2V of the
game

Q
i2I G

i such that S DC T. We will show that S DD T. It will be sufficient
to show that hsi

viv2V DD ht iviv2V for each i 2 I . Indeed, hsi
viv2V DC ht iviv2V due

to the assumption S DC T. By Lemma 18, hsi
viv2V ; ht

i
viv2V 2 NE.Gi /. Therefore,

hsi
viv2V DD ht iviv2V by the assumption of the lemma.

Lemma 21 For any  2 ˆ.�/,  2 M if and only if
Q

A�V GA �  .

Proof The proof is by induction on the structural complexity of formula  . The
case  � ? follows from the assumption of consistency of the set M and Defini-
tion 4. The case  �  1 !  2 follows from the maximality and consistency of the
set M and Definition 4 in the standard way. Assume now that  � E B F .

If E B F 2 M , then, by Lemma 15, GA � E B F for each A � V . By
Lemma 16, each of the gamesGA has at least one Nash equilibrium: s0;A. Therefore,Q

A�V GA � E B F by Lemma 20.
If

Q
A�V GA � E B F , then, by Lemma 20, GE � E B F . Hence, by

Definition 4, GE � E B f for each f 2 F . Hence, by Lemma 17, f 2 E� for
each f 2 F . Thus, F � E�. Note that M ` E B E� by Lemma 9. Hence,
M ` E B F by Lemma 7. Therefore, E B F 2 M due to the maximality
of M .

To finish the proof of the theorem, recall that :� 2 M . Thus, � … M due to the
consistency of M . Therefore, by Lemma 21,

Q
A�V GA ² �.

7 Conclusion

In this article we have described a sound and complete logical system for functional
dependence in strategic games over a fixed dependency graph. The dependency
graph puts restrictions on the type of payoff functions that can be used in the game. If
no such restrictions are imposed, then the logical system for functional dependence
in strategic games is just the set of original Armstrong axioms. This statement fol-
lows from our results since the absence of restrictions corresponds to the case of a
complete (in the graph theory sense) dependency graph. In the case of a complete
graph, the Contiguity axiom follows from the Armstrong axioms because, for any cut
.U;W /, the set B.U / [ B.W / is the set of all vertices in the graph.
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