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Non-Fregean Propositional Logic with Quantifiers

Joanna Golińska-Pilarek and Taneli Huuskonen

Abstract We study the non-Fregean propositional logic with propositional
quantifiers, denoted by SCIQ. We prove that SCIQ does not have the finite model
property and that it is undecidable. We also present examples of how to interpret
in SCIQ various mathematical theories, such as the theory of groups, rings, and
fields, and we characterize the spectra of SCIQ-sentences. Finally, we present a
translation of SCIQ into a classical two-sorted first-order logic, and we use the
translation to prove some model-theoretic properties of SCIQ.

1 Introduction

Non-Fregean logics, introduced by Roman Suszko, can be seen as a realization of
Gottlob Frege’s semantic program with the exception of a postulate—known in the
literature as the Fregean axiom—that treats the truth value of a sentence as its deno-
tation. According to Frege, sentences are not only true or false, but are also names
denoting the corresponding truth values. The Fregean axiom is a fundamental as-
sumption underlying classical logic. The theory of models based on classical logic
does not involve a universe corresponding to the statements in the appropriate lan-
guage, but only assigns a simple truth value to each statement. Thus, the Fregean
axiom is a formal expression of a certain philosophical view concerning the mean-
ings of statements.

Non-Fregean logic was explicitly proposed by Suszko as an alternative to the es-
tablished standard. Non-Fregean logic rejects the Fregean axiom and introduces a
universe of the semantic correlates of statements, known as the universe of situa-
tions. In order to express claims concerning the universe of situations, a new con-
nective �, called the identity connective, is added to the language. The identity
connective, as the name implies, expresses the identity of two statements; that is, it
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connects two statements and forms a new one, which is true whenever the semantic
correlates of the arguments are the same. Suszko presents the central ideas of the
non-Fregean framework and the underlying philosophical motivations extensively in
his article [11].

The weakest non-Fregean logic is sentential calculus with identity or SCI, first
introduced by Suszko in [8]. SCI is defined axiomatically: the axioms of classi-
cal propositional logic are augmented with new axioms characterizing the identity
connective, postulating that identity be an equivalence and obey an extensionality
principle. Suszko argues that the identity connective is more basic than other non-
truth-functional operators, such as modal operators, pointing out that it cannot be
eliminated without trivializing it into another name for the equivalence connective.
In general, the identity connective is different from classical equivalence: two sen-
tences that are simultaneously true or simultaneously false do not need to have iden-
tical semantic correlates. In other words, the truth value of a sentence is not the same
as the situation it describes. Most of the existing literature on non-Fregean logics
concentrates on SCI and its propositional extensions. Richer extensions of SCI, such
as non-Fregean propositional logic with quantifiers or non-Fregean first- or higher-
order logic, have been studied to a limited degree and little is known about their
properties. Many questions about them remain unanswered. Arguably the most im-
portant result is the definition of a semantics for first-order non-Fregean logic and a
corresponding completeness theorem presented by Bloom [1].

The topic of the present article is SCIQ, the non-Fregean propositional logic with
quantifiers. The logic SCIQ is obtained from SCI by extending the language with the
quantifiers 8 and 9, which bind propositional variables, and by adding some fairly
natural axioms concerning them.

This seemingly minor change to the language proves to have drastic effects. The
logic SCI, despite its many advantages, is inadequate for many purposes because it
lacks expressive power. In addition to not having any means of expressing connec-
tions between objects and situations, it does not allow one to claim the existence of
a given type of situation. The logic SCIQ offers a much wider repertoire of ways to
express interesting properties of the universe of situations.

In this article, we review some previously known facts about SCIQ and present
our new results. Among other things, we show that SCIQ does not have the finite
model property and is undecidable. We also show that in SCIQ one can formulate
many interesting first-order theories, such as the theories of groups, rings, and fields,
as well as a weak fragment of Peano arithmetic. Moreover, we explore the com-
putational complexity of SCIQ, including an analogue of Fagin’s theorem for SCIQ.
Finally, we prove the Löwenheim–Skolem theorem for SCIQ by translating SCIQ into
a two-sorted first-order theory, whose model-theoretic properties translate back into
SCIQ.

The results presented here, as well as other examples in the literature concerning
the expressibility of various nonclassical logics in SCI (e.g., modal logics and finite-
valued Łukasiewicz logics), show that non-Fregean logic can be seen as a logical
framework for a majority of the most important logical calculi. This, in turn, means
that non-Fregean logic offers good tools for representing and comparing syntacti-
cally and/or semantically different logics in a unified logical formalism. It is also
worth noting that non-Fregean logic has been an inspiration to several other logical
systems. It is known that logics with non-Fregean semantics are not algebraizable
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in the Rasiowa–Sikorski style. This fact inspired Brown, Suszko, and Bloom [3] to
introduce the concept of abstract logics. Currently, many ideas presented in [3] are
explored and developed in the framework of abstract algebraic logics.

The paper is organized as follows. In Section 2, we present the basic definitions
and properties of the non-Fregean propositional logic SCI. The language, Hilbert-
style axiomatization, and non-Fregean semantics for the extension of SCI with propo-
sitional quantifiers, that is, for the logic SCIQ, are presented in Section 3. In Sec-
tion 4, we show that first-order theories of groups, rings, fields, and a weak fragment
of Peano arithmetic are expressible in the logic SCIQ. One of the main conclusions of
this section is the undecidability of SCIQ. In Section 5, we show an exact correspon-
dence between SCIQ and NP (nondeterministic polynomial-time computations). In
Section 6, we interpret SCIQ as a first-order theory, we prove a translation theorem,
and we show how it can be used to get the Löwenheim–Skolem theorem for SCIQ.
Conclusions and open problems are described in Section 7.

2 The Basic Non-Fregean Propositional Logic SCI

The basic minimal non-Fregean propositional logic is the logic SCI, known in the
literature as sentential calculus with identity. The vocabulary of the language of SCI
consists of the symbols from the following pairwise disjoint sets: V, a countably
infinite set of propositional variables; ¹:;_;^;!;$;�º, the set of propositional
operations of negation :, disjunction _, conjunction ^, implication !, equivalence
$, and identity �. The set of SCI-formulas is the smallest set including V and closed
with respect to all the propositional operations.

A Hilbert-style axiomatization of SCI consists of axiom schemas of the classical
propositional logic PC, which characterize the operations :;_;^;!;$, and the
following axiom schemas for the identity operation �:
(�1) ' � ',
(�2) .' �  / ! .:' � : /,
(�3) .' �  / ! .' !  /,
(�4) Œ.' �  / ^ .# � �/� ! Œ.'##/ � . #�/�, for # 2 ¹_;^;!;$;�º.

The only rule of inference is modus ponens. The notion of provability of a formula
is defined as usual. Thus, an SCI-formula ' is said to be SCI-provable whenever
there exists a finite sequence '1; : : : ; 'n of SCI-formulas, n � 1, such that 'n D '

and each 'i , i 2 ¹1; : : : ; nº, is an SCI-axiom or follows from earlier formulas in the
sequence by the modus ponens rule.

An SCI-model is a structure M D .M;�;t;u;);,; ı;D/, where M is a
nonempty set, D is any nonempty subset of M , � is a unary operation on M , and
t;u;);,; ı are binary operations on M such that for all a; b 2 M the following
hold:
(SCI1) �a 2 D iff a … D,
(SCI2) a t b 2 D iff a 2 D or b 2 D,
(SCI3) a u b 2 D iff a 2 D and b 2 D,
(SCI4) a ) b 2 D iff a … D or b 2 D,
(SCI5) a , b 2 D iff a ) b 2 D and b ) a 2 D,
(SCI6) a ı b 2 D iff a D b.
Let M be an SCI-model. A valuation on M is any mapping vWV ! M . We will
abuse the notation and write v for the extension of v to all SCI-formulas defined



252 Golińska-Pilarek and Huuskonen

inductively as follows:

v.:'/ D �v.'/;

v.' _  / D v.'/ t v. /;

v.' ^  / D v.'/ u v. /;

v.' !  / D v.'/ ) v. /;

v.' $  / D v.'/ , v. /;

v.' �  / D v.'/ ı v. /:

Let v be a valuation on an SCI-model M. An SCI-formula ' is satisfied by v in M,
M; v ˆ ', whenever v.'/ 2 D. An SCI-formula ' is true in M if it is satisfied
by all valuations in M. A formula is SCI-valid if it is true in all SCI-models. An
SCI-formula ' is said to be satisfiable in an SCI-model M whenever there exists a
valuation v on M such that M; v ˆ '. A model is referred to as finite if its universe
is finite.

The intuitive interpretation of an SCI-model M is as follows: the elements of
M are situations (denotations of sentences), the function symbols correspond to the
formation of new formulas with connectives, whileD can be thought of as the set of
facts—that is, it consists of those situations that correspond to true sentences.

Soundness and completeness of SCI with respect to the class of SCI-models was
proved in Bloom and Suszko [2, Theorem 1.9].

Theorem 2.1 (Soundness and completeness of SCI) For every SCI-formula ', the
following conditions are equivalent:

1. ' is SCI-provable;
2. ' is SCI-valid.

The logic SCI is two-valued, in the sense that for any given SCI-formula ', SCI-model
M, and valuation v in M, it holds that M; v ˆ ' if and only if M; v 6ˆ :'.

The logic SCI is also extensional in the sense that any subformula  of an
SCI-formula ' can be replaced with another formula # denoting the same as  
without affecting the denotation of '. More precisely, the extensionality of SCI can
be expressed as follows.

Fact 2.2 Let M be an SCI-model, let v be a valuation in M, let ' be an
SCI-formula containing a subformula  , and let '0 be the result of replacing
some occurrences of  in ' by a formula # . Then, M; v ˆ  � # implies
M; v ˆ ' � '0.

Note that two-valuedness and extensionality concern different levels. Two-valuedness
is a property of the truth values, while extensionality holds for the denotations.

Theorem 2.3 (Finite-model property and decidability of SCI) The logic SCI has
the finite model property; that is, every satisfiable SCI-formula is satisfiable in a
finite SCI-model. Furthermore, the logic SCI is decidable.

The proof of the above theorem can be found in [2].

Corollary 2.4 Let T be a set of SCI-formulas such that T is true in all finite
SCI-models. Then, T is true in all infinite SCI-models as well.
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Proof Assume that the claim does not hold. Then, there are an SCI-formula ' 2 T

and an SCI-model M such that ' is not true in M. So, :' is satisfiable in M, and
hence :' is satisfiable also in some finite SCI-model M0, which means that ' is not
true in M0, contradicting the assumption.

The logic SCI is extremely weak. It does not impose any specific assumptions on the
universe of situations except that it must have at least two elements. Any additional
assumption on the universe of situations leads to an extension of SCI. For example, if
we add to the set of SCI-axioms the Fregean axiom, which identifies the denotations
of sentences with their truth values, that is,

.FA/ .' $  / ! .' �  /;

then we get the classical propositional logic PC. The logic PC is the strongest
among all propositional extensions of SCI. However, it is known that there are many
other propositional logics which can be formulated as non-Fregean theories that are
stronger than SCI and weaker than PC, such as certain modal propositional logics
and finite-valued Łukasiewicz logics.1

In fact, we know something more: we proved in [6] that the number of different
propositional non-Fregean logics between SCI and PC is uncountable (cf. Golińska-
Pilarek [5]). However, despite the richness of the class of non-Fregean propositional
logics, many of which express interesting properties of the universe of situations, the
expressive power of non-Fregean propositional logics is rather limited. In particular,
Corollary 2.4 implies that no nontrivial property shared by all finite SCI-models can
be expressed in SCI. To widen the scope of applications of the non-Fregean concept,
for instance, to formalize an idea on the nature of denotations of statements or other
applications to formal philosophy, it seems natural to study extensions of SCI that
avoid these limitations. We will show that the logic SCIQ, presented in the following
section, indeed rises to the challenge.

3 The Logic SCIQ

In this section, we present the logic SCIQ, which is an extension of SCI with
quantifiers that range over propositional variables. The language of SCIQ is the
SCI-language endowed with quantifiers. More precisely, the SCIQ-language consists
of a countably infinite set of propositional variables V D ¹x; y; z : : :º, the propo-
sitional operations of negation :, disjunction _, conjunction ^, implication !,
equivalence $, identity �, and the quantifiers—universal 8 and existential 9. The
set of SCIQ-formulas is the smallest set satisfying the following conditions.

� Each propositional variable in V is an SCIQ-formula.
� If ' and  are SCIQ-formulas, then so are :' and '# , for every

# 2 ¹^;_;!;$;�º.
� If ' is an SCIQ-formula and x 2 V, then 8x' and 9x' are SCIQ-formulas.

The notions of free and bound variables are defined in a standard way as in first-order
logic. By '. Nx/ we denote a formula whose free variables are among Nx D x1; : : : ; xn.
An SCIQ-sentence is an SCIQ-formula with no free variables.

A Hilbert-style axiomatization of SCIQ consists of the axiom schemas of SCI
adjusted to the SCIQ-language and the following axiom schemas characterizing the
interactions between quantifiers and connectives:
(SCIQ1) 8x' ! '.x= /,
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(SCIQ2) 8x.' !  / ! .8x' ! 8x /,
(SCIQ3) ' ! 8x', provided that x is not free in ',
(SCIQ4) 9x' $ :8x:',
(SCIQ5) 8x.' �  / ! .Qx' � Qx /, for Q 2 ¹8; 9º,
(SCIQ6) Qx' � Qy'.x=y/, where Q 2 ¹8; 9º and y does not occur free in '.
The inference rules of SCIQ are modus ponens and generalization. The notion of
SCIQ-provability is defined in a standard way.

Note that the quantifiers obey all the classical laws not involving the identity con-
nective. For instance, 8p'.p/ $ :9p:'.p/ is provable in SCIQ. However, if we
replace $ with �, the resulting laws do not hold: 8p'.p/ � :9p:'.p/ is not
provable. For this reason, SCIQ can express nontrivial properties of the universe of
situations, including complicated structural properties of the whole model and the
interaction between the identity operation and the classical ones.

A structure M D .M;�;u;t;);,; ı;F ;
N
;
L
;D/ is said to be a partial

SCIQ-model whenever the following conditions are satisfied:
� .M;�;u;t;);,; ı;D/ is an SCI-model,
� F � MM ,
�

N
;
L

W F ! M are operations such that for every f 2 F the following
hold:

–
N
f 2 D if and only if for all t 2 M , f .t/ 2 D,

–
L
f 2 D if and only if for some t 2 M , f .t/ 2 D.

A partial valuation on a partial SCIQ-model M is any function vWW ! M such that
W � V. A (total) valuation on M is a function vWV ! M .

Let M D .M;�;u;t;);,; ı;F ;
N
;
L
;D/ be a partial SCIQ-model, and let

v be a partial valuation on M. We define inductively the value of an SCIQ-formula
', k'; vk for short, as follows.

� If ' WD x for x 2 V, then k'; vk
df
D v.x/.

� If ' WD : , then k'; vk
df
D �k ; vk.

� If ' WD  ^ � , then k'; vk
df
D k ; vk u k�; vk.

� If ' WD  _ � , then k'; vk
df
D k ; vk t k�; vk.

� If ' WD  ! � , then k'; vk
df
D k ; vk ) k�; vk.

� If ' WD  $ � , then k'; vk
df
D k ; vk , k�; vk.

� If ' WD  � � , then k'; vk
df
D k ; vk ı k�; vk.

If ' is a formula of the form 8x or 9x , we define first the function f WM ! M

as f .t/ df
D k ; vtxk, where

vtx.y/
df
D

´
t; if y D x,
v.y/; otherwise:

Then, if f 2 F , we set

k8x ; vk
df
D

O
f and k9x ; vk

df
D

M
f:

Note that in any of the above clauses the right-hand side may be undefined. In that
case, we simply leave the left-hand side undefined as well.

A partial SCIQ-model M is called sufficient for an SCIQ-formula ' if and only if
for every valuation v in M, the value k'; vk is well defined. A partial SCIQ-model
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is referred to as an SCIQ-model whenever it is sufficient for every SCIQ-formula. A
partial valuation v is sufficient for ' in a partial SCIQ-model M whenever k'; vk

is well defined. An SCIQ-formula ' is said to be satisfied in an SCIQ-model M by
a valuation v (M; v ˆ ' for short) if and only if k'; vk 2 D. A formula is true
in M if it is satisfied by all the valuations in M and it is SCIQ-valid whenever it is
true in all SCIQ-models. A set X of SCIQ-formulas is said to be satisfied in M by v
(M; v ˆ X ) if and only if every formula of X is satisfied in M by v. A formula ' is
satisfiable whenever it is satisfied in some SCIQ-model by some valuation. The size
of a partial SCIQ-model M, denoted by jMj, is the cardinality of M . We denote the
cardinality of F by jMj2. SCIQ-models with an infinite universe will be referred to
as infinite models.

Example 3.1 Consider a structure of the form

M D

�
M;�;u;t;);,; ı;F ;

O
;
M

;D
�

such that M D ¹0; 1; 2º, D D ¹1; 2º, F D MM , and for all a; b 2 M , f 2 F the
following conditions are satisfied:

�0
df
D 2; �1

df
D �2 D 0; a u b

df
D min ¹a; bº; a t b

df
D max ¹a; bº;

a ) b
df
D �a t b; a , b

df
D .a ) b/ u .b ) a/;

a ı b
df
D

8̂<̂
:
a; if a D b 2 D,
1; if a D b D 0,
0; otherwise,O

f
df
D min

®
f .a/

ˇ̌
a 2 M

¯
;

M
f

df
D max

®
f .a/

ˇ̌
a 2 M

¯
:

Clearly, the structure M is a partial SCIQ-model. Indeed, by an easy calculation it
can be shown that .M;�;u;t;);,; ı;D/ is an SCI-model. Let f 2 F . It is easy
to show that min¹f .a/ j a 2 M º 2 D if and only if ¹f .a/ j a 2 M º � D. Clearly,
if ¹f .a/ j a 2 M º � D, then in particular min¹f .a/ j a 2 M º 2 D. On the
other hand, if ¹f .a/ j a 2 M º ª D, then 0 2 ¹f .a/ j a 2 M º, which means that
min¹f .a/ j a 2 M º D 0 … D. This proves that for every f 2 F ,

N
f 2 D if and

only if for every t 2 M , f .t/ 2 D. In a similar way, we may show that
L
f 2 D

if and only if for some t 2 M , f .t/ 2 D. Hence, M is a partial SCIQ-model.
Since F D MM , M is an SCIQ-model. Now, observe that M is an example of the
model in which the formula 8x.x _ :x/ � :9x:.x _ :x/ is not true. Indeed, a
formula 8x.x _ :x/ � :9x:.x _ :x/ is satisfied in M by a valuation v if and
only if k8x.x_ :x/; vk D k:9x:.x_ :x/; vk, which is not the case, since for any
valuation v in M the following hold:8x.x _ :x/; v

 D min¹t t �t j t 2 M º

D min
®
max¹t;�tº

ˇ̌
t 2 M

¯
D min¹1; 2º D 1;:9x:.x _ :x/; v

 D � max
®
�.t t �t /

ˇ̌
t 2 M

¯
D � max

®
� max¹t;�tº

ˇ̌
t 2 M

¯
D � max¹0º D 2:

Thus, we have 1 D k8x.x _ :x/; vk ¤ k:9x:.x _ :x/; vk D 2.

As in first-order logic, the following fact can be easily proved.
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Fact 3.2 For every SCIQ-sentence ', for every SCIQ-model M, and for every
valuation v in M, the following conditions are equivalent:

1. M; v ˆ ',
2. M ˆ '.

The next theorem follows from the soundness and completeness theorem for the full
first-order non-Fregean logic proved in [1] (cf. Suszko [10]).

Theorem 3.3 (Soundness and completeness of SCIQ) For every SCIQ-formula ',
the following conditions are equivalent:

1. ' is SCIQ-provable,
2. ' is SCIQ-valid.

4 Toward Undecidability of SCIQ

The logic SCIQ is much more expressive than SCI. Furthermore, in contrast to SCI,
the logic SCIQ is undecidable, which will be shown in this section. We start with a
simple example of a property of the logic SCIQ.

Proposition 4.1 The logic SCIQ does not have the finite model property; that is,
there exists an SCIQ-formula which is satisfiable only in infinite SCIQ-models.

Proof Let ' be the following SCIQ-formula:
9x

�
x ^ 8y:

�
x � .y � y/

�
^ 8y8z

�
.y � y/ � .z � z/ ! y � z

��
:

We will show that the formula ' is satisfiable only in infinite SCIQ-models.
Let M D .M;�;u;t;);,; ı;F ;

N
;
L
;D/ be an SCIQ-model, and let v be a

valuation in M such that M; v ˆ '. We will show that M is infinite. Let us define

'0 df
D x ^ 8y:

�
x � .y � y/

�
^ 8y8z

�
.y � y/ � .z � z/ ! y � z

�
:

By the definition of the satisfaction relation, ' is satisfied in M by v if and only
if k'; vk 2 D, that is,

L
k'0; vtxk 2 D. Thus, there must exist t 2 M such that

k'0; vtxk 2 D, which means that the following conditions hold:
1. t 2 D,
2. k8y:.x � .y � y//; vtxk 2 D,
3. k8y8z..y � y/ � .z � z/ ! y � z/; vtxk 2 D.

Condition 2 implies t ¤ .a ı a/, for every a 2 M . By condition 3, we have also
that for all a; b 2 M , .a ı a/ D .b ı b/ implies a D b. Let us define the function
f WM ! M as f .a/ D .a ı a/. By condition 3, the function f is an injection, and,
by condition 2, it is not a surjection. Hence, M must be infinite.

The logic SCIQ is essentially more expressive than the logic SCI. We may express
within SCIQ many first-order theories, in particular the theory of groups, rings, fields,
and the theory of Peano arithmetic.

The language of the group theory TG is a first-order language with one binary
function symbol �. For simplicity of the presentation, we identify the set of individ-
ual variables of TG with the set of propositional variables of SCIQ. Furthermore,
we assume that the primitive logical symbols of TG are :;!, and 8. The other
connectives and the existential quantifier are regarded as shorthand notations defined
in the usual way. The axioms of TG are
(TG1) 8x8y8z.x � .y � z/ D .x � y/ � z/,
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(TG2) 9x8y9z..x � y/ D .y � x/ D y ^ x D .y � z/ D .z � y//.
Models of TG are first-order structures of the form M D .M; �/ such that the oper-
ation � satisfies axioms .TG1/ and .TG2/. A valuation in a TG-model is defined as
usual in first-order logic. By M; v ˆ ' we will denote the fact that a TG-formula
' is satisfied in a model M by a valuation v, where the satisfaction relation ˆ is
defined in a standard Tarskian way. The axiom .TG1/ expresses the associativity of
the group operation. The axiom .TG2/ implies that in every TG-model there exists
a neutral element of the operation � and each element of a model has its inverse ele-
ment. It is known that in each TG-model there exists exactly one neutral element and
for each element there exists exactly one inverse element. The neutral element will
be denoted by e.

Let SCITG
Q be the class of all SCIQ-models of the formula  df

D 1 ^ 2, where

1 WD 8x8y8z
�
.x ^ y ^ z/ !

�
x ^ .y ^ z/

�
�

�
.x ^ y/ ^ z

��
;

2 WD 9x
�
x ^ 8y

�
y ! 3.x; y/

�
^ 8y

�
y ! 9z

�
z ^ 4.x; y; z/

���
; for

3.x; y/ WD
�
y � .x ^ y/

�
^

�
y � .y ^ x/

�
;

4.x; y; z/ WD
�
x � .y ^ z/

�
^

�
x � .z ^ y/

�
:

It is easy to see that the class SCITG
Q is nonempty. Indeed, one SCITG

Q -model is a struc-
ture M D .M;�;u;t;);,; ı;F ;

N
;
L
;D/ such that M D ¹0; 1º, D D ¹1º,

F D MM , .M;�;u;t/ is a Boolean algebra, and for all a; b 2 M , for every
f 2 F :

a ) b
df
D �a t b; a , b

df
D .a ) b/ u .b ) a/;

a ı b
df
D

´
1; if a D b,
0; otherwise,O

f
df
D min

®
f .a/

ˇ̌
a 2 M

¯
;

M
f

df
D max

®
f .a/

ˇ̌
a 2 M

¯
:

Intuitively, SCITG
Q -models are SCIQ-models such that .D;u/ is a TG-model. This is

stated more formally in the following proposition.

Proposition 4.2 A structure of the form M D .M;�;u;t;);,; ı;F ;
N
;
L
;

D/ is an SCITG
Q -model if and only if the following conditions hold.

1. M is an SCIQ-model.
2. For all a; b; c 2 D, a u .b u c/ D .a u b/ u c.
3. There exists e 2 D such that for all a 2 D:

(a) a D e u a D a u e,
(b) there exists b 2 D such that .a u b/ D .b u a/ D e.

Proof Let M D .M;�;u;t;);,; ı;F ;
N
;
L
;D/ be an SCITG

Q -model. By
the definition it is an SCIQ-model in which the formula  D .1 ^ 2/ is true. Thus,
the formulas 1 and 2 are true in M, which implies conditions 2 and 3, respectively.
The other direction can be proved in a similar way.

For simplicity of the presentation, in what follows we will use the following notation:
Nx denotes a finite sequence of variables, t . Nx/ denotes a TG-term built with the opera-
tion � and variables from a sequence Nx, and

V
Nx denotes the conjunction of variables

from Nx.
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Now, we will define the translation function � from terms and formulas in the
language of TG into SCIQ-formulas.

� �.x/
df
D x, for any variable x,

� �.t. Nx/ � t 0. Ny//
df
D �.t. Nx// ^ �.t 0. Ny//, for any terms t , t 0 and finite sequences

of variables Nx and Ny,
� �.t. Nx/ D t 0. Ny//

df
D .

V
Nx ^

V
Ny/ ! .�.t. Nx// � �.t 0. Ny///, for any terms t , t 0

and finite sequences Nx and Ny,
� �.:.t. Nx/ D t 0. Ny///

df
D .

V
Nx ^

V
Ny/ ! :.�.t. Nx// � �.t 0. Ny///, for any

terms t , t 0 and finite sequences Nx and Ny,
� �.::'/

df
D �.'/,

� �.' !  /
df
D �.:'/ _ �. /,

� �.:.' !  //
df
D �.'/ ^ �.: /,

� �.8x'/
df
D 8x.x ! �.'//,

� �.:8x'/
df
D 9x.x ^ �.:'//.

Lemma 4.3 For every TG-model M and for every valuation v in M there exists
an SCITG

Q -model M0 and a valuation v0 in M0 such that for every formula ' in the
language of TG the following holds:

.˛/ M; v 6ˆ ' implies M0; v0
6ˆ �.'/:

Proof Let M D .M; �/ be a TG-model, let v be a valuation in M, and let e be the
neutral element of M. Furthermore, let M0 D .M 0;�;u;t;);,; ı;F ;

N
;
L
;

D/ be a structure such that M 0 D M [ ¹0º, where 0 … M , D D M , F D M 0M 0 ,
and for all a; b 2 M 0, for every f 2 F the operations are defined as

�a
df
D

´
0; if a 2 M;

e; otherwise,
a ı b

df
D

´
e; if a D b,
0; otherwise,

a u b
df
D

´
a � b; if a; b 2 M;

0; otherwise,
a t b

df
D �.�a u �b/;

a ) b
df
D �a t b; a , b

df
D .a ) b/ u .b ) a/;O

f
df
D

´
e; if ¹f .t/ j t 2 M 0º � M;

0; otherwise,M
f

df
D

´
e; if ¹f .t/ j t 2 M 0º \M ¤ ;;

0; otherwise.

It is easy to check that M0 is an SCIQ-model. Moreover, it is also an SCITG
Q -model.

Indeed, D D M and the operation u is defined on D in the same way as the opera-
tion � on M . Thus, conditions 2 and 3 of Proposition 4.2 are satisfied; hence M0 is
an SCITG

Q -model.
Let v0 be a valuation in M0 such that v0.x/ D v.x/, for each variable x. Now, we

will prove the claim by induction on the complexity of formulas. First, observe that
for every TG-term t , v.t/ D v0.�.t//. Clearly, it is true for variables, as �.x/ D x.
Next, let t and t 0 be TG-terms. Then, we have v0.�.t � t 0// D v0.�.t/ ^ �.t 0// D

v0.�.t// u v0.�.t 0//. Since v0.�.t// and v0.�.t 0// are elements of D, we obtain
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v0.�.t// u v0.�.t 0// D v0.�.t// � v0.�.t 0//, which by the induction hypothesis im-
plies v0.�.t// � v0.�.t 0// D v.t/ � v.t 0/ D v.t � t 0/. Therefore, for any TG-terms t . Nx/

and t 0. Ny/, we have

.�/ v
�
t . Nx/

�
D v

�
t 0. Ny/

�
iff v0

�
�
�
t . Nx/

��
D v0

�
�
�
t . Ny/

��
:

Let ' WD t . Nx/ D t 0. Ny/. Assume M; v 6ˆ t . Nx/ D t 0. Ny/; that is, v.t. Nx// ¤ v.t 0. Ny//.
Thus, by .�/, v0.�.t. Nx/// ¤ v0.�.t. Ny///, which means that v0.�.t. Nx// � �.t. Ny/// …

D. On the other hand, for any variable z in Nx or Ny, v0.z/ 2 D. Therefore,
v0.

V
Nx ^

V
Ny/ 2 D. Hence, �.'/, that is, the formula .

V
Nx ^

V
Ny/ ! .�.t. Nx// �

�.t 0. Ny/// is not satisfied in M0 by v0.
Let ' WD :.t. Nx/ D t 0. Ny//. Assume M; v 6ˆ :.t. Nx/ D t 0. Ny//; that is,

v.t. Nx// D v.t 0. Ny//. Thus, by .�/, v0.�.t. Nx/// D v0.�.t. Ny///, which means
that v0.�.t. Nx// � �.t. Ny/// 2 D, so v0.:.�.t. Nx// � �.t. Ny//// … D. Clearly, we
have again v0.

V
Nx ^

V
Ny/ 2 D. Hence, the formula .

V
Nx ^

V
Ny/ ! :.�.t. Nx// �

�.t 0. Ny/// is not satisfied in M0 by v0.
Now, assuming that .˛/ holds for formulas , # , and their negations, we will show

that it holds for formulas of the form :: ,  ! # , :. ! #/, 8x , :8x .
If M; v 6ˆ :: , then M; v 6ˆ  . Thus, by the induction hypothesis,

M0; v0 6ˆ �. /; hence, M0; v0 6ˆ �.:: /.
Assume M; v 6ˆ . ! #/, which implies M; v 6ˆ : and M; v 6ˆ # . Thus,

by the induction hypothesis, M0; v0 6ˆ �.: / and M0; v0 6ˆ �.#/. Therefore,
v0.�.: // … D and v0.�.#// … D, which means that v0.�.: / _ �.#// … D.
Hence, M0; v0 6ˆ �. ! #/.

Assume M; v 6ˆ :. ! #/. Therefore, either M; v 6ˆ  or M; v 6ˆ :# . Thus,
by the induction hypothesis, either M0; v0 6ˆ �. / or M0; v0 6ˆ �.:#/. Therefore,
either v0.�. // … D or v0.�.:#// … D, which means that v0.�. / ^ �.:#// … D.
Hence, M0; v0 6ˆ �.:. ! #//.

Assume M; v 6ˆ 8x . Then, there exists a 2 M such that M; va 6ˆ  ,
where va.y/ D v.y/, for all variables y ¤ x, and va.y/ D a, otherwise.
Clearly, v0a

x .y/ D va.y/, for every variable y. Thus, by the induction hypothe-
sis, k�. /; v0a

x k … D. Since a 2 D, we have M0; v0 6ˆ 8x.x ! �. //; that is,
M0; v0 6ˆ �.8x /.

Assume M; v 6ˆ :8x . Then, for every a 2 M , M; va 6ˆ : , where
va.y/ D v.y/, for all variables y ¤ x, and va.y/ D a, otherwise. Clearly,
v0a
x .y/ D va.y/, for every variable y. Thus, by the induction hypothesis, for every
a 2 D, k�.: /; v0a

x k … D, so for every a 2 D, kx ^ �.: /; v0a
x k … D. Recall that

M 0 nD D ¹0º. Since 0 … D, we get kx ^ �.: /; v0a
x k … D, for a D 0. Thus, for

every a 2 M 0, kx ^ �.: /; v0a
x k … D. Hence, M0; v0 6ˆ 9x.x ^ �.: //; that is,

M0; v0 6ˆ �.:8x /.

Lemma 4.4 For every SCITG
Q -model M and for every valuation v in M there

exists a TG-model M0 and a valuation v0 in M0 such that for every formula ' in the
language of TG the following holds:

.ˇ/ M; v 6ˆ �.'/ implies M0; v0
6ˆ ':

Proof Let M D .M 0;�;u;t;);,; ı;F ;
N
;
L
;D/ be an SCITG

Q -model, and
let v be a valuation in M. By Proposition 4.2, the structure M0 D .M 0; �/ such that
M 0 df

D D and a � b
df
D a u b, for all a; b 2 M 0, is a TG-model. Let e 2 M 0 be the
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neutral element of M0, and let v0 be a valuation in M0 such that for every variable x,

v0.x/
df
D

´
v.x/; if v.x/ 2 D;

e; otherwise.

As in the case of the previous lemma, we prove .ˇ/ by induction on the complexity
of formulas. First, observe that the following can be easily proved:

(�) For all variables x1; : : : ; xn and for any TG-term t .x1; : : : ; xn/, if all the
values v.x1/; : : : ; v.xn/ belong to D, then v.�.t.x1; : : : ; xn/// D v0.t.x1;

: : : ; xn//.
Let t . Nx/ and t 0. Ny/ be TG-terms. Assume M; v 6ˆ �.t. Nx/ D t 0. Ny//. Then, it follows
that v.

V
Nx ^

V
Ny/ 2 D and v.�.t. Nx/// ¤ v.�.t 0. Ny///. Therefore, by .�/, we have

v0.t. Nx// ¤ v0.t 0. Ny//, so M0; v0 6ˆ t . Nx/ D t 0. Ny/. In a similar way we can prove .ˇ/
for formulas of the form :.t. Nx/ D t 0. Ny//. Thus, .ˇ/ holds for atomic TG-formulas
and their negations. Now, the proofs of .ˇ/ for formulas of the form :: ,  ! # ,
:. ! #/, 8x , :8x are similar to the corresponding proofs in the proof of
Lemma 4.3. By way of example, we will show that .ˇ/ holds for formulas with
quantifiers.

Assume M; v 6ˆ �.8x /. Then, there exists a 2 M such that kx ! �. /; vaxk …

D, which means that there is a 2 D such that k�. /; vaxk … D. Thus, by the
induction hypothesis, M0; v0

a 6ˆ  , where v0
a.y/ D vax.y/, for all variables y. Hence,

M0; v0 6ˆ 8x .
Assume M; v 6ˆ �.:8x /. Then, for every a 2 M , kx ^ �.: /; vaxk … D,

which means that for all a 2 D, k�.: /; vaxk … D. Thus, by the induction hypoth-
esis, for every a 2 D, M0; v0

a 6ˆ : , where v0
a.y/ D vax.y/, for all variables y,

which implies M0; v0
a ˆ  , for every a 2 M 0. Hence, M0; v0 6ˆ :8x .

Lemmas 4.3 and 4.4 lead to the following.
Theorem 4.5 For every TG-formula ', the following conditions are equivalent:

1. ' is true in all TG-models,
2. �.'/ is true in all SCITG

Q -models,
3.  ! �.'/ is true in all SCIQ-models.

Proof Let ' be a TG-formula. Assume it is true in all TG-models, and suppose
�.'/ is not true in all SCITG

Q -models. Then, there must exist an SCITG
Q -model M

and a valuation v in M such that M; v 6ˆ �.'/. Then, by Lemma 4.4, there exist a
TG-model M0 and a valuation v0 in M0 such that M0; v0 6ˆ ', which contradicts the
assumption. Now, assume that �.'/ is true in all SCITG

Q -models, and suppose ' is
not TG-valid. Then, there are a TG-model M and a valuation v in M such that ' is
not satisfied in M by v. Thus, by Lemma 4.3, there must exist an SCITG

Q -model M0

and a valuation v0 in M0 such that M0; v0 6ˆ �.'/, a contradiction. Hence, we have
proved the equivalence of conditions 1 and 2.

Now, let �.'/ be such that it is true in all SCITG
Q -models. Consider an SCIQ-model

M and valuation v in M such that M; v ˆ  . Then, since  is an SCIQ-sentence,
it is true in M, so M must be an SCITG

Q -model, which means that M; v ˆ �.'/.
Therefore, 2 implies 3. Now, assume that  ! �.'/ is true in all SCIQ-models, and
suppose there is an SCITG

Q -model M and a valuation v in M such that M; v 6ˆ �.'/.
Since M is an SCITG

Q -model, we have M; v ˆ  , which implies M; v 6ˆ  ! �.'/,
a contradiction. Hence, 3 implies 2.
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Theorem 4.5 will enable us to prove the undecidability of the logic SCIQ.

Theorem 4.6 The logic SCIQ is undecidable.

Proof By Theorem 4.5, the problem of TG-validity of a TG-formula ' reduces to
the problem of SCIQ-validity of an SCIQ-formula  ! �.'/. However, since it is
known that the former one is undecidable, so is the latter, which means that the logic
SCIQ is undecidable.

Using the same idea we can express the theory of rings and fields. The common lan-
guage of the theory TR of rings and the theory TF of fields is a first-order language
with two binary function symbols � and C. Below we recall the axioms of theories
TR and TF. The axioms of TR are
(TR1) 8x8y8z.x#.y#z/ D .x#y/#z/, for # 2 ¹C; �º,
(TR2) 8x8y.x C y D y C x/,
(TR3) 9x8y9z..x C y/ D y ^ x D .y C z//,
(TR4) 8x8y8z.x � .y C z// D ..x � y/C .x � z//,
(TR5) 8x8y8z ..x C y/ � z/ D ..x � z/C .y � z//.
The axioms of TF are
(TF1) 8x8y8z.x#.y#z/ D .x#y/#z/, for # 2 ¹C; �º,
(TF2) 8x8y.x#y D y#x/, for # 2 ¹C; �º,
(TF3) 9xŒ8y9z..x C y/ D y ^ x D .y C z// ^ 9x0.x ¤ x0 ^ 8y.x0 � y D y/ ^

8y.y ¤ x ! 9z.x0 D .y C z////�,
(TF4) 8x8y8z .x � .y C z// D ..x � y/C .x � z//.
Models of TR are structures of the form .M;C; �/ such that .M;C/ is an abelian
group (i.e., a TG-model in which the operation C is commutative), and the opera-
tion � is associative and distributive over C. Models of TF are structures of the form
.M;C; �/ such that .M;C/ and .M n¹eº; �/ are abelian groups, where e is the neutral
element of .M;C/, and the operation � is distributive over C.

The axioms of rings and fields can be expressed in SCIQ-language. Roughly
speaking, we will code the operations C and � as SCIQ-operations _ and ^, respec-
tively. First, let us set
�#
1 WD 8x8y8z

�
.x ^ y ^ z/ !

��
x#.y#z/

�
�

�
.x#y/#z

���
; for # 2 ¹_;^º;

�#
2 WD 8x8y

�
.x ^ y/ !

�
.x#y/ � .y#x/

��
; for # 2 ¹_;^º;

�3 WD 8x8y8z
�
.x ^ y ^ z/ !

��
x ^ .y _ z/

�
�

�
.x ^ y/ _ .x ^ z/

���
;

�4 WD 8x8y8z
�
.x ^ y ^ z/ !

��
.x _ y/ ^ z

�
�

�
.x ^ z/ _ .y ^ z/

���
;

�5 WD 9x
�
x ^ 8y

�
y ! .�8 ^ �10/

��
;

�6 WD 9x9x0
�
�7 ^ 8y

�
y ! .�8 ^ �9 ^ �10/

�
^ �11

�
;

where
�7 WD

�
x ^ x0

^ :.x � x0/
�
;

�8 WD
�
.x _ y/ � y

�
and �9 WD

�
.x0

^ y/ � y
�
;

�10 WD 9z
�
z ^

�
.y _ z/ � x

��
;

�11 WD 8y
��
y ^ :.y � x/

�
! 9z

�
z ^

�
.y ^ z/ � x0

���
:

Let M D .M;�;u;t;);,; ı;F ;
N
;
L
;D/ be an SCIQ-model. It can be easily

seen that �#
1 (resp., �#

2) expresses the fact that the interpretation of the operation #
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in M is associative (resp., commutative) on D. The formulas �3 and �4 reflect left
and right distributivity of u over t with respect to the set D. The formula �5 says
that there exists the neutral element of t in D and each element in D has its inverse
element with respect to t. The formula �6 says that both operations t and u have
neutral elements, which are different and belong toD, and, in addition, each element
inD has its inverse element with respect to t, and each element in D different from
the neutral element of the operation t has its inverse element with respect to u.

Now, let � and ' be the following formulas:

� WD �_
1 ^ �^

1 ^ �_
2 ^ �3 ^ �4 ^ �5;

' WD �_
1 ^ �^

1 ^ �_
2 ^ �^

2 ^ �3 ^ �6:

SCIQ-models in which the formula � (resp., ') is true will be referred to as
SCITR

Q -models (resp., SCITF
Q -models). Then, the following can be proved.

Proposition 4.7 Let a structure M D .M;�;u;t;);,; ı;F ;
N
;
L
;D/ be

an SCIQ-model. Then
1. M is an SCITR

Q -model if and only if .D;C; �/ is a ring;
2. M is an SCITF

Q -model if and only if .D;C; �/ is a field.

Now, we define the translation � from terms and formulas in the first-order language
with function symbols C and � into SCIQ-formulas as follows:

� �.x/
df
D x, for any variable x,

� �.t. Nx/C t 0. Ny//
df
D �.t. Nx//_�.t 0. Ny//, for any terms t , t 0 and finite sequences

of variables Nx and Ny,
� �.t. Nx/ � t 0. Ny//

df
D �.t. Nx// ^ �.t 0. Ny//, for any terms t , t 0 and finite sequences

of variables Nx and Ny,
� �.t. Nx/ D t 0. Ny//

df
D .

V
Nx ^

V
Ny/ ! .�.t. Nx// � �.t 0. Ny///, for any terms t ,

t 0 and finite sequences Nx and Ny,
� �.:.t. Nx/ D t 0. Ny///

df
D .

V
Nx ^

V
Ny/ ! :.�.t. Nx// � �.t 0. Ny///, for any

terms t , t 0 and finite sequences Nx and Ny,
� �.::'/

df
D �.'/,

� �.' !  /
df
D �.:'/ _ �. /,

� �.:.' !  //
df
D �.'/ ^ �.: /,

� �.8x'/
df
D 8x.x ! �.'//,

� �.:8x'/
df
D 9x.x ^ �.:'//.

As in the case of the group theory, it can be proved that � preserves TR- and
TF-validity of formulas with respect to the class of SCITR

Q - and SCITF
Q -models, re-

spectively. More precisely, the following hold.

Theorem 4.8 For every formula ' of first-order language with the operations C

and �, the following hold:
1. ' is true in all TR-models if and only if �.'/ is true in all SCITR

Q -models if
and only if � ! �.'/ is SCIQ-valid;

2. ' is true in all TF-models if and only if �.'/ is true in all SCITF
Q -models if

and only if ' ! �.'/ is SCIQ-valid.
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Now, we will show how to code a somewhat more complex theory in SCIQ. To
highlight the differences with the previous examples, we restrict ourselves to a very
weak fragment of Peano arithmetic, which we call successor arithmetic, SA for short.
In particular, it is worth noting that negation has to be handled carefully. Moreover,
the theory of SA is infinite, and therefore its straightforward translation results in an
infinite SCIQ-theory. Hence, this kind of coding of even full Peano arithmetic would
not suffice to show the undecidability of SCIQ.

The language of SA is a first-order language with a constant symbol 0 and a unary
function symbol S .

Along with the usual axioms of equality, SA consists of the following axioms,
(SA1) 8x:.S.x/ D 0/,
(SA2) 8x8y.S.x/ D S.y// ! x D y,
and the induction schema .ind/

8 Ny
��
'.0; Ny/ ^ 8x

�
'.x; Ny/ ! '

�
S.x/; Ny

���
! 8x'.x; Ny/

�
;

for every formula '.x; Ny/ (in SA-language) whose free variables are among x; Ny. Let
us consider the following SCIQ-formula ˛:

˛ WD 9x.x ^ ˛1 ^ ˛2/ ^ ˛3; where
˛1 WD 8y

�
y ! :

�
.y � y/ � x

��
;

˛2 WD 8z
��
z ^ 8y

�
y ! :

�
.y � y/ � z

���
! x � z

�
;

˛3 WD 8x8y
��
x ^ y ^

�
.x � x/ � .y � y/

��
! .x � y/

�
:

Let SCISA�

Q be the class of all SCIQ-models in which the formula ˛ is true.

Proposition 4.9 Let a structure M D .M;�;u;t;);,; ı;F ;
N
;
L
;D/ be

an SCIQ-model. Then, the following conditions are equivalent.
1. M is an SCISA�

Q -model.
2. There exists exactly one 1 2 D such that the following conditions are satisfied

for all a; b 2 D:
� .a ı a/ ¤ 1,
� .a ı a/ D .b ı b/ implies a D b.

Proof Let M D .M;�;u;t;);,; ı;F ;
N
;
L
;D/ be an SCIQ-model. As-

sume that ˛ is true in M. Then, for every valuation v in M there must exist 1 2 M

such that kx ^ ˛1 ^ ˛2; v
1
xk 2 D, so 1 2 D, k˛1; v

1
xk 2 D, and k˛2; v

1
xk 2 D; that

is:
(a) k8y.y ! :..y � y/ � x//; v1

xk 2 D, and
(b) k8zŒ.z ^ 8y.y ! :..y � y/ � z/// ! x � z�; v1

xk 2 D.
By condition (a), we obtain that for all a 2 D, .a ı a/ ı 1 … D; that is,
.a ı a/ ¤ 1. From condition (b) it follows that whenever z 2 D satisfies
.a ı a/ ¤ z for all a 2 D, then z D 1. Hence, 1 is the unique element
in D such that .a ı a/ ¤ 1, for all a 2 D. We have also that the formula
˛3 D 8x8yŒ.x ^ y ^ ..x � x/ � .y � y/// ! .x � y/� is true in M, from which
it follows that for all a; b 2 D, if .a ı a/ D .b ı b/, then a D b.

The other direction can be proved in a similar way.
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Hence, in all SCISA�

Q -models the element 1 is uniquely determined. Thus, in what
follows, SCISA�

Q -models will be identified with structures of the form

M D

�
M;�;u;t;);,; ı;F ;

O
;
M

; 1;D
�

that satisfy appropriate conditions listed above. Furthermore, we may extend the
language of SCIQ with a propositional constant 1 interpreted in SCISA�

Q -models as 1.
Formulas of this new language will be called SCISA

Q -formulas. Now, we will show
that the induction schema (ind) can be expressed by an SCISA

Q -formula. Let ' be any
SCISA

Q -formula, and let ˇ' be a formula of the form

8 Ny
h�^

Ny !
�
'.1; Ny/ ^ 8x

�
x ^ '.x; Ny/ ! '.x=x � x; Ny/

���
! 8x

�
x ! '.x; Ny/

�i
:

SCISA�

Q -models in which formulas ˇ' are true for all SCISA
Q -formulas ' will be re-

ferred to as SCISA
Q -models. In fact, SCISA

Q -models are SCISA�

Q -models that satisfy an
infinite number of formulas. We define the translation � from terms and formulas in
the language of SA into SCISA

Q -formulas as follows:

� �.x/
df
D x, for any variable x,

� �.0/
df
D 1,

� �.S.t//
df
D .�.t/ � �.t//, for any term t ,

� �.t. Nx/ D t 0. Ny//
df
D .

V
Nx ^

V
Ny/ ! .�.t. Nx// � �.t 0. Ny///, for any terms t ,

t 0 and finite sequences Nx and Ny,
� �.:.t. Nx/ D t 0. Ny///

df
D .

V
Nx ^

V
Ny/ ! :.�.t. Nx// � �.t 0. Ny///, for any

terms t , t 0 and finite sequences Nx and Ny,
� �.::'/

df
D �.'/,

� �.' !  /
df
D �.:'/ _ �. /,

� �.:.' !  //
df
D �.'/ ^ �.: /,

� �.8x'/
df
D 8x.x ! �.'//,

� �.:8x'/
df
D 9x.x ^ �.:'//.

As in the case of group theory, we can show that the translation � preserves validity
of SA-formulas; that is, the following theorem holds.

Theorem 4.10 For every SA-formula ', the following conditions are equivalent:
1. ' is SA-valid;
2. �.'/ is true in all SCISA

Q -models.

Hence, the first-order theory of successor arithmetic is expressible in an SCIQ-theory.
Note that the non-Fregean interpretation of SA presented above is essentially differ-
ent from the non-Fregean interpretations of group, ring, and field theories. The for-
mer involves infinitely many axioms, whereas each of the latter can be expressed as
a single conjunction of finitely many SCIQ-formulas.

Furthermore, we would also like to point out that the method presented in this
section can be extended to the full Peano arithmetic with addition and multiplication,
and to other first-order mathematical theories.
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5 Spectra

In this section, we consider the SCIQ-spectra, that is, the sets of sizes of finite models
satisfying a given SCIQ-sentence. Our methods and results resemble those of Ronald
Fagin in [4]. However, the details differ significantly, as will be seen.

A partial SCIQ-model M0 is called a fragment of another partial SCIQ-model
M if the universes and the Boolean connectives are the same, F 0 � F , andL0

D
L

� F 0,
N0

D
N

� F 0.

Lemma 5.1 Let M be a partial SCIQ-model, and let M0 be a fragment of M

such that M0 is sufficient for an SCIQ-formula '. Then, M is sufficient for ', and
k'; vkM0 D k'; vkM, for every partial valuation v in M sufficient for '.

Proof We proceed by induction on the complexity of '. The claim is trivially
true for propositional variables, and the connective steps are quite straightforward.
So, assume that ' is the formula 9x and that the claim holds for  . Let v be a
valuation on M. Now, to find the value k9x ; vkM according to the definition, we
let f WM ! M be the following function:

f .t/ D k ; vtxkM:

By the induction hypothesis, the value f .t/ is well defined for every t 2 M , and, in
fact, f .t/ D k ; vtxkM0 . On the other hand, since M0 is sufficient for ', it holds that
f 2 F 0, and hence f 2 F . Therefore,

k'; vkM D

M
f D

M0

f D k'; vkM0 :

Hence, the claim also holds for '. The universal quantifier step is similar.

Lemma 5.2 For every SCIQ-formula ', there is a polynomial p' such that for
every finite SCIQ-model M, there is a fragment M0 of M such that jM0j2 � p'.jMj/

and M0 is sufficient for '.

Proof Letˆ be the set of all subformulas of ', and letW be the set of all variables
occurring in '. For  2 ˆ, x 2 W , and vWW ! M , let f ;x;vWM ! M be defined
as

f ;x;v.t/ D k ; vtxkM:

Every such function f ;x;v is well defined, as M is an SCIQ-model. Now, it suffices
to let

F 0
D ¹f ;x;v j  2 ˆ; x 2 W; v 2

WM º:

Clearly, M0 is a fragment of M sufficient for '. Furthermore, the sets ˆ and W are
fixed, and jF 0j � jˆj � jW j � jM jjW j.

In the rest of this section, we assume that the models and any internal data structures
are coded in a reasonable way. In particular, we make the following assumptions
concerning the coding OM of a model M.

� It can be checked in polynomial time whether a given string is a syntactically
valid coding of a partial SCIQ-model.

� There is a fixed polynomial p such that

jMj C jMj2 � j OMj � p
�
jMj C jMj2

�
:

� Each of the following operations takes at most p.jMj C jMj2/ steps:
– given a 2 M , find the value of �a,
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– given a; b 2 M , find the value of a u b, a t b, a ) b, a , b, or a ı b,
– given f WM ! M , find out whether f 2 F ,
– given f 2 F , find the value of

N
f or

L
f ,

– given a 2 M , find out whether a 2 D.
It is easy to see that the above assumptions yield the following.

Fact 5.3 Given a syntactically valid coding, it can be checked in polynomial time
whether it meets the semantic requirements of a partial SCIQ-model.

Lemma 5.4 For a fixed SCIQ-sentence ', there is a polynomial q such that it can
be checked in time q.j OMj/ whether ' is true in a given finite partial SCIQ-model M.

Proof Let ˆ and W be as in the previous proof. Write ˆ as ¹ 0;  1; : : : ;  kº,
where the formulas  i are ordered by increasing length (in particular,  k D '), with
formulas of equal length ordered arbitrarily. For i D 0; 1; : : : ; k, evaluate v. i / for
each partial valuation vWW ! M . As the immediate subformulas of i have already
been evaluated, this can be done by table lookups. There are jM jjW j partial valua-
tions to consider. When  i is a propositional variable or formed with a connective,
its value can be determined with at most three table lookups. When  i is of the form
9x� , finding out its value for a given partial valuation v involves the following steps.

1. For each t 2 M , look up the value k�; vtxk and store it as f .t/.
2. For each g 2 F and each t 2 M , look up g.t/ and compare it with f .t/. If

they match for every t , look up
L
g and return it.

3. If no g matches f , the model M is not sufficient for  i and hence not for '
either. The input can be rejected.

Hence, the number of storage/lookup operations needed is O.jM jjW j � jM j � jF j/,
which is O.njW jC2/ for inputs of length n.

Lemma 5.5 For a fixed SCIQ-sentence ', the set of inputs � such that there is an
SCIQ-model M satisfying M ˆ ' and jMj D j� j is in NP.

Proof A nondeterministic Turing machine can first guess a polynomial-sized par-
tial SCIQ-model M with jMj D j� j and then check that M ˆ '. According to
Lemma 5.2, it can be assumed without loss of generality that jMj2 is bounded by a
fixed polynomial, and hence M can be coded as a polynomial-sized string. Checking
the truth of ' in M can again be done in polynomial time.

To prove the reverse inclusion, we restrict our attention to finite SCIQ-models M

with a built-in linear ordering and other definable properties that allow us to code a
polynomial-length computation with a nondeterministic Turing Machine.

An SCIQ-model M is called linear if and only if it satisfies the following condi-
tions.

1. The domain of M is linearly ordered, with the smallest element denoted by 0
and the largest element by N .

2. We have D D M n ¹0º.
3. The operations t, u, and ı are defined as follows:

a t b
df
D max.a; b/; a u b

df
D min.a; b/; a ı b

df
D

´
N; if a D b,
0; otherwise.

Lemma 5.6 The class of linear SCIQ-models is SCIQ-definable.
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Proof Let 'L WD 8x8y8z.'1 ^ '2 ^ '3 ^ '4 ^ '5 ^ '6/, where

'1 WD
�
x � .x ^ y/

�
_

�
y � .x ^ y/

�
;

'2 WD
�
x ^ .y ^ z/

�
�

�
.x ^ y/ ^ z

�
;

'3 WD .x ^ y/ � .y ^ x/;

'4 WD
�
x � .x ^ y/

�
�

�
y � .x _ y/

�
;

'5 WD :x !
�
x � .x ^ y/

�
;

'6 WD
�
.x � x/ ^ y

�
� y:

Now, if '1 through '3 are true, it follows that ^ is indeed a minimum operation in
a linear ordering. The formula '4 ensures that _ is the corresponding maximum
operation. The formula '5 implies that the minimal element is the only one not inD.
In particular, a ı b D 0 whenever a ¤ b. Finally, it follows from '6 that also
a ı a D N for every a.

We will code the contents of the tape and the location of the head with the values
of the existential quantifier applied to truth functions that encode tuples of elements.
The existence of an accepting computation is expressible with an SCIQ-sentence.
Instead of presenting the whole complicated construction at once, we first formulate
a suitable sentence in a first-order language and later present a way to translate it
into SCIQ.

As the details of the definition of a Turing machine vary slightly in the literature,
we summarize our choices for clarity. A nondeterministic Turing machine T is for-
mally a 6-tuple h†; a0;S ; s1; sq;Ri, where † D ¹a1; : : : ; apº is the alphabet; a0 is
the blank symbol; S D ¹s1; s2; : : : ; sqº is the set of states, with s1 being the initial
state and sq the accepting state; and R is the set of rules. A rule of T is of the form
ha; s; a0; s0; Xi, where a; a0 2 † [ ¹a0º, s 2 S n ¹sqº, s0 2 S , and X 2 ¹L;Rº.
A computation on input � 2 †� starts in state s1, with the elements of � stored in
consecutive cells and the remaining cells blank, and the head on the first element
of � . Whenever T is in state s with the head scanning a, any rule hs; a; s0; a0; Xi can
be applied, changing the state to s0, writing the symbol a0 on the tape, and moving
the head to the left or right according to X . When there are no applicable rules, the
machine halts. In particular, T always halts once it reaches the accepting state sq .
The length of a computation is the number of configurations, that is, one more than
the number of times a rule is applied. For instance, the length of a computation
that halts right in the starting configuration is 1. We follow the convention that once
a computation halts, further steps are defined to retain the configuration unchanged.
For technical convenience, we assume a Turing machine always scans its entire input.

Fix a Turing machine T D h†; a0;S ; s1; sq;Ri, where † D ¹a1; : : : ; apº and
S D ¹s1; : : : ; sqº. Write I and J for the index sets ¹0; 1; : : : ; qº and ¹0; 1; : : : ; pº,
respectively. Let LT be the first-order language with the binary relation symbolsKij
for i 2 I; j 2 J , and another binary relation symbol <. A computation of length at
most l can be coded as an LT -model M D .M;<;Kij /i2I;j2J , where M is a finite
universe of size l , whose elements stand for both time steps and tape locations; < is
a linear ordering on M ; and each Kij is a binary relation such that K0j .t; x/ holds
if and only if the symbol in cell x at step t is aj and the head is not on cell x at step
t , and Kij .t; x/ holds if and only if at step t , the head is on cell x, the machine is
in state si , and cell x contains aj . The model codes the contents of l consecutive
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cells at l consecutive time steps. The minimal element represents the start of the
computation, as time, and the leftmost cell scanned during the computation, as tape
location. This suffices to code the entire computation, since there are at most l steps
to code, by the assumption, and the cells scanned by the head form a contiguous
block of length at most l , since the head moves only one step at a time until the
computation stops. Moreover, the entire input is coded in the model, as the machine
scans it before halting. It follows directly that for all t; x 2 M , there is exactly one
relation Kij such that Kij .t; x/ holds. In fact, this is our reason for choosing such a
coding instead of a simpler one.

The following lemma is fairly straightforward, but checking all the details gets
tedious. We use the notation of the preceding outline.

Lemma 5.7 There is a first-order sentence 'T satisfying the following conditions.
1. Every finite model of 'T codes an accepting computation of T on some input
� 2 †�.

2. Every accepting computation of T of length less than l is coded by a model
M of 'T with jM j D l .

Proof First, let  be the conjunction of the universal closures of the formulas TC1
through TC12 below. We write h.t; x/ for the formula :

W
j2J K0j .t; x/, indicat-

ing that the head is scanning cell x at time t , and we write s.t; t 0/ for the formula
t < t 0 ^ :9u.t < u ^ u < t 0/, indicating that t 0 is the immediate successor of t .

TC1 .x < y ^ y < z/ ! x < z;

TC2 x < y $ :.x D y _ y < x/;

TC3
_

i2I;j2J

Kij .t; x/;

TC4 :
�
Kij .t; x/ ^Ki 0j 0.t; x/

�
; for i 2 I , j 2 J , .i; j / ¤ .i 0; j 0/;

TC5 8t9xh.t; x/;

TC6
�
h.t; x/ ^ h.t; y/

�
! x D y;

TC7 9t9x9y
h
:9u.u < t/ ^ h.t; x/ ^ 8z

�_
i2I

Ki0.t; z/ $ .z < x _ y < z/
�i
;

TC8 9t9x
�
:9y.y < x/ ^ h.t; x/

�
;

TC9 9t9x
�
:9u.u < t/ ^

_
j2J

K1j .t; x/
�
;

TC10 9t9x
�_
j2J

Kqj .t; x/
�
;

TC11
�
s.t; t 0/ ^ h.t; x/ ^ h.t 0; x0/

�
!

�
s.x; x0/ _ .x D x0/ _ s.x0; x/

�
;

TC12
�
s.t; t 0/ ^K0j .t; x/

�
!

_
i2I

Kij .t
0; x/; for j 2 J :

The formulas TC1 and TC2 ensure that < is indeed a linear ordering. The rest of
the above formulas depend only on the states and the alphabet of T , but not directly
on its rules. The formula TC3 says that at least one of the predicates Kij holds for
each pair .t; x/. TC4 is actually a finite set of formulas, which together express the
requirement that at most one of the Kij holds. The formulas TC5 and TC6 say that
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the head is at exactly one location x at any given moment t . The formula TC7 says
that the nonblank cells form a contiguous string at the start of the computation, with
the head scanning the leftmost one. The formula TC8 ensures that the leftmost cell is
scanned at some point during the computation. The formulas TC9 and TC10 express
the conditions that the computation starts at state s1 and reaches the accepting state
sq , respectively. The formula TC11 allows the head to move at most one step at a
time. Finally, the formulas TC12 say that the contents of a cell not being scanned
remain the same between successive steps.

Now, let us consider how to take the rules of T into account. We want to find
a formula �.t; t 0x; x0/ that is satisfied by consecutive time steps t and t 0 and the
corresponding head locations x and x0 exactly when the rules of T are followed. As
T is a nondeterministic machine, it is most natural to look for a disjunction of all the
possible configuration changes allowed by the rules.

We are only interested in accepting computations. Therefore, we let the nonac-
cepting halting states be dead ends, with no satisfiable clauses attached to them. On
the other hand, we allow for an accepting state to be simply copied to the next step.
So, let �1.t; t 0; x/ be the formula_

j2J

�
Kqj .t; x/ ^Kqj .t

0; x/
�
:

Further, for each rule r D hsi ; aj ; si 0 ; aj 0 ; Li, let �r .t; t 0; x; x0/ be the formula

s.x0; x/ ^Kij .t; x/ ^K0j 0.t 0; x/ ^

_
u2J

Ki 0u.t
0; x0/;

and for a rule r D hsi ; aj ; si 0 ; aj 0 ; Ri, let �r .t; t 0; x; x0/ be

s.x; x0/ ^Kij .t; x/ ^K0j 0.t 0; x/ ^

_
u2J

Ki 0u.t
0; x0/:

Let �2 be the disjunction of all the �r corresponding to the rules of T , and let � be
the sentence

8t8t 08x8x0
��
s.t; t 0/ ^ h.t; x/ ^ h.t 0; x0/

�
!

�
�1.t; t

0; x/ _ �2.t; t
0; x; x0/

��
:

Suppose that the model M codes an accepting computation of T . Let t and t 0 be
two consecutive time steps, and let x and x0 be the respective head locations. If
the machine is in the accepting state at time t , then some disjunct of �1.t; t 0; x/ is
satisfied. If not, a rule r has been applied at t , and it can be checked that �r .t; t 0; x; x0/

is satisfied. So, � is true in every model that codes an accepting computation of T .
Now, let 'T be the sentence  ^ � . It is a matter of simple but tedious checking

that 'T is indeed as required.

Assume now that T runs in polynomial time. Then, there is an exponent r such
that T runs for fewer than nr steps before stopping on input of length n, for n � 2.
Consider a linear SCIQ-model M D .M;�;u;t;);,; ı;F ;

N
;
L
;D/ such that

jDj � max.2r; .p C 1/.q C 1//. We will define an LT -model M�, whose elements
are r-tuples of elements of M , ordered lexicographically, and the relations Kij are
defined in terms of the values of

L
on certain functions defined from the arguments.

Let a0; a1; : : : ; ar�1; b0; b1; : : : ; br�1 be the smallest 2r elements of D, listed
in ascending order. Let ˛i .x/ and ˇi .x/ be the defining formulas for ai and bi ,
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respectively. That is,

˛0.x/
df
, :9y.y < x/;

˛iC1.x/
df
, 9y

�
˛i .y/ ^ y < x ^ :9z.y < z ^ z < x/

�
;

ˇ0.x/
df
, 9y

�
˛r�1.y/ ^ y < x ^ :9z.y < z ^ z < x/

�
;

ˇiC1.x/
df
, 9y

�
ˇi .y/ ^ y < x ^ :9z.y < z ^ z < x/

�
:

For Ns; Nt 2 M r and u 2 M , define

fNs;Nt .u/ D

8̂̂̂<̂
ˆ̂:
N; if u D 0,
si ; if u D ai for some i < r ,
ti ; if u D bi for some i < r ,
0; otherwise.

Define F.Ns; Nt / D
L
fNs;Nt .

Now, let cij , for i 2 I and j 2 J , be the smallest .p C 1/.q C 1/ elements of D,
listed according to the lexicographic ordering of the pairs .i; j /, and defineK�

ij .Ns; Nt /

if F.Ns; Nt / D cij . Let M� D .M r ; <�; K�
ij /i2I;j2J , where <� is the lexicographic

ordering on M r .

Lemma 5.8 For every LT -sentence ', there is an SCIQ-sentence '0 such that for
every linear SCIQ-model M, it holds that M ˆ '0 if and only if M� ˆ '.

Proof We define a translation inductively for all LT -formulas, with each free vari-
able x replaced with an r-tuple .x0; x1; : : : ; xr�1/. As the universe of M� is M r ,
we can translate a valuation v in M into a valuation v� in M� simply by

v�.x/ D
�
v.x0/; v.x1/; : : : ; v.xr�1/

�
:

Now the claim is that for every valuation v in M, it holds that M; v ˆ '0 if and only
if M�; v� ˆ '. The case of D and < is straightforward. When ' is x D y, let '0 be

.x0 � y0/ ^ .x1 � y1/ ^ � � � ^ .xr�1 � yr�1/:

When ' is x < y, let '0 be

.x0 < y0/ _
�
.x0 � y0/ ^ .x1 < y1/

�
_ � � �

_
�
.x0 � y0/ ^ .x1 � y1/ ^ � � � ^ .xr�2 � yr�2/ ^ .xr�1 < yr�1/

�
;

where xi < yi is short for .xi � .xi ^ yi //^ :.xi � yi /. It is easy to see that these
translations preserve truth.

Now, assume that ' is Kij .x; y/. We define '0 in two stages. First, let 'C be the
formula .9z�. Nx; Ny; z; Ns; Nt ; u// � w, where � is the following formula:

.z � u/ _
�
.z � s0/ ^ x0

�
_

�
.z � s1/ ^ x1

�
_ � � � _

�
.z � tr�1/ ^ yr�1

�
:

Then, to get rid of the free variables u, sk , tk , and w, which stand for 0, ak , bk , and
cij , respectively, we use the fact that their intended values are uniformly definable in
linear models. Let '0 be the formula

9u9s09s1 � � � 9sr�19t09t1 � � � 9tr�19w�
:u ^ ˛0.s0/ ^ ˛1.s1/ ^ � � � ^ ˇ0.t0/ ^ � � � ^ ˇr�1.tr�1/ ^ ij .w/ ^ 'C

�
:
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It follows from the definition of an SCIQ-valuation for the quantifiers that, outside
the scope of �, the quantifiers work exactly as in first-order logic. So, M; v ˆ '0

if and only if M; vC ˆ 'C, where vC.u/ D 0; vC.w/ D cij ; vC.sk/ D ak and
vC.tk/ D bk , for k < r ; and vC.x/ D v.x/ for all other variables x. To determine
the value k'C; vCk, we first examine the values k�; .vC/mz k for each m 2 M . For
m D 0, we have kz � u; .vC/0zk D N , and therefore k�; .vC/0zk D N , as dis-
junction corresponds to the maximum. As the values a0; a1; : : : ; br�1 are all distinct
and nonzero, at most one of the clauses in � can be true for any given valuation. In
particular,�; .vC/ak

z

 D
.z � ak/ ^ xk ; .v

C/ak
z

 D min
�
N;

xk ; .vC/ak
z

�
D vC.xk/ D v.xk/;

for any k < r . Likewise, k�; .vC/
bk
z k D v.yk/ for k < r . For the remaining val-

ues m 2 M , none of the clauses of � are satisfied, so k�; .vC/mz k D 0 for them.
Hence, it holds for every m 2 M that k�; .vC/mz k D fv�.x/;v�.y/.m/, and conse-
quently

k9z�; vC
k D

M
fv�.x/;v�.y/ D F

�
v�.x/; v�.y/

�
:

It follows that

M; v ˆ '0
, k'0; vk 2 D

, k'C; vC
k 2 D

, k9z�; vC
k D kw; vC

k

, F
�
v�.x/; v�.y/

�
D cij

, M�; v�
ˆ ':

Thus, the formula '0 preserves truth.
The rest is again simple, due to the fact that we do not need to pay attention

to the actual values of the formulas, only to whether the values belong to D. The
connectives are translated trivially:

.:'/0 D :.'0/;

.' ^  /0 D .'0/ ^ . 0/;

.' _  /0 D .'0/ _ . 0/;

.' !  /0 D .'0/ ! . 0/;

.' $  /0 D .'0/ $ . 0/:

The quantifiers only need adjustment for the number of variables:

.9x'/0 D 9x09x1 � � � 9xr�1'
0;

.8x'/0 D 8x08x1 � � � 8xr�1'
0:

Now that we have a truth-preserving translation, we need to make sure the models
we need actually exist.

Lemma 5.9 For every LT -model N such that N ˆ  , where  is as in the proof
of Lemma 5.7 above, and jN j D nr for some n � max.2r; .p C 1/.q C 1// C 1,
there is a linear SCIQ-model M such that M� Š N .
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Proof Let M D ¹0; 1; : : : ; n � 1º, and let < be the natural ordering on M . Then
<� is a well-defined linear ordering on M r . Moreover, the elements ai , bi , and cij
can be chosen as above. LetD, t, u, and ı be defined according to the definition of a
linear model, and let �0 D n�1. Furthermore, let F D MM . As N ˆ TC1^TC2,
the universe of N is linearly ordered by <N . Moreover, jN j D nr D jM r j.
Hence, there is a unique order-preserving bijection gWM r ! dom.N /. Now, for
any tuples Nx; Ny 2 M r , we define

L
f Nx; Ny D cij for the unique i; j such that

N ˆ Kij .g. Nx/; g. Ny//. For other functions f WM ! M , letM
f D

´
0; if f .x/ D 0 for all x,
N; otherwise.

Finally, for f WM ! M , letO
f D

´
0; if f .x/ D 0 for some x,
N; otherwise.

Now, M D .M;�;t;u; ı;F ;
N
;
L
/ is a linear SCIQ-model by construction, and

it is straightforward to check that M� is indeed isomorphic to N .

We still need another SCIQ-sentence, which cannot be expressed in LT , to make sure
the size of the input equals the size of the model.

Lemma 5.10 There is an SCIQ-sentence 's that is true in a linear SCIQ-model M

satisfying 'T if and only if the size of the input coded by M� equals the size of M.

Proof Let 's say that for each m 2 M , there is exactly one r-tuple Ny D .y0; y1;

: : : ; yr�1/ such that yr�1 D m and F. Nx; Ny/ ¤ c00 holds for the minimal possible Nx.
So, if M ˆ 's ^ 'T , then at the beginning of the computation coded by M�, there
are exactly jMj many cells c such that c is being scanned or contains a nonblank
symbol. As jMj � 2 for any SCIQ-model M, the input cannot be empty, so the head
is scanning a nonblank symbol and the length of the input equals jMj. On the other
hand, any jMj many consecutive r-tuples satisfy the given condition, so the converse
implication holds as well.

To define 's explicitly, let first  .y; z/ be the LT -formula

9x
�
:9w.w < x/ ^ :K00.x; y/ ^

�
:K00.x; z/ ! z D y

��
:

Now, let 's be the following SCIQ-sentence:

8y9y09y1 � � � 9yr�18z08z1 � � � 8zr�1

�
yr�1 D y ^

�
zr�1 D y !  0. Ny; Nz/

��
;

where  0 is as in Lemma 5.8 above. It is straightforward to check that 's is as
required.

The coding works only for large enough models. A finite number of exceptional
cases can be handled directly.

Lemma 5.11 Let B � N n ¹0; 1º be finite. Then, there is an SCIQ-sentence 'B
such that for any SCIQ-model M, it holds that M ˆ 'B if and only if jMj 2 B .

Proof For each n 2 B , let 'n be the sentence

9x09x1 � � � 9xn�1

h� ^
i<j<n

:.xi � xj /
�

^ 8y
_
i<n

.y � xi /
i
:
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It is clear that M ˆ 'n if and only if jMj D n. Let now 'B be the disjunctionW
n2B 'n.

Finally, we are able to prove the main theorem of this section.

Theorem 5.12 A set A � N n ¹0; 1º is the spectrum of an SCIQ-sentence if
and only if A is the set of lengths of inputs accepted by a polynomial-time non-
deterministic Turing machine.

Proof The implication from left to right is Lemma 5.5. Assume then that A is
accepted by a polynomial-time nondeterministic Turing machine T . Let n 2 A

be large enough for the coding described above. Then, there is an LT -model N

such that jN j D nr and N codes a computation of T with input of length n. By
Lemma 5.9, there is a linear SCIQ-model M such that M� Š N . Hence, M� ˆ 'T ,
and therefore M ˆ '0

T . Moreover, jMj D n, so M ˆ 's . Of course, M ˆ 'L.
On the other hand, let M be an SCIQ-model such that M ˆ '0

T ^ 's ^ 'L. Then,
M is linear, and hence M� exists. Now, M� ˆ 'T , which means that M� codes an
accepting computation of T . Furthermore, the size of the input equals jMj. Thus,
jMj 2 A.

Finally, let B D ¹n 2 A j n � max.2r; .p C 1/.q C 1//º. Then, B is finite,
and hence, by Lemma 5.11, there is an SCIQ-sentence 'B that is true in a model
M whenever M is too small for the coding and jMj 2 A. Hence, the spectrum of
.'0
T ^ 's/ _ 'B is exactly A.

6 Translation Theorem for SCIQ and Its Applications

In this section we show how to interpret SCIQ as a theory of classical two-sorted
first-order language. Many-sorted first-order logic is suitable for describing models
that divide naturally into several different parts, such as linear spaces (vectors and
scalars).

In a many-sorted language, every syntactically valid term has a unique sort, which
determines how the term may be used. The sort of a variable symbol is inherent in
the symbol. A predicate signature indicates the sorts of the arguments. A func-
tion signature indicates the sorts of the arguments and the sort of the value. For
instance, a vector space has two different multiplications, of signatures .S; V / ! V

and .S; S/ ! S (scalar-by-vector and scalar-by-scalar, respectively). The first one
may be applied to a scalar and a vector, in this order, resulting in a vector term.
Trying to apply the scalar-by-vector multiplication operator to two scalar terms does
not yield a syntactically valid term. Equality is defined for two arguments of the
same sort. (A purist might prefer to have a separate equality symbol for each sort.)
A quantifier can bind a variable of any sort.

A many-sorted model has one nonempty universe of each sort. The function
symbols are interpreted as functions defined on the Cartesian product of the universes
corresponding to the signature, and relation symbols as subsets of the appropriate
Cartesian products. The syntactic restrictions ensure that every valid term has a
value under a given interpretation.

In suitable contexts, many-sorted logic simplifies definitions by syntactically dis-
allowing semantically meaningless expressions, such as the sum of a vector and a
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scalar, thereby avoiding the need to introduce a dummy element to represent an unde-
fined value or to find another method to resolve the clash between the usual first-order
formalism and the constraints of the application.

Note that the sort symbols do not need to appear explicitly in the many-sorted
formulas; rather, they can be thought of as meta-level constructs affecting the syntax.

Now, we define a two-sorted first-order language appropriate to express the
SCIQ-language and the translation between the languages. Next, we construct the
class of first-order models that correspond to SCIQ-models, and then we prove a
correspondence theorem about the translation.

The language LSCIQ contains two sorts, I (individuals) and F (functions). The
vocabulary of LSCIQ consists of the symbols from the following pairwise dis-
joint sets: IV D ¹x; y; z; : : :º, a countably infinite set of individual variables;
FV D ¹f; g; h; : : :º, a countably infinite set of function variables; ¹:�;

N�
;
L�

º,
the set of unary function symbols; ¹_�;^�;!�;$�;��;V�º, the set of binary
function symbols; ¹D;D�º, the set of predicate symbols, where D is the equality
predicate and D� is a unary predicate; ¹:;_;^;!;$º, the set of the classical
propositional operations of negation, disjunction, conjunction, implication, and
equivalence, respectively; and ¹8; 9º, the set of quantifiers.

All arguments and values of the function and relation symbols are individuals,
with the exceptions of

N�,
L�, and V�, with signatures F ! I , F ! I , and

.F; I / ! I , respectively, and D, which is the standard exception, as explained
above. The set of LSCIQ -formulas is defined in a standard way, subject to the con-
straints imposed by the sorts.

In what follows, we will identify the set IV of individual variables in LSCIQ with
the set V of propositional variables in SCIQ. LSCIQ -models are structures of the form

M D

�
M;�;u;t;);,; ı;F ;

O
;
M

;V ;D
�
;

where M and F are the universes corresponding to the sorts I and F , respectively;
�, u, t, ), ,, ı,

N
,

L
, and V are the functions that interpret the function

symbols :�, ^�, _�, !�, $�, ��,
N�,

L�, and V�, respectively; and, moreover,
D is a relation that interprets the predicate symbolD�. The satisfaction and the truth
of an LSCIQ -formula in an LSCIQ -model are defined in the standard way, as usual in
first-order logics.

Most of the symbols we use to denote the functions and relations in an
LSCIQ -model are the same that we use in the context of SCIQ-models, and their
intended meanings are indeed the same. The lone exception is V , which we use
to denote the evaluation function. That is, intuitively V.f; x/ D f .x/ for a unary
function f and an element x. (Technically, of course, we cannot express any such
condition in LSCIQ .)

The fact that a quantification in SCIQ does not correspond to any simple alge-
braic operation presents a slight technical difficulty, which we resolve by defining
our translation from SCIQ to LSCIQ in two steps: first, we define inductively for each
SCIQ-formula '. Nx/ a quasitranslation '0. Nx; y/, which is really a truth-preserving
translation of '. Nx/ D y; then, a truth-preserving translation of ' itself is easy to
define.
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Let '. Nx/ be an SCIQ-formula. An LSCIQ -formula '0. Nx; y/ is said to be a qua-
sitranslation of '. Nx/ for '0. Nx; y/, defined inductively as

.x/0
df
D .y D x/; for any propositional variable x 2 V;�

:'. Nx/
�0 df

D 9z
�
'0. Nx; z/ ^ y D :

�z
�
;�

'. Nx/ _  . Nz/
�0 df

D 9w9u
�
'0. Nx;w/ ^  0. Nz; u/ ^ y D .w _

� u/
�
;�

'. Nx/ ^  . Nz/
�0 df

D 9w9u
�
'0. Nx;w/ ^  0. Nz; u/ ^ y D .w ^

� u/
�
;�

'. Nx/ !  . Nz/
�0 df

D 9w9u
�
'0. Nx;w/ ^  0. Nz; u/ ^ y D .w !

� u/
�
;�

'. Nx/ $  . Nz/
�0 df

D 9w9u
�
'0. Nx;w/ ^  0. Nz; u/ ^ y D .w $

� u/
�
;�

'. Nx/ �  . Nz/
�0 df

D 9w9u
�
'0. Nx;w/ ^  0. Nz; u/ ^ y D .w �

� u/
�
;�

8z'. Nx; z/
�0 df

D 9f
h
8w'0

�
Nx;w;V�.f;w/

�
^ y D

O�

f
i
;�

9z'. Nx; z/
�0 df

D 9f
h
8w'0

�
Nx;w;V�.f;w/

�
^ y D

M�

f
i
:

An LSCIQ -formula '� is said to be a translation of '. Nx/ whenever

'�. Nx/
df
D 9y

�
'0. Nx; y/ ^D�.y/

�
:

The non-Fregean theory in LSCIQ -language, NF-theory for short, is the LSCIQ -theory
with the following axioms:

(NF1) 8xŒD�.:�x/ $ :D�.x/�,
(NF2) 8x8yŒD�.x _� y/ $ .D�.x/ _D�.y//�,
(NF3) 8x8yŒD�.x ^� y/ $ .D�.x/ ^D�.y//�,
(NF4) 8x8yŒD�.x !� y/ $ .D�.x/ ! D�.y//�,
(NF5) 8x8yŒD�.x $� y/ $ .D�.x/ $ D�.y//�,
(NF6) 8x8yŒD�.x �� y/ $ x D y�,
(NF7) 8f ŒD�.

N�
f / $ .8xD�.V�.f; x///�,

(NF8) 8f ŒD�.
L�

f / $ .9xD�.V�.f; x///�,
(NF9) 8f; gŒ8x.V�.f; x/ D V�.g; x// ! f D g�,

(NF10) 8 Nx9f 8z 0. Nx; z;V�.f; z//, for every SCIQ-formula  . Nx; z/.
Let N D .N;�;u;t;);,; ı;F ;

N
;
L
;V ;D/ be an LSCIQ -model of the

NF-theory, and let f 2 F . We define

f �.t/
df
D V.f; t/; for all t 2 N;

O�

f � df
D

O
f;

M�

f � df
D

M
f:

Claim 6.1 For an LSCIQ -model N D .N;�;u;t;);,; ı;F ;
N
;
L
;V ;D/ of

the NF-theory, the structure N � D .N;�;u;t;);,; ı;F �;
N�

;
L�

;D/ is a
partial SCIQ-model, where F � df

D ¹f � j f 2 F º.

Indeed, by axioms (NF1)–(NF6), the operations �, u, t, ), ,, ı, and the rela-
tion D have to be defined so that .N;�;u;t;);,; ı;D/ is an SCI-model. From
the definitions of the functions

N� and
L�, and axioms (NF7)–(NF8), it follows

that these functions are well defined and satisfy the conditions required of partial
SCIQ-models.

For a valuation v on an LSCIQ -model N , we define a valuation v� on N � as
v�.x/ D v.x/, for all variables x 2 V.
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Lemma 6.2 Let ' be an SCIQ-formula, let N be an LSCIQ -model of the NF-theory,
and let v be a valuation on N . Then

(i) k'; v�k is defined in N �, and
(ii) N ; v ˆ '0. Nx; y/ if and only if N �; v� ˆ .y � '. Nx//.

Proof Let Na D v. Nx/; b D v.y/. We prove (i) and (ii) simultaneously by induction
on the complexity of the formula '. For an atomic formula '.x/ WD x, we have

N �; v�
ˆ y � '.x/ iff

.y � x/; v�
 2 D

iff b D a

iff N ; v ˆ .y D x/

iff N ; v ˆ '0.x; y/:

Assume (i) and (ii) hold for  . Nx/ and �. Nx/. By way of example, we will show that
they hold for formulas : . Nx/,  . Nx/ ^ �. Nx/, and 8z . Nx; z/.

N �; v�
ˆ y � : . Nx/ iff k.y � : . Nx//; v�

k 2 D

iff b D �k . Nx/; v�
k

iff there is c 2 N such that c D k . Nx/; v�
k and

b D �c

iff N ; v ˆ 9zŒ 0. Nx; z/ ^ y D :
�z�

iff N ; v ˆ '0. Nx; y/:

N �; v�
ˆ y �  . Nx/ ^ �. Nx/ iff k.y �  . Nx/ ^ �. Nx//; v�

k 2 D

iff b D .k . Nx/; v�
k u k�. Nx/; v�

k/

iff there are c; d 2 N such that c D k . Nx/; v�
k;

d D k�. Nx/; v�
k; and b D c u d

iff N ; v ˆ 9z9wŒ 0. Nx; z/ ^ � 0. Nx;w/ ^ y D .z

^
�w/�

iff N ; v ˆ '0. Nx; y/:

Now, let f be the function determined by the formula  . Nx; z/ and valuation v�.
Then

N �; v�
ˆ y � 8z . Nx; z/ iff

�
y � 8z . Nx; z/

�
; v�

 2 D iff b D

O
f:

Assume b D
N
f . By (NF10), there is g 2 F such that for all c 2 N , the

formula  0. Nx; c;V�.g; c// is true in the model N and b D
N�

g. Thus, the
formula 9f Œ8z 0. Nx; z;V�.f; z// ^ y D

N�
f � is satisfied by v in N ; hence

N ; v ˆ '0. Nx; y/. So there must be f 2 F such that for all c 2 N , the formula
 0. Nx; c;V�.f; c// ^ y D

N�
f is satisfied in a model N by v.

Let g.c/ D V�.f; c/, for all c 2 N . Then, for every c 2 N , the formula  0. Nx;

c; g.c// is satisfied in N by v. Thus, for every c 2 N , the formula g.c/ �  . Nx; c/

is satisfied in N � by v�; that is, g D f . Since the formula y D
N�

f is satisfied
in N , b D

N
f holds in N . Therefore, the formula y � 8z . Nx; z/ is satisfied in

N � by v�.
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Theorem 6.3 (Translation theorem) For every SCIQ-formula ', for every model
N of the NF-theory, and for every valuation v on N , the following holds:

N ; v ˆ '� if and only if N �; v�
ˆ ':

Proof Let ' be an SCIQ-formula, let N be a model of NF-theory, and let v be a
valuation on N . Then, we have

N ; v ˆ '�. Nx/ if and only if N ; v ˆ 9y
�
'0. Nx; y/ ^D�.y/

�
:

Thus, N ; v ˆ '�. Nx/ holds if and only if there exists c 2 N such that the formula
'0. Nx; c/ ^ D�.c/ is satisfied in a model N by v. By Lemma 6.2, the latter holds if
and only if there exists c 2 N such that N � satisfies c ı k'. Nx/k 2 D and c 2 D,
which is equivalent to N �; v� ˆ '. Nx/.

Given an SCIQ-model M D .M;�;u;t;);,; ı;F ;
N
;
L
;D/, an LSCIQ -

structure determined by M is of the form

M�
D

�
M;�;u;t;);,; ı;F ;

O
;
M

;V ;D
�

such that V W F �M ! M is a function that satisfies V.f; t/ D f .t/, for all f 2 F ,
t 2 M . Clearly, for every SCIQ-model M, the structure M� is an LSCIQ -model, as
the following fact states.

Fact 6.4 For every SCIQ-model M, the structure M� is an LSCIQ -model of
NF-theory and .M�/� D M.

Thus, by Theorem 6.3 we get the following.

Corollary 6.5 For any SCIQ-formula ', SCIQ-model M, and valuation v on M�,
the following holds:

M�; v ˆ '� if and only if M; v�
ˆ ':

We will apply the translation theorem to prove the Löwenheim–Skolem theorem for
the logic SCIQ.

Theorem 6.6 (Löwenheim–Skolem theorem) Let T be an SCIQ-theory. If there is
an infinite SCIQ-model for T , then T has an SCIQ-model of every cardinality � !.

Proof Let T be an SCIQ-theory, and let M be an infinite SCIQ-model for T . By
Fact 6.4, the model M� is a model for T �, where T � is an LSCIQ -theory over trans-
lations of theorems from T . Clearly, M� is infinite. Let � � !. By the classical
results from model theory for first-order logic, there is a model N of T � such that N
is of cardinality �. Moreover, N is a model of NF-theory. By the translation theorem
(Theorem 6.3), N � is a model for T . The model N � has the same size as N , so T
has models of every infinite cardinality.

Furthermore, the translation theorem implies the following.

Proposition 6.7 If two models of NF-theory N1 and N2 are elementarily equiva-
lent, then SCIQ-models N �

1 and N �
2 are also elementarily equivalent.

Therefore, due to the above proposition, properties of elementarily equivalent
NF-models can be transferred on corresponding SCIQ-models. In particular,
if a property cannot be expressed in LSCIQ -language, then the same holds for
SCIQ-language. Hence, the translation theorem can be seen as a tool for showing
unexpressibility results for SCIQ.
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7 Conclusions and Open Problems

In the paper we discussed some properties of the non-Fregean propositional logic
with quantifiers. We showed that it is much more expressive than the basic non-
Fregean propositional logic SCI, as it can express infiniteness and many mathemat-
ical first-order theories. We proved the undecidability of SCIQ and an exact corre-
spondence between SCIQ and NP. We characterized a two-sorted first-order theory
NF appropriate for expressing SCIQ, and we proved the translation theorem which
states the relationship between NF and SCIQ. Finally, we showed how the translation
theorem can be used to prove the Löwenheim–Skolem theorem for SCIQ. In view of
these results, some natural questions arise, in particular:

1. Are there other results of classical model theory that can be transferred to
SCIQ?

2. Is it decidable whether a given finite partial SCIQ-model is an SCIQ-model?
If yes, what is the complexity of the decision problem?

3. Can generalized spectra be characterized computationally?
Our method of coding a computation relies heavily on the concept of a

linear model, whose SCI-structure is almost completely determined by its
size. Can an arbitrary SCI-structure and a subsequent computation be coded
entirely in terms of the quantifiers?

4. Does SCIQ have weaker fragments which are stronger than SCI?
Potentially interesting fragments of SCIQ could be obtained by allowing only one of
the two quantifiers. In this way, we get two logics, SCI8Q with the universal quantifiers
only, and SCI9Q with the existential quantifier only. Of course, as in the case of
SCIQ, both of these logics obey those classical quantifier laws that do not involve
the identity connective. However, these logics may differ with respect to some other
laws and/or definable properties. We conjecture that the logics SCI8Q and SCI9Q are
different and that they are both proper fragments of SCIQ stronger than SCI.

Note

1. For instance, �' can be treated as a shorthand notation for ' � .p _ :p/ in a non-
Fregean formulation of a modal logic. Then, in order to obtain an extension of SCI
equivalent with a modal logic S5 we expand SCI-axiomatization with axioms expressing
Boolean laws and a rule corresponding to the necessitation modal rule (see Suszko [9]
for details). On the other hand, an interpretation of situations of an SCI-model as logical
values will lead to a non-Fregean reinterpretation of finite many-valued logics (see, e.g.,
Malinowski [7]).

References

[1] Bloom, S. L., “A completeness theorem for ‘theories of kindW ’,” Studia Logica, vol. 27
(1971), pp. 43–56. Zbl 0249.02014. MR 0297541. 250, 256

[2] Bloom, S. L., and R. Suszko, “Investigations into the sentential calculus with identity,”
Notre Dame Journal of Formal Logic, vol. 13 (1972), pp. 289–308. Zbl 0188.01203.
MR 0376300. 252

[3] Brown, D. J., R. Suszko, and S. L. Bloom, “Abstract logics,” Dissertationes Mathemati-
cae, vol. 102 (1973), pp. 9–42. MR 0446967. 251

http://www.emis.de/cgi-bin/MATH-item?0249.02014
http://www.ams.org/mathscinet-getitem?mr=0297541
http://www.emis.de/cgi-bin/MATH-item?0188.01203
http://www.ams.org/mathscinet-getitem?mr=0376300
http://www.ams.org/mathscinet-getitem?mr=0446967


Non-Fregean Logic with Quantifiers 279

[4] Fagin, R., “Generalized first-order spectra and polynomial-time recognizable sets,”
pp. 43–73 in Complexity of Computation (New York, 1973), edited by R. Karp,
vol. 7 of SIAM-AMS Proceedings, American Mathematical Society, Providence, 1974.
MR 0371622. 265

[5] Golińska-Pilarek, J., “Number of non-Fregean sentential logics that have adequate mod-
els,” Mathematical Logic Quarterly, vol. 52 (2006), pp. 439–43. Zbl 1110.03015.
MR 2268693. DOI 10.1002/malq.200510042. 253

[6] Golińska-Pilarek, J., and T. Huuskonen, “Number of extensions of non-Fregean log-
ics,” Journal of Philosophical Logic, vol. 34 (2005), pp. 193–206. Zbl 1086.03024.
MR 2149478. DOI 10.1007/s10992-004-6366-3. 253

[7] Malinowski, G., “On many-valuedness, sentential identity, inference and Łukasiewicz
modalities,” Logica Trianguli, vol. 1 (1997), pp. 59–71. MR 1606175. 278

[8] Suszko, R., “Non-Fregean logic and theories,” Analele Universitatii Bucuresti, Seria
Acta Logica, vol. 11 (1968), pp. 105–25. Zbl 0233.02010. MR 0285355. 250

[9] Suszko, R., “Identity connective and modality,” Studia Logica, vol. 27 (1971), pp. 7–41.
Zbl 0263.02015. MR 0297540. 278

[10] Suszko, R., “Quasi-completeness in non-Fregean logic,” Studia Logica, vol. 29 (1971),
pp. 7–16. Zbl 0272.02029. MR 0305987. 256

[11] Suszko, R., “Abolition of the Fregean axiom,” pp. 169–239 in Logic Colloquium (Boston,
1972–73), edited by R. Parikh, vol. 453 of Lecture Notes in Mathematics, Springer,
Berlin, 1975. MR 0453498. 250

Acknowledgment

The first author was supported by Polish Ministry of Science and Higher Education grant
“Mobility Plus” NR 610/MOB/2011/0.

Golińska-Pilarek
Institute of Philosophy
University of Warsaw
00-927 Warsaw
Poland
j.golinska@uw.edu.pl
http://www.joannagolinska.com

Huuskonen
Jänis Jänislahdenkatu 6 B 31
33410 Tampere
Finland
taneli@poczta.onet.pl

http://www.ams.org/mathscinet-getitem?mr=0371622
http://www.emis.de/cgi-bin/MATH-item?1110.03015
http://www.ams.org/mathscinet-getitem?mr=2268693
http://dx.doi.org/10.1002/malq.200510042
http://www.emis.de/cgi-bin/MATH-item?1086.03024
http://www.ams.org/mathscinet-getitem?mr=2149478
http://dx.doi.org/10.1007/s10992-004-6366-3
http://www.ams.org/mathscinet-getitem?mr=1606175
http://www.emis.de/cgi-bin/MATH-item?0233.02010
http://www.ams.org/mathscinet-getitem?mr=0285355
http://www.emis.de/cgi-bin/MATH-item?0263.02015
http://www.ams.org/mathscinet-getitem?mr=0297540
http://www.emis.de/cgi-bin/MATH-item?0272.02029
http://www.ams.org/mathscinet-getitem?mr=0305987
http://www.ams.org/mathscinet-getitem?mr=0453498
mailto:j.golinska@uw.edu.pl
http://www.joannagolinska.com
mailto:taneli@poczta.onet.pl

	1 Introduction
	2 The Basic Non-Fregean Propositional Logic SCI
	3 The Logic SCIQ
	4 Toward Undecidability of SCIQ
	5 Spectra
	6 Translation Theorem for SCIQ and Its Applications
	7 Conclusions and Open Problems
	Note
	References
	Acknowledgment
	Author's addresses

