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Closed Normal Subgroups of the Automorphism Group
of a Saturated Model of Peano Arithmetic

Ermek S. Nurkhaidarov and Erez Shochat

Abstract  In this paper we discuss automorphism groups of saturated models
and boundedly saturated models of PA. We show that there are saturated models
of PA of the same cardinality with nonisomorphic automorphism groups. We
then show that every saturated model of PA has short saturated elementary cuts
with nonisomorphic automorphism groups.

1 Introduction and Basics

The study of automorphism groups of models of PA usually requires one to consider
these groups as topological groups. In some cases, one may use the topology for
which the basic open subgroups are the stabilizers of finite subsets. Since finite
subsets of models of PA are coded by a single element, we will name this topology
the point topology. On the other hand, one may use the topology for which the basic
open subgroups are the stabilizers of subsets of cardinality less than the cardinality
of the model. We will name this topology the set topology. When a saturated model
of PA is of cardinality X, these topologies coincide. However, when the cardinality
of the model is greater than X, these topologies are different.

Using the point topology, we have shown in [14] that there are saturated (and
boundedly saturated) models of PA of the same cardinality which have topologically
nonisomorphic automorphism groups. In this paper, we use the set topology to show
that there are saturated models of PA of the same cardinality which have topolog-
ically nonisomorphic automorphism groups. Since the set topology has the small
index property, it implies that the automorphism groups of some saturated models of
PA are not isomorphic as abstract groups. A similar result is then proved for short
saturated models of PA.
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We will assume that the reader is familiar with the general properties of models
of Peano Arithmetic. We will follow standard basic notations, definitions, and facts.

Recall that PA has a saturated model of cardinality A if and only if A is uncount-
able, regular, and 2 < A whenever k < A. For the rest of this paper we fix M, a
saturated model of Peano Arithmetic of cardinality A and G = Aut(M).

If A C M, we use the notation G4y = {g € G|YVx € A : g(x) = x} and
Giay = {g € G|g(A) = A}. We also define sup(4) = {x e M|Fa € A: x < a}
and inf(4) = {x € M|Va € A : x < a}.

A set I C M is called an initial segment of M, denoted by I C, M,if I # 0
and for any x € I, whenever y < x, y € I. We say that [ is a cut if [ is an initial
segment of M which is closed under the successor function.

Let I C M be a cut. We say that I is an exponentially closed cut if for every
a € M,ifa € I, then 2¢ € I. By cf(/) we denote the least cardinality u of a
cofinal set A C /. By dcf(/) we denote the least cardinality « of a downward cofinal
set BCM\I.IfgeG,let

Ii(g) = {x € M : ¥y < x(g(») = »)}.
Thus, I5x(g) is the largest cut pointwise fixed by g.

Lemma 1.1 ([14, Theorem 1.1]) A cut I C M is Isx(f) for some f € G if and
only if I C M is an exponentially closed cut such that dcf(I) = A.

In fact, a stronger version is proved in [14].

Lemma 1.2 ([14, Lemma 3.6]) Let I C M be an exponentially closed cut such
that dcf (1) = A, let A € M have cardinality less than A, and let h : A — M be
such that (M, x,a)qeqa = (M, x,h(a))geq forall x € 1. Then there is f € G such
that f D hand I (f) = 1.

2 Closed Normal Subgroups

We use the notation Aut® (M) when we consider Aut(M) with the point topology.

Let I be a cut in a model M. We say that [ is invariant if for every f € G,
f(I) = 1. Since M is saturated, a cut / C M is invariant if and only if there is a
sequence of definable elements in M which is cofinal in 7, or a sequence of definable
elements in M which is downward cofinal in M \ 1.

It is not difficult to see that if / is an invariant cut, then Aut(M )y is a closed nor-
mal subgroup of Aut®(M). Kaye [6] showed that in countable recursively saturated
models the converse is true (another proof can be found in Schmerl [15]). In [14] we
proved a similar result for saturated models of PA.

Theorem 2.1 ([14, Theorem 1.2]) Let H < G. Then H is a closed normal sub-
group of Aut®(M) if and only if there exists an invariant cut I C M such that
H = G.

For f,.g € G,letg/ = f~'gf and g~/ = f~1g~! f. The proof of Theorem 2.1
is based on the next theorem.

Theorem 2.2 ([14, Theorem 4.7], [15, Theorem 2]) Let g € G. Then either the
closure in the point topology of the set {g="1¢/2 1 fi, f» € G} or the closure in the
point topology of the set {g/ g2 : 1. f» € G} is a normal subgroup.
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We now define the set topology on G for which a basis of open sets is
{¢-Guy:g€G,AC Mand|A| <A™}

We use the notation Aut?* (M) when we consider G with this topology and call this
topology the set topology.

It is easy to see that any open subgroup in this topology has index at most A. In
general, for saturated models, the converse is true.

Theorem 2.3 (Small index property; see Lascar and Shelah [11, Theorem 1])  As-
sume that N is a saturated model of cardinality A, and let H be a subgroup of
Aut(N) of index at most A. Then H is open in Aut? (N).

Lemma 2.4 If A = Ry, then the point and set topologies on G coincide.

Proof It easily follows from the definitions that every open set in the point topol-
ogy is open in the set topology.

Let A C M be of cardinality less than Nj; that is, A4 is countable. Then by R
saturation there exists a € M such that A € {(a); : i < w}. Hence G4y > Gq.
Therefore, G4 is open in Aut®(M). So we have shown that every open set in
Aut* (M) is open in Aut® (M). O

It is not difficult to prove that Lemma 2.4 is not true for saturated models of higher
cardinality.

Lemma 2.5 If A > Ry, then the point and set topologies on G do not coincide.
By combining Lemma 2.5 with Theorem 2.3, we obtain the following result.

Corollary 2.6 Let N be a saturated model of Peano Arithmetic of cardinality
A > Ry. Then there exists H, a subgroup of Aut(N) of index at most A such that H
is not open in Aut® (N).

Our goal is to prove Theorem 2.1 for saturated models in the set topology.

Theorem 2.7 Let H < G. Then H is a closed normal subgroup of Aut* (M) if
and only if there exists an invariant cut J C M such that H = Gj).

Proof  Suppose that g € G, and let I = I5.(g). Let J C I be the largest invariant
exponentially closed cut (such J is well defined). The subgroup G(y) is a closed
normal subgroup containing g, so it is sufficient to show that G ) is in the closure
of the subgroup generated by the conjugates of g.

First, assume that J # w. Let A C M be of cardinality less than A. Then,
using saturation, we find @ € M with the property that for every a’ € A there
exists i € J such that @’ = (a);. Let h € Gy be such that h(4) = B.
Then h(a) = b for some b € M, and for every @’ € A and h(a’) = b’ € B
there exists i € J such that @’ = (a); and b’ = (b);. By Theorem 2.2,
there exist fi, f» € G such that either g=/1¢/2(a) = b or g/1g72(a) = b.
Without loss of generality, consider the case when g~/1g/2(a) = b. Let
a’ € A. By the choice of a, there exists i € J such that @’ = (a);. Hence,
g l1gl2(d) = g7 N1gl2((a)i) = (&71¢72(@)g=r1 g 14y = (b)i and h(a') =
h((a)i) = (h(a))nu) = (b);. Therefore, for every a’ € A, g Ng2(a’) = h(a)).

Next, assume that J/ = w and [ = Ix(g) # w. Let A C M be of cardinality less
than A. Let & € G(,). Because the cardinality of A is less than A, we can find 2’ € G
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such that for every a € A, h(a) = h'(a) and Ix(h') = I’ # w. Letc € M be
undefinable, and let ¢ € I N I’. Now we expand the language by adding c to it. By
applying the argument from the previous paragraph, we obtain fi, f> € Aut(M,c)
such that for every a € A: g=/1¢/2(a) = h(a).

Finally, assume that I = Ifx(g) = w. For every cut I’ # w, we can find
f € G (using Lemma 1.2) such that w # Is(g"'g”) C I’ and apply the previous
paragraph. O

By 2, we denote the set of all elements greater than the standard cut and smaller than
any nonstandard definable element. In some models of PA, €2, is empty. However,
since here M is saturated, one can show that ,, # @. The next lemma easily follows
from Theorem 2.7.

Lemma 2.8  If Th(M) # TA, then Aut(M)q,) is the largest closed, normal
proper subgroup of Aut? (M).

Here True Arithmetic (TA) is Th(N). From Theorem 2.7, we obtain a corollary.

Corollary 2.9 Let My, M, be two saturated models of Peano Arithmetic of cardi-
nality A such that My = TA and M, - TA. Then their automorphism groups are
not isomorphic.

Proof Because N = TA, M; does not have any nonstandard definable elements.
Since Th(M,) # TA, there are nonstandard definable elements in M;. Thus, by
Theorem 2.7, Aut(M;) has no nontrivial closed normal subgroups and Aut(M5;) has
nontrivial closed normal subgroups (consider for example a subgroup Aut(M>)q,,)
from Lemma 2.8). Therefore, Aut* (M7) cannot be topologically isomorphic to
Aut*(M,). Finally, by Theorem 2.3, Aut(M;) and Aut(M>) are not isomorphic. []

In the next section we will use the fact that Theorem 2.7 remains true if we expand
the language by adding less than A constants to it.

3 Nice Subgroups

This section is similar to one from [12]. It also owes much to Kossak and Schmerl
[9]. Lemmas 3.9 and 3.10, Definitions 3.3 and 3.4, and Corollary 3.11 are similar to
those in [9].

We will start with a few definitions. Let a € M be a nondefinable element.
Following Kaye, Kossak, and Kotlarski [7], we define two cuts for such a in M:
I} = inf{u € M : u > a andu is definable} and I, = sup{u € M : u < a and
u is definable}. The set difference of these cuts Q, = I\ 1 is called the interstice
around a. In other words, an interstice of M is a convex subset of M that is maximal
with the property of having no definable elements.

One example of interstices is the last interstice 2, the set of all elements greater
than any definable element. Another example is the smallest interstice €2, (defined in
Section 2). For saturated models of Peano Arithmetic, neither €2, nor 2, is empty.

Let Q2 C M be an interstice. We say that a definable function g is nondecreas-
ing on Q if for every b,c € @, if b < ¢, then g(b) < g(c). The definition of
nonincreasing on 2 is similar. We let

N = {g|lg : M —> M is a definable function such thata € Q «— g(a) €

and g is either nondecreasing or nonincreasing function on }.
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The notion of an interstitial gap is introduced in Bamber and Kotlarski [1]
as well as in Bigorajska, Kotlarski, and Schmerl [2]. If a € €, we define
If(a) = sup{t(a) : t € Rq} and I;(a) = inf{t(a) : t € Rq}. Let
igap(a) = 1 ; (a) \ I (a). We call igap(a) an interstitial gap of the interstice €2. If
Q # igap(a) for every a € 2, we say that € is full.

Theorem 3.1 ([2, Corollary 1.6]) Every interstice of M is full.

Let f be a definable function. We define f*(x) to be xth iteration of f applied
to x. Following [1], we say that an interstice Q2 is very good if for every f € Ngq,
the function x > f*(x) is in N as well. Both Q2 and 2, are examples of very
good interstices.

A generalization of the Moving Gaps Lemma can be found in [I, Theorem 3.8]
and in [7, Lemma 6.6].

Lemma 3.2 (Moving interstitial gaps lemma)  Let Q@ C M be a very good inter-
stice, and let g € G, a € M, and b,d € Q be such that a # g(a) < igap(b) <
igap(d). Then there exists ¢ € M such that igap(h) < c¢ < igap(d) and

g(c) ¢ igap(c).

For the rest of this section, the topology on M is the set topology Aut*(M). In
addition, we fix €2 to be a very good interstice of M.

Definition 3.3 Given subgroups H, K of G, we say that H precedes K if
Mher K" < Gq) (where K" = h™1Kh).

Later Lemma 3.9 will clarify Definition 3.3.

Definition 3.4 Given a subgroup H of G, we define two subgroups of G:

1. H, is the intersection of all conjugates of H which precede H;
2. H™ is the closure of the subgroup generated by the union of all K, where K
is a conjugate of H which is preceded by H.

Our goal is to identify subgroups which are stabilizers of elements from 2. With this
goal in mind, we give the definition of a nice subgroup.

Definition 3.5 A subgroup H of G is called Q2-nice (or just nice if it is clear what
Q is) if it satisfies the following properties:
1. H is a maximal open subgroup of G;
2. G(g) is the maximal closed normal subgroup of G such that G(q) < H;
3. forfevery f € G,if H/ # H, then either H/ precedes H or H precedes
H7T;
4. whenever K is an open nontrivial subgroup of H, then K N Hyx > KN G(gq);
5. H, is a closed normal subgroup of H.

Proposition 3.6 If H is a nice subgroup of G, then H = Gy for some icut
J Ce sup(R2).

We need a couple of lemmas to prove Proposition 3.6.

Lemma 3.7  Let H be a nice subgroup of G. If A C M is such that |A| < A and
Gy < H, then Gy N Hy = (Gay)) 1) for some exponentially closed, invariant
cut I C sup(R) in (M, a)geq withdcf(l) = A.



132 Nurkhaidarov and Shochat

Proof = We have that G(4) N H is closed normal in G4y = Aut(M, a),e4 and, by
Theorem 2.7, G4y N Hx« = (G4)) (1), Where [ is an exponentially closed cut that is
invariant in (M, a)gze 4 with def(7/) = A. (Since we expand the language by less then
A constants, we can apply Theorem 2.7 to (M, a)ge4.) By part 4 of Definition 3.5,
(Gy)a) > G N G(g). Therefore, by Lemma 1.1, I C sup(£2). O

Lemma 3.8 Let H be a nice subgroup of G. If A,B C M are such that
|Al,|B| < A and Gy, Gy < H, then G4 N Hy = (G(A))(I) and Ggy N Hy =
(G(B)) ) for the same exponentially closed cut I C sup(82), def(/) = A.

Proof  Assume not. By Lemma 3.7, G4y N Hx = (G(4))(s,) and Gpy N Hyx =
(G(B))(s5)» Where Ji,Jo C. sup(£2). We can assume that J; C. J,. Then
by Lemma 1.1 applied to (M, a,b)sca,pep. there exists f € Gy N Gy =
Aut(M,a,b)qecapep such that Ji S, Ilix(r) Ce J2. Therefore, f € (Gay) ) =
Gy N Hy. Thus, f € Hy and by the choice of f we have f € G(p) N Hsx.
Because Gpy N Hx = (G(B))(J,), We should have sy 2 Jo. That contradicts
the assumption that If.(r) Ce Ja. O]

Now we are ready to prove Proposition 3.6.

Proof Let f € H. Since H is open, there is A C M such that [A| < A and
Gy < H.Let f(A) = B;then G(py < H. By Lemma 3.8, G4 N Hyx = (G(4)) (1)
and Gpy N H« = (G(p))(r) for the same exponentially closed cut / in sup(£2) with
def (1) = A:

fGuyNH) T = f(G) [T N f(H)f™h = Gy N He = (G
and

F(Guw)n) ™ = Gw)ray-

So (Ggy)ay = (GB))(fr)- Then by Lemma 1.1 applied to (M, b)pep, I = f(1)
and hence f € Gy;. Then again by Lemma 1.1 and Theorem 3.1, G¢;y # G. So
H < Gyy, and because H is a maximal subgroup we have H = Gyj,.

To finish the proof of Proposition 3.6, define J to be the maximal icut in /. Then
G(sy = Gyzy and, by Theorem 3.1 and Lemma 1.1, Gjy # G. Because Gyyy is
maximal, we conclude that G¢jy = Gy;. O

Lemma 3.9 Let H be a nice subgroup, and let K # H be a subgroup conjugate
to H. Assume that H = Gyyy and K = Gy, where I, J are icuts in sup(S2). Then
H precedes K ifand only if I C J.

Proof = Assumethat [ D J. If f € G), h € H, then hfh™! € G(y) <
Guy < K, sothat f € h~YKh. Hence, for all h € H we have K" > G- By
Lemma 1.1, Gy > G(up())- Therefore, (\,cq K" > Gy > Gup(e)) and by
Definition 3.3, H does not precede K.

<= By the definition of a nice subgroup, if H # K, then either H precedes K or
K precedes H. Because I C J, by the = part of this lemma K cannot precede H .
So it is enough to show that H # K. We can find f € G with b,d € M such that
I C I (f) C sup(igap(b)) C sup(igap(d)) C J. By the Moving Interstitial Gaps
Lemma 3.2 and Theorem 3.1, there is a € J \ I such that igap(a) # igap(f(a)).
Without loss of generality we can assume that a < f(a). Then there exists an icut 1’
suchthat ] C I' C J, (M, 1) = (M,I'),a € I',and f(a) ¢ I'. Wehave f € G,
and f ¢ Gy, so Gyry # Gyyy. By the definition of a nice subgroup and by the =
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part of this lemma, G} precedes G(;/;. Now if H = K, then Gy, precedes Gy,
but I’ C J, which contradicts the = part of this lemma. O

Lemma 3.10 Let H be a nice subgroup of G. If H = Gy}, where J is an icut in
sup(S2) such that J # sup(D) for any igap D, then Hx = G(J).

Proof  First, suppose that f € G( ) and that K is a conjugate of H which pre-
cedes H. Then K = Gyy;, where [ is an icut, and according to Lemma 3.9, I C J.
Clearly then, f € K. Thus, G(j) < Hx.

Next, suppose that f* ¢ G, so that f(a) # a for some a € J. By the Mov-
ing Interstitial Gaps Lemma 3.2 and the fact that J # sup(D) for any igap D,
we can assume that igap(f(a)) # igap(a) and, without loss of generality, that
igap(a) < igap(f(a)). Then there is an icut [ such that I C J, (M, 1) = (M, J),
acl,and f(a) ¢ I. By Lemma 3.9, K = Gy, precedes H. We have f ¢ K, so
[ ¢ H.. Therefore, Hx < G(y). O

Corollary 3.11 Let H be a nice subgroup of G.
1. If D C Qisanigap and H = Gpy, then H* = G(qp p) < G(int p) = Hx.
2. If H = Gyjy, where J is an icut in sup(§2) such that for each igap D neither
J =sup D nor J =inf D, then H* = Hy = G(y).

Proof (1) Clearly, G p)y =< Gnf D), and it follows from Lemma 1.1 that
G(sup D) # G(inf p)- Theorem 3.1 and Lemma 3.10 imply that Hx = G ¢ p), and
with Lemma 3.9 imply that H* is the closure of G(>p D), 50 H* = G(ap D)-

(2) Lemma 3.10 implies that Hx = G ). Theorem 3.1 implies that H™* is the
closure of G-y which is G(yy. Therefore, H* = Hyx = G(y). O

Our next goal is to show that there is a way to recognize if a nice group is a stabilizer
of a point. To obtain this goal we need a few lemmas and definitions.

We say a € Q realizes a rare type if a is the only element realizing tp(a) in
igap(a). (This definition is a generalization of the definition of a rare type for gaps
given in Kossak, Kotlarski, and Schmerl [8, Proposition 5.17]. These definitions co-
incide for unbounded elements.) An igap D is called nonlabeled if for every b € D,
tp(b) is not a rare type.

Lemma 3.12 (Kaye [5]) Let D be a nonlabeled igap, and let a € D. Then
inf{b : b € D and tp(a) = tp(b)} = inf D.

Lemma 3.13 Let H be a nice subgroup, and let H = Gp), where D is a nonla-
beled igap. If N < H is a normal, closed subgroup of H and H* < N < H, then
either N = Hy or N = H*.

Proof Letd € D. Then G; = Aut(M,d) < Hand N' = NN Gy < Gy.
The subgroup N’ is a closed normal subgroup of G;. By Theorem 2.7, N’ = Gy,
where [ is an invariant cut in (M, d). By Lemma 1.1, H* N Gg = (Gg)(sup D) <
H« N Gg = (Ggq)(nt p)- Because

H*NGy <N <H.NGy,
we have inf D C I C sup D. Assume that I # sup D, thatis, N' > H* N Gy.
Then by Lemma 3.12, we can find f; € Gyp}, i < w such that

1> AHU)D (I)D -
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and

() fi) = inf D.

i<w
Because N is a normal subgroup of H and each f; € H, i < w, we have
N > G(f()),i < w. Hence, N > G(int p)- Since N is closed, N contains the
closure of G(>inf p), Which is Ginr py = Hs. O

The situation is different when H is a nice subgroup and H = G{p,;, where D is a
labeled igap, that is, with elements realizing rare types. The next lemma shows this.

Lemma 3.14 Let H be a nice subgroup, and let H = G{py, where D is a labeled
igap. Then there is a normal closed subgroup N of H such that H* < N < H,.

Proof Define #(x) to be the least z such that
Vi < x[(2)0 = x A (z); = 29i1].

Since Q2 is very good and #(x) is nondecreasing, if ¢ € €2, then ¢(c) € igap(c).
Now let a € D realize arare type. Then G{py = G,. Consider

I =sup{2? :n < @} where 28 =1,2¢ = q,2¢ = 2%-1,

Then I is closed under exponentiation, / is invariant in (M, a), and inf D C,
I Ce sup D, because I < t(a) € D. Then by Theorem 2.7, G() is closed nor-
mal in Aut(M, a) = Gypy = G4, and by Lemma 1.1, H, < Gy < H*. O

Combining Lemmas 3.13 and 3.14, we obtain the main theorem of this section.

Theorem 3.15 Let H be a nice subgroup of G such that there is a normal closed
subgroup N of H with H* < N < H,. Then H is a stabilizer of a point from Q.

Let M be a saturated model of Peano Arithmetic. Theorem 3.15 shows that if
Aut(M) recognizes that 2 is a very good interstice, then Aut(M) can recognize
if a nice subgroup is a stabilizer of a nonstandard element from 2.

4 Nonisomorphic Automorphism Groups
By using arguments similar to [12, Theorem 3.8], we could show the following result.

Theorem 4.1 Let My, M, be saturated models of PA such that Aut(My) =
Aut(M>). Then for everyn € w,

(w,Rep(Th(My))) E RT3  iff (w,Rep(Th(M>))) = RT; .

Here RT} is infinite Ramsey’s theorem stating that every 2-coloring of [@]” has an
infinite homogeneous set. As in [12, Corollary 3.15], we can obtain the following
corollary from Theorem 4.1.

Corollary 4.2 There are saturated models M1, M,, M3, M4 of PA of cardinality
A such that Aut(M;) % Aut(M;), whenever 1 <i < j < 4.

We note that Nurkhaidarov and Schmerl [13] have recently used the results from the
previous sections to improve on the last corollary and show that there are continuum
many models whose automorphism groups are pairwise nonisomorphic.
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5 Boundedly saturated models

A type p(v, A) over a model K is bounded if it contains the formula v < t(a) for
some a € A C K and some Skolem term ¢. A model K is boundedly saturated if
every finitely realized bounded type with parameters from a set A C K such that
|A| < |K] is realized in K. Clearly, every saturated model is boundedly saturated.
Moreover, any elementary cut of a saturated model is boundedly saturated. In addi-
tion, any boundedly saturated model of PA is an initial segment of a saturated model
of PA, and it is saturated if and only if its cofinality equals the cardinality of the
saturated extension. (For proofs of the above facts and for references, see [14].)

For the rest of the section, let N be an elementary cut of M such thatcf(N) < |M|.
That is, N is a nonsaturated, boundedly saturated elementary cut of M.

Proposition 5.1 ([14, Theorem 5.51)  Let f € Aut(N). Then f can be extended
to an automorphism of M .

We now show that any boundedly saturated model of PA has the small index property
in the set topology.

Theorem 5.2 Let H be a subgroup of Aut(N). Then H is open in the set topology
if and only if [Aut(N) : H] < A.

Proof  Clearly, every open subgroup has a small index.
Conversely, suppose that [Aut(N) : H] < A. Let

H={geG:g>hforsomehe H}.

Let Giny = {g € G : g(N) = N}. By using the previous proposition it is not
hard to show that Gyy;|ny = Aut(N).

Claim  We have [Gyyy : H] < A.

Proof Let g; and g» be in Gyy). Suppose that g1H # g,H. Then g;'g, ¢ H.
Let hy = g1|N and h, = g3|N. Notice that gz_lg1|N = h;lhl. Since
g le ¢ H and since H is the collection of all automorphisms of M which
extend H, h;'hy ¢ H. This implies that h1 H # hy H.

Thus, whenever two cosets of H are different, g H # gZI:I , then the restrictions
of their automorphisms to N give different cosets of H. Since there are at most A
cosets of H in Aut(N), H has at most A cosets in G{y;}. This proves the claim. [

Now since N is boundedly saturated but not saturated, there is a cofinal set A C N
of cardinality less than A. Note that g € Gy, if and only if g(A) is cofinal in N.
Thus, Gy is an open subgroup since it is the union of all the open sets of the form

Sa,8 =1{g €G:g(A) = B for some B Ceor N}.
Since Gyy is open, [G : Gyy;] < A. Combining this with the claim, we get that
[G: H] <A O
6 Short Saturated Models

A model K is short if K = K(a) = sup(Scl(a)) for some a € K. Otherwise, K is
tall. Clearly, all saturated models are tall.
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A model is short saturated if it is short and boundedly saturated. Thus, for any
a € M, M(a) is a short saturated model of PA. Note that the standard model is short
saturated.

In this section we show that Theorem 2.7 is true for short saturated models as
well. We then show that any complete theory of PA has short saturated models with
nonisomorphic automorphism groups.

The following result, which follows from the Blass—Gaifman lemma (see Blass
[3] and Gaifman [4]), can be found in Kossak and Schmerl [10, Proposition 8.3.1].

Proposition 6.1 ([10, Proposition 8.3.11)  Let K be a model of PA, and let
f € Aut(K). Ifa € K and f(a) € gap(a), then there is ¢ € gap(a) such that

fle)=c.

Also, it follows from the Blass—Gaifman lemma that whenever f, g € Aut(K) and
¢,d € gap(a) C K are such that f(c¢) = c and g(d) = d, then there is e € gap(a)
such that f(e) = g(e) = e. Thus, we get the following.

Lemma 6.2 Let a € M. Then for any g,h € Aut(M(a)), there is e € gap(a)
such that g(e) = h(e) = e.

Recall that gap(a) is labeled if it has elements realizing rare types. That is, there is
d € gap(a) such that no other element in gap(a) realizes tp(d). In this case, since
any automorphism of M (a) fixes gap(a) setwise, any automorphism of M (a) must
fix d. Therefore, any cut I C M (a) for which either Scl(d) N [ is cofinal in / or
Scl(d)N M(a) \ I is downward cofinal in M (a) \ I is an invariant cut. Since Scl(d)
is cofinal in M (a), M (a) has no largest proper invariant cut.

On the other hand, if gap(a) is nonlabeled, every element d in gap(a) realizes a
ubiquitous type (see [8]); that is, there are elements cofinally high and cofinally low
in gap(a) which realize tp(d). Therefore, any proper cut of M(a) which intersects
gap(a) is not invariant, and hence M (a) has a largest proper invariant cut, namely,
M(a) \ gap(a).

The following is the analogue of Theorem 2.7 for short saturated models.

Theorem 6.3 Leta € M, and let H < Aut(M(a)). Then H is a closed normal
subgroup of Aut? (M (a)) if and only if there exists an invariant cut J C M(a) such
that H = Aut(M(a))(J).

Proof  The proof is essentially the same as the proof of Theorem 2.7. Therefore,
we only show the first case. The second and third cases follow in the same fashion as
in the saturated case.

Let g € G(a) = Aut(M(a)), and let I = I4x(g). Let J C I be the largest
invariant exponentially closed cut (such J is well defined). The subgroup G(a) ) is
a closed normal subgroup containing g, so it is sufficient to show that G(a)() is in
the closure of the subgroup generated by the conjugates of g.

As mentioned above, we consider only the first case. That is, we assume that
J # w. Let A C M(a) be of cardinality less than A. Then, using saturation, we
find d € M (note: d is not necessarily in M (a)) with the property that for every
d’ € A there exists i € J such that d’ = (d);. Let h € G(a)() be such that
h(A) = B. By Lemma 6.2, there is e € gap(a) such that g(e) = h(e) = e.
We will work in the expanded saturated extension (M, ¢). By Proposition 5.1, there
exist g1,h; € Aut((M,e)) extending g and A, respectively. Then hy(a) = b for
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some b € M, and for every d’ € A and h(d') = b’ € B, there exists i € J such
that d’ = (d); and b’ = (b);. By Theorem 2.2, there exist f3, f4 € Aut((M,e))
such that either gl_f3glf4 (d) =bor glf3 gl_f4 (d) = b. We consider the case when

gl_f3g{4(d) = b. Let d’ € A. By the choice of d, there exists i € J such that
d’ = (d);. Hence,

g el ) = g Pel*((@)) = (gl_f3g{1“(d))g;f3gif4(i) = (b)i

and

hi(d') = hi((d)i) = (1)), ) = B)i.

Therefore, for every d’ € A: gl_f3g{4(d’) = hi(d’). Let fi = f3|m() and
f2 = falm()- Thus, since A C M(a), foralld’ € A,

g 1g2(d') = h(d). O

Since automorphisms of short saturated models with a labeled last gap have no largest
proper invariant cut, while short saturated models with a nonlabeled last gap have a
largest proper invariant cut, it follows from the above theorem that the automorphism
groups of such models are not isomorphic as topological groups. Since these models
have the small index property (Theorem 5.2), we get the following corollary.

Corollary 6.4 Let M be a saturated model of PA, and leta,b € M\ M(0) be such
that gap(a) is labeled and gap(b) is nonlabeled. Then Aut(M(a)) 2 Aut(M(b)).

We remark that whenever the extremely short model M (0) is nonstandard, it has
no largest invariant cut. Thus, for any ¢ > M(0) such that gap(a) is nonlabeled,
Aut(M(0)) is not isomorphic to Aut(M(a)). On the other hand, we do not know
if the same is true when gap(a) is labeled. In fact, if a realizes a rare type, then
(M(a),a) is an extremely short model with the same automorphisms as M (a).
Another question which remains open is whether Aut(M(a)) and Aut(M (b)) are
isomorphic when gap(a) is labeled and has elements realizing a minimal type and
gap(b) is labeled but has no elements realizing minimal types.

In [14] we have shown that in the point topology, the closed normal subgroups of
the automorphism group of any boundedly saturated model of PA are the stabilizers
of the invariant cuts. We would like to know if this is true in the set topology as well.

Question 6.5 Let N be an elementary cut of M. Let H < Aut(N). Is it true that

H is a closed normal subgroup of Aut? (N) if and only if there exists an invariant
cut J/ C M such that H = Aut(M))?

As we have shown in Theorem 2.7 and in Theorem 6.3, respectively, the answer is
positive for saturated elementary cuts and short saturated elementary cuts. However,
it is still unknown for boundedly saturated cuts that are neither saturated nor short.
A positive answer to this question will imply, using the same argument as in Corol-
lary 2.9, that whenever M; = TA and M, £ TA are boundedly saturated models
which are not short, their automorphism groups are nonisomorphic.
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