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Semi-Isolation and the Strict Order Property

Sergey Sudoplatov and Predrag Tanović

Abstract We study semi-isolation as a binary relation on the locus of a com-
plete type and prove that—under some additional assumptions—it induces the
strict order property.

0 Introduction

Throughout the paper T is a fixed, complete, first-order theory in a countable lan-
guage and M is its (infinite) monster model. T is an Ehrenfeucht theory if it has
finitely many, but more than one, countable models. The class of Ehrenfeucht the-
ories is quite interesting. There are numerous results and a large bibliography in
this area (see Baizhanov, Sudoplatov, and Verbovskiy [1] and Sudoplatov [8] for ref-
erences). The first example was found by Ehrenfeucht in Vaught [11, Section 6]:
TE D Th.Q; <; n/n2! . It eliminates quantifiers and has three countable models:
the prime model, the saturated model, and the model prime over a realization of a
nonisolated type. TE is also a binary theory: every formula is equivalent modulo
TE to a Boolean combination of formulas with at most two free variables. Not all
Ehrenfeucht theories are binary: nonbinary examples can be found in Peretyat’kin
[4] and Woodrow [13]. The motivating question for our work is the following.

Question 1 Is there a binary, Ehrenfeucht theory without the strict order property
(SOP)? In particular, is there such a theory with three countable models?

An important relation in any Ehrenfeucht theory is semi-isolation as a binary rela-
tion on the locus of a powerful type p 2 S.;/ in a model of T (all these notions
are defined in Section 1). There the semi-isolation relation is either empty (if p is
omitted) or a

W
-definable quasiorder with no maximal elements. If in addition T

has precisely three countable models, then the isomorphism type of any countable
model N can be described by combinatorial properties of the quasiorder:
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1. N is prime if and only if p.N/ D ;;
2. N is prime over a realization of p if and only if there is a minimal (with

respect to semi-isolation) element in p.N/; in this case, N is prime over any
minimal element;

3. N is saturated if and only if p.N/ ¤ ; has no minimal elements.
We note that in Ehrenfeucht’s example the type ¹n < x jn 2 !º determines

a complete 1-type p on whose locus, in any countable model, the semi-isolation
(defined precisely later and denoted by SIp) coincides with � . In particular, semi-
isolation is a relatively definable relation on the locus of p. The strict order property
in this example is induced by the semi-isolation, and it is natural to examine whether
this will happen in any binary Ehrenfeucht theory.

One result in this direction was obtained by Woodrow in [12]. He proved that
if a theory in the language of Ehrenfeucht’s example eliminates quantifiers and has
three countable models, then it is quite similar to the original one; in particular, semi-
isolation is a relatively definable ordering on the locus of a powerful type. Ikeda, Pil-
lay, and Tsuboi proved that the same happens in the case of an almost @0-categorical
theory with three countable models (see [3, Theorem 7]). Another result in this di-
rection was obtained by Pillay in [5, Theorem 5], who proved that in any Ehrenfeucht
theory with few links there exists a definable linear ordering. The ordering relation
that he found, when restricted to the locus of a powerful type, is induced by the
semi-isolation relation.

In this article we will investigate proper quasiorders of the form .p.M/;SIp/,
where p 2 S.;/ is a nonisolated type in an arbitrary first-order theory, and prove that,
under some additional assumptions, a relatively definable suborder can be found.
The additional assumptions have a topological flavor. That is not surprising because
SIp has a natural topological “definition” as a subspace of the compact space Sp;p
consisting of all complete extensions of p.x/ [ p.y/. The semi-isolation SIp cor-
responds to the subspace Sp! of all types tp.a; b/, where .a; b/ 2 SIp . We will
decompose Sp;p into four parts, adequate for studying definability properties of SIp
(see Definition 1.1 and Remark 1.2). Then we will translate definability properties
of semi-isolation into topological (complexity) properties of these parts.

In Section 2 we will prove that certain assumptions on the complexity imply the
existence of a proper, relatively definable suborder of SIp . For example, we will
prove in Theorem 2.7 that if the theory T has closed asymmetric links on p.M/

(meaning that one of the parts, the set Sp7!, is nonempty and closed in Sp;p), then
there exists a nontrivial, relatively definable suborder of SIp . This is one direction in
which we generalize Pillay’s result: if p is a powerful type of an Ehrenfeucht theory
with few links, then Sp7! is finite (hence closed) and nonempty.

In Sections 3 and 4 we concentrate on the existence of antichains in SIp in the case
of the negation of the strict order property (NSOP), that is the case in which there
is no formula '. Nx; Ny/ of given theory and tuples Nai , i 2 !, such that the following
equivalence holds:

` '. Nai ; Ny/! '. Naj ; Ny/, i � j:

We do not do much in this direction: assuming that the underlying theory is binary,
NSOP, and has three countable models, with lots of effort we prove that there are
at least two distinct types of SIp-incomparable pairs of elements on the locus of a
powerful type. This indicates that the answer to Question 1 may be affirmative.
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In Section 5 we consider a powerful type p in a binary theory for which SIp is
downwards directed in a specific way (PGPIP; see Definition 5.1). We prove that in
the NSOP case the Cantor–Bendixson rank of Sp;p is finite, indicating that maybe
there is no binary, Ehrenfeucht, NSOP theory with PGPIP at all. So the answer to
Question 1 may be negative after all.

1 Preliminaries

Throughout the paper Sn.A/ denotes the set of all complete n-types with parameters
from A. The topology on Sn.A/ is defined in the usual way. If '. Nx/ is a formula
over A in n free variables, then by Œ'� we will denote the set of all types from Sn.A/

containing '. Nx/. The set S.A/ denotes
S
n Sn.A/. If p; q 2 S.;/, then Sp;q.;/

is the subspace of all the extensions of p. Nx/ [ q. Ny/ in Sm.;/ (where Nx and Ny are
disjoint and m D j Nxj C j Nyj). Similarly, if q 2 Sn.;/, then Sq.A/ denotes the set
of all completions of q. Nx/ in Sn.A/. For any Nc realizing p there is a canonical
homeomorphism between Sp;q.;/ and Sq. Nc/: the one sending r. Nx; Ny/ to r. Nc; Ny/.

Next we recall the definition of the Cantor–Bendixson rank. It is defined on the
elements of a topological space X by induction: CBX .p/ � 0 for all p 2 X ;
CBX .p/ � ˛ if and only if for any ˇ < ˛, p is an accumulation point of the points
of CBX -rank at least ˇ. We have that CBX .p/ D ˛ if and only if both CBX .p/ � ˛
and CBX .p/ � ˛ C 1 hold; if such an ordinal ˛ does not exist, then CBX .p/ D 1.
Isolated points of X are precisely those having rank 0; points of rank 1 are those
which are isolated in the subspace of all nonisolated points. For a nonempty C � X
we define CBX .C / D sup¹CBX .p/ j p 2 C º; in this way CBX .X/ is defined and
CBX .¹pº/ D CBX .p/ holds. If X is compact and Hausdorff and C is closed in X ,
then the sup is achieved: CBX .C / is the maximum value of CBX .p/ for p 2 C ;
there are finitely many points of maximum rank in C , and the number of such points
is the CBX -degree of C . IfX is countable and compact, then CBX .X/ is a countable
ordinal and every closed subset has ordinal-valued rank and finite CBX -degree.
Sn.A/ is compact, so CB-rank is defined there on points (complete types) and

is well behaved on closed subsets (they correspond to partial types). So whenever
p is a partial type in n free variables and parameters from A, then CBAn .p/ is the
CB-rank of the compact space consisting of all completions of p in Sn.A/; usually
the meaning of n andAwill be clear from the context, so we will simply write CB.p/.
Similarly, the CB-degree is defined. Thus the CB-rank and degree are defined on all
partial types and, in particular, they are defined on formulas. If T is small (i.e.,
jS.;/j D @0), then the CB-rank of any partial type over a finite domain is an ordinal.
'.M; Na/ denotes the solution set of '. Nx; Na/; if p. Nx/ is a (partial) type, then by

p.M/ we denote the set of all its realizations. D � M n is definable if it is defined
by a formula with parameters; it is A-definable (or definable over A) if the defining
formula can be chosen to use only parameters from A. We have that D is type-
definable (

W
-definable) if it is the intersection (union) of < jM j definable sets; if

all the sets in the intersection (union) are definable over a fixed set A � M , then
we say that D is type-definable (

W
-definable) over A. In this paper we will consider

only countable intersections and unions of sets definable over a finite parameter set.
Let C � M n be type-definable, and let C1 � C . Then C1 is relatively definable
within C if there is a definable D � M such that C1 D C \D; similarly, relativeW

-definability is defined.
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Semi-isolation was introduced by Pillay in [5]; here we will sketch its basic
properties (the reader may find more details in [1]). Nb is semi-isolated over Na (or
Na semi-isolates Nb) if and only if there is a formula '. Na; Nx/ 2 tp. Nb= Na/ such that
'. Na; Nx/ ` tp. Nb/; we will denote that by Nb 2 Sem. Na/ or by Na ! Nb. '. Nx; Ny/ is said to
witness the semi-isolation; we will also write Na !' Nb ( Na '-arrows Nb). Thus

Na !
' Nb if and only if ˆ '. Na; Nb/ and '. Na; Ny/ ` tp Ny. Nb/:

If Na! Nb, then there are many formulas witnessing the semi-isolation: if '. Nx; Ny/ is a
witness, then '. Nx; Ny/^ Nx D Nx is a witness too. Therefore we can have many distinct
named arrows between a fixed pair of tuples.

The reader may note that our definition of Na! Nb does not exclude the existence of
an arrow in the opposite direction. If, in addition to Na! Nb, we know that the opposite
arrow does not exist (i.e., that a … Sem.b/), we will write Na 7! Nb. Therefore Na 7! Nb
means that both Na! Nb and Na … Sem. Nb/ hold; Na! Nb and Na 7! Nb may be consistent.
Na [ Nb means Nb 7! Na. And a 7!' b means that both a !' b and a 7! b hold, while
Na$ Nb means that both Na! Nb and Nb ! Na hold.

Consider semi-isolation as a binary relation on M<! . It is trivially reflexive and
it is not hard to see that it is transitive:

Na !
' Nb and Nb ! Nc together imply Na !' Nc;

where '. Nx; Nz/ is 9 Ny.'. Nx; Ny/^ . Ny; Nz//. Thus semi-isolation is a quasiorder onM<! .
We note an interesting consequence of transitivity:

Na 7! Nb ! Nc implies Na 7! Nc:

We will be interested mainly in semi-isolation as a binary relation on the locus of
a complete type p 2 S.;/. Then it is relatively

W
-definable within the locus: to

simplify notation we will consider only 1-types; this is justified by passing to an
appropriate sort in M eq . So fix for a while p 2 S1.;/. Define

SIp D
®
.a; b/ 2 p.M/2

ˇ̌
a! b

¯
:

For any .a; b/ 2 SIp there exists an L-formula '.x; y/ witnessing p-semi-isolation.
This implies that SIp is defined by

W
'.x; y/ within p.M/2 (here the disjunction is

taken over all such '’s), so SIp is a relatively
W

-definable subset of p.M/2.
Define

SIp D
®
.a; b/ 2 p.M/2

ˇ̌
a! b or b ! a holds

¯
; ?pD p.M/2 X SIp:

.a; b/ 2?p means that a; b are incomparable in the quasiorder, in which case we
will write a ?p b. The semi-isolation SIp is relatively

W
-definable within p.M/2,

while ?p is type-definable.
We will use the following syntax: x … Semp.y/ will denote the type consisting

of all negated formulas witnessing that y p-semi-isolates x; x ?p y will denote the
type x … Semp.y/ [ y … Semp.x/. Therefore the type p.x/ [ p.y/ [ x ?p y
defines the set ¹.a; b/ 2 p.M/2 j a ?p bº whose complement in p.M/2 is SIp .

Each '.x; y/ witnessing p-semi-isolation defines a binary relation on p.M/, so
the quasiorder SIp may also be viewed as the union of a family of binary relations;
this has already been suggested by the arrows notation. The relations defined by
arrows correspond naturally to subsets of Sp;p , and relative definability properties
translate into topological properties of these subsets.
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Definition 1.1 For a nonisolated p 2 S.;/ and � 2 ¹7!; [;!; ;$;?º, de-
fine

Sp� D
®
tp.ab/ 2 Sp;p

ˇ̌
a � b

¯
:

The nonisolation of p in the definition is assumed in order to exclude the trivial case
SIp D p.M/2, which is not interesting at all.

Remark 1.2 Let p 2 S.;/ be nonisolated. We list some observations related to
the defined parts of Sp;p .

(1) Sp7! [ S
p
$ D S

p
! and Sp [ [ S

p
$ D S

p
 . We have that Sp;p is the disjoint

union
Sp;p D S

p
7!
P[ Sp [ P[ S

p
?
P[ Sp$ :

(2) The mapping taking tp.a; b/ to tp.b; a/ is a homeomorphism of Sp;p . It fixes
setwise Sp

?
and Sp$ and maps Sp7! onto Sp [ and Sp! onto Sp . In particular,

S
p
7! and Sp [, as well as Sp! and Sp are homeomorphic.

(3) Sp$ has at least one member (containing x D y). We have that Sp$ ¤ Sp;p
holds; otherwise, there would be a formula '.x; y/ witnessing that each of x
and y p-semi-isolates the other such that p.x/ [ p.y/ ` '.x; y/. Then, by
compactness, there would be �.x/ 2 p such that ˆ .�.x/^�.y//) '.x; y/

and, if a ˆ p and b 2 �.M/ X p.M/, we would get ˆ '.a; b/, which is not
possible by our choice of '.x; y/.

(4) Each of Sp7!; S
p
 [, and Sp

?
may be empty while their union is nonempty (be-

cause of Sp$ ¤ Sp;p). By part (2), Sp7! and Sp [ are homeomorphic, so they
are either both empty or both nonempty.
� Consider the theory of an infinite set with infinitely many elements

named, and let p 2 S1.;/ be the unique nonalgebraic type. Then
S
p
7! D S

p
 [ D ;, while Sp

?
is a singleton with a member containing

x ¤ y.
� Consider the type p 2 S1.;/ containing ¹n < x j n 2 !º in Ehren-

feucht’s theory TE . There Sp7! and Sp [ have members containing x < y
and y < x, respectively, while Sp

?
D ; because any two elements are

comparable.
(5) Sp!, Sp , and Sp$ are open in Sp;p: Sp! is open because Sp! D

S
' Œ'�, where

the union is taken over all formulas '.x; y/ witnessing p-semi-isolation; by
homeomorphism, Sp is open too. If tp.a; b/ 2 Sp$, then there is a formula
'.x; y/ 2 tp.a; b/ witnessing a $ b and Sp$ is the union

S
' Œ'� taken over

all such '.x; y/. And so Sp$ is open in Sp;p .
(6) Sp

?
is closed in Sp;p because it is the set of all completions of p.x/[p.y/[

x ?p y.
(7) Since SIp corresponds to Sp! , SIp is relatively definable within p.M/2 if

and only if Sp! is clopen in Sp;p . But Sp! is always open, so SIp is relatively
definable if and only if Sp! is closed in Sp;p .

(8) SIp corresponds to Sp! [ S
p
 , which is open. Therefore relative definability

of SIp within p.M/2 is equivalent to any of the following conditions:
� S

p
! [ S

p
 is clopen in Sp;p;

� S
p
! [ S

p
 is closed in Sp;p;

� S
p
?

is clopen in Sp;p (because it is the relative complement of Sp![S
p
 ).
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(9) We have cl.Sp7!/ � S
p
7! [ S

p
?

(where cl denotes the topological closure in
Sp;p). Since Sp is open and disjoint from S

p
7!, we have cl.Sp7!/ � Sp;p X

S
p
 D S

p
7![S

p
?

. In particular, if Sp7! is not closed, then it has an accumulation
point in Sp

?
and Sp

?
¤ ;.

Definition 1.3 A nonisolated type p 2 S.;/ is symmetric if and only if SIp is a
symmetric binary relation on p.M/. Otherwise, p is asymmetric.

Since semi-isolation is transitive, it follows that p is asymmetric if and only if
.p.M/;SIp/ is a proper quasiorder (with infinite strictly increasing chains). Asym-
metric types may exist even in an !-stable theory, so their existence, in general, does
not imply the strict order property (examples of that kind can be found in Sudoplatov
[7], [8] and Tanović [10]).

Remark 1.4 It is well known that the symmetry of semi-isolation implies the
symmetry of isolation. We will sketch the proof of this fact.

(1) If tp.a=b/ is isolated and b 2 Sem.a/, then tp.b=a/ is isolated too.
To prove this fact, choose '.x; b/ 2 tp.a=b/ witnessing the isolation
and choose  .a; y/ 2 tp.b=a/ witnessing the semi-isolation. Then
 .a; y/ ^ '.a; y/ ` tp.b=a/. If b0 satisfies this formula, then ˆ  .a; b0/

implies tp.b0/ D tp.b/. Combining withˆ '.a; b0/ (and '.x; b/ ` tp.a=b/),
we derive tp.ab0/ D tp.ab/; tp.b=a/ is isolated.

(2) Suppose that tp.a=b/ is isolated and that tp.b=a/ is nonisolated. Then b ! a

and, by part (1), b … Sem.a/. This shows that the asymmetry of isolation on
a pair of elements implies the asymmetry of semi-isolation on the same pair.
In particular, if p 2 S.;/ and there are a; b ˆ p such that tp.a=b/ is isolated
and tp.b=a/ is nonisolated, then p is asymmetric.

(3) Suppose that tp.a=b/ is isolated. By part (1) we have

tp.b=a/ is nonisolated iff b … Sem.a/ iff b 7! a:

We will use a version of Remark 1.4 localized to p: if semi-isolation is symmetric
on p.M/, then isolation is symmetric on p.M/ too. The following example shows
that the converse is not true: symmetry of isolation on p.M/ does not necessarily
imply the symmetry of semi-isolation on p.M/.

Example 1.5 Let T D Th.!;</. Here there is a unique nonalgebraic 1-type
p.x/ over ; (the type of an infinite element). Any infinite element has an immediate
successor and a predecessor, so x ˙ n are well-defined functions and

SIp D
[
n2!

®
.x; y/ 2 p.M/2

ˇ̌
x � n < y

¯
(note that x C n < y implies x < y). We have that p is asymmetric. Take a; b
realizing p such that a C n < b holds for all integers n; then a 7! b. On the other
hand, isolation on p.M/ is symmetric because it is witnessed by a formula of the
form x D y ˙ n for some n.

Note that SIp is not relatively definable within p.M/2 because the union is strictly
increasing. On the other hand, SIp D p.M/2 is obviously relatively definable within
p.M/2. Therefore there are asymmetric types for which SIp is relatively definable,
while SIp is not relatively definable within the locus.
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Recall that a nonisolated type p 2 S.;/ is called powerful if the model prime over
a realization of p is weakly saturated (realizes all finitary types over ;). Benda in
[2] proved that powerful types exist in any Ehrenfeucht theory. Consider all the (iso-
morphism types of) countable models atomic over a finite subset, and order them by
elementary embeddability. Then there is a maximal element (since there are finitely
many isomorphism types); the maximal models are precisely those that are weakly
saturated.

Remark 1.6 We note some well-known facts about powerful types. We sketch
their proofs for the reader’s convenience.

(1) Any powerful type is asymmetric. Let p.x/ be powerful, and let a ˆ p.
Since p is nonisolated, we can find a0 realizing a nonisolated extension of
p in S.a/. Further, because tp.aa0/ is realized in any maximal model, there
is b ˆ p such that tp.aa0=b/ is isolated. Note that tp.a0=ab/ is isolated.
If tp.b=a/ were isolated, then by transitivity of isolation, tp.a0b=a/ would be
isolated too. The latter implies isolation of tp.a0=a/, which is a contradiction.
Therefore tp.b=a/ is nonisolated while tp.a=b/ is isolated, so isolation is
asymmetric on p.M/. By Remark 1.4(2), we conclude that p is asymmetric.

(2) Let p be powerful. Then the proof of part (1) shows that for any a ˆ p there
exists b ˆ p such that b 7! a.

(3) Semi-isolation is a downwards-directed quasiorder on the locus of a powerful
type. If a; b realize p, then by maximality there is d realizing p such that
tp.ab=d/ is isolated. In particular, tp.a=d/ and tp.b=d/ are isolated, by
'.d; x/ and  .d; y/, say, and we have d !' a and d ! b. We have that d
is a lower bound for a and b.

By a p-principal formula we mean an L-formula '.x; y/ such that for some (any) a
realizing p,

'.a; x/ isolates an extension of p in S1.a/ and a 7!' b holds for all b 2 '.a;M/:

By Remark 1.4(3), the condition a 7!' b can be replaced by “tp.a=b/ is nonisolated.”

Remark 1.7 Suppose that p is powerful. We strengthen the conclusion of Remark
1.6(3): for all a; b 2 p.M/ there is d 2 p.M/ and p-principal formulas ' and  
such that both d 7!

'
a and d 7!

 
b hold. To prove it, first choose ca; cb ˆ p

satisfying ca 7! a and cb 7! b (here we use Remark 1.6(2)). Then choose d ˆ p

such that tp.cacbab=d/ is isolated. Then tp.ca=d/ is isolated, by '.d; x/, say. Fur-
ther, d ! ca 7! a implies d 7! a and d 7!' a. Similarly, d 7! b for a suitably
chosen  .

Recall that a theory T is binary if every formula is equivalent modulo T to a Boolean
combination of formulas with at most two free variables. Binary theories are a spe-
cial case of �-based theories (see Saffe, Palyutin, and Starchenko [6]). There � is
a fixed set of formulas (without parameters), and every formula without parameters
is equivalent to a Boolean combination of formulas from �. As noted in [6], this
means precisely that any complete type p 2 S.;/ is�-based, that is, that p is forced
by the set of formulas 'ı 2 p, where ' 2 � and ı 2 ¹0; 1º. In particular, a theory is
binary if and only if any complete type is forced by the union of its 2-subtypes.
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2 Definability of Semi-Isolation

In this section we study definability properties of semi-isolation on the locus of an
asymmetric type p 2 S.;/. We know that SIp is

W
-definable within p.M/2. We

will prove that certain additional assumptions on the topological complexity of Sp;p
imply the strict order property. The ordering relation found will always be a subset
of SIp , as formalized in the next definition.

Definition 2.1 Suppose that p 2 S.;/ and that .p.M/;�/ is a quasiorder with
infinite strictly increasing chains. We will say that � is a p-order if

(1) � is a relatively definable subset of p.M/2, and
(2) a � b implies .a; b/ 2 SIp .

The next proposition shows that a p-order is the restriction of a definable quasiorder
to p.M/; the domain of such a quasiorder can be chosen to be definable and un-
bounded (contains no maximal elements).

Proposition 2.2 Suppose that p 2 S.;/, .p.M/;�/ is a p-order, and that '.x; y/
relatively defines � within p.M/2. Then there exists �.x/ 2 p such that the formula
�.x/ ^ �.y/ ^ '.x; y/ witnesses p-semi-isolation and defines an unbounded qua-
siorder on �.M/.

Proof Denote by �.x; y; z/ the formula '.x; x/^ .'.x; y/^'.y; z/) '.x; z//.
The first condition from the definition of a p-order implies

p.x/ [ p.y/ [ p.z/ ` �.x; y; z/: (2.1)
The second can be expressed by

p.x/ [ p.y/ [
®
'.x; y/

¯
`

_
i2I

'i .x; y/; (2.2)

where the disjunction is taken over all formulas witnessing p-semi-isolation. By
compactness there exists a finite I0 � I such that (2.2) holds with I0 in place of I .
Then

p.x/ [ p.y/ [
®
'.x; y/

¯
` '.x; y/; (2.3)

where '.x; y/ is the formula
W
i2I0

'i .x; y/. Note that '.x; y/ witnesses p-semi-
isolation. Now we apply compactness simultaneously to (2.1) and (2.3): there exists
a formula �0.x/ such that
�0.x/^�0.y/^�0.z/ ` �.x; y; z/ and �0.x/^�0.y/^'.x; y/ ` '.x; y/: (2.4)

The first relation here implies that '.x; y/ defines a quasi-order �' on �0.M/; its
restriction to p.M/ is �. The second implies that �0.x/^ �0.y/^'.x; y/ witnesses
p-semi-isolation. Now we show that there is no �'-maximal element in �0.M/

above a 2 p.M/. We have that a �' b implies b 2 p.M/ and, because � is a
p-order, there exists a strictly �-increasing chain above b. Thus b is not �-maximal.
But � is a restriction of �' , so b is not �'-maximal.

Let �.x/ be the conjunction of �0.x/ and the formula saying that there is no
�'-maximal element above x. Clearly, �.x/ ^ �.y/ ^ '.x; y/ witnesses p-semi-
isolation and defines the restriction of �' on �.M/. To finish the proof it remains
to show that the restricted quasiorder is unbounded; this holds because �.M/ is
�'-closed upwards in �0.M/ and �0.M/ is unbounded.

As an immediate corollary we obtain the following.
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Corollary 2.3 If p.x/ 2 S.;/ is asymmetric and SIp is a relatively definable
subset of p.M/2, then there is �.x/ 2 p and a definable, unbounded quasiorder
on �.M/ whose restriction to p.M/ is SIp . In particular, T has the strict order
property.

This fact is well known and can be found in different forms in [1], [3], [5], and
Tanović [9]. An example of an asymmetric type with relatively definable semi-
isolation is the unique nonisolated 1-type in Ehrenfeucht’s example. A similar
situation appears in any almost @0-categorical theory: recall that T is almost
@0-categorical (see [3]) if p1.x1/ [ p2.x2/ [ � � � [ pn.xn/ has only finitely many
completions r.x1; : : : ; xn/ 2 S.;/ for all n and all complete types pi .xi / 2 S.;/.
For any p in such a theory, SIp is relatively definable within p.M/2: Sp;p is finite,
so all its relevant parts are clopen, and by Remark 1.2(7), SIp is relatively defin-
able; alternatively, there are only finitely many inequivalent formulas witnessing
p-semi-isolation, so their disjunction relatively defines SIp within p.M/2.

Corollary 2.4 If p.x/ 2 S.;/ is asymmetric and Sp;p is finite, then there is
�.x/ 2 p and a definable, unbounded quasiorder on �.M/ whose restriction to
p.M/ is SIp . In particular, T has the strict order property.

Example 2.5 Let T D .Q; <; cn; dn/, where .cn/ is an increasing and .dn/ is a
decreasing sequence such that both converge to

p
2. We have that T is an Ehren-

feucht theory having six countable models. Let p be the 1-type representing
p
2.

Then the locus of p is convex and linearly ordered by <. However, p is symmetric
and SIp is the identity relation. Thus there is no p-order there!

Therefore, the locus of a symmetric type may be properly ordered and the asym-
metry of semi-isolation is not an exclusive reason for the presence of the strict order
property. However, we believe that in this example the reason for the absence of
p-orders lies in nonpowerfulness of p.

Question 2 Suppose that p is a powerful type in an Ehrenfeucht theory. Does the
existence of a nontrivial, relatively definable, partial order on p.M/ always imply
the existence of a p-order?

It is easy to realize that relative definability of SIp implies relative definability of SIp
within p.M/2. The converse is, in general, not true as Example 1.5 shows. There the
asymmetric type p 2 S1.;/ is such that SIp is relatively definable within p.M/2,
while SIp is not.

We will prove in Corollary 2.8 below that relative definability of SIp for asymmet-
ric p implies the existence of a p-order. Actually, the order found in the proof will
have an additional property which will witness that semi-isolation is partially defin-
able on p.M/. This notion was introduced in [10], and here we give an equivalent
definition which relies on the notion of a p-order.

Definition 2.6 We say that semi-isolation is partially definable on p if there is a
definable quasi-order � such that for all a 2 p.M/,

(i) the restriction of � to p.M/ is a p-order, and
(ii) a 7!

�

b ! b0 and b0 2 p.M/ imply a 7!
�

b0 .

Clearly, partial definability of semi-isolation implies that T has the strict order prop-
erty.
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Question 3 Does the existence of a p-order imply partial definability of semi-
isolation on p?

Theorem 2.7 Suppose that p 2 S.;/ is asymmetric and that Sp7! is closed in
Sp;p . Then semi-isolation is partially definable on p.M/. In particular, T has the
strict order property.

Proof Suppose that Sp7! is closed in Sp;p . Then it is compact. For each
q.x; y/ 2 S

p
7!, choose a formula 'q.x; y/ 2 q.x; y/ witnessing p-semi-isolation.

Then Sp7! �
S
¹Œ'q� j q 2 S

p
7!º. Since Sp7! is compact, there is a finite subcover.

Let '.x; y/ be the disjunction of all the 'q’s from the subcover. Then ' witnesses
p-semi-isolation and Sp7! � Œ'� � S

p
! holds. Let x � y be

x D y _
�
'.x; y/ ^ .8t /

�
'.y; t/) '.x; t/

��
:

Clearly, � defines a quasiorder on M ; it also witnesses p-semi-isolation.

Claim 1 If a 7! b realize p, then '.b;M/ ¨ '.a;M/ and a < b.

Proof Suppose that d 2 '.b;M/. Then a 7! b ! d implies a 7! d and
tp.ad/ 2 Sp7! � Œ'�. Thus d 2 '.a;M/ and '.b;M/ ¨ '.a;M/ holds. Simi-
larly, a 7! b implies tp.ab/ 2 Sp7! � Œ'�, so ˆ '.a; b/. Finally, ˆ '.a; b/ and
'.b;M/ ¨ '.a;M/ imply a < b.

Since p is asymmetric, no element of p is maximal in the semi-isolation quasiorder.
Then, by the claim, no realization of p is �-maximal. We conclude that � defines a
p-order on p.M/, proving condition (i) from the definition of partial semi-isolation.
To prove (ii), suppose that a 7!

�

b ! c holds. Then a 7! c and the claim im-
plies a < c. Therefore a 7!

�

c holds, proving (ii). The symbol � partially defines
semi-isolation on p.

Corollary 2.8 Suppose that p.x/ 2 S.;/ is asymmetric and that SIp is a rel-
atively definable subset of p.M/2. Then semi-isolation is partially definable on
p.M/. In particular, T has the strict order property.

Proof Suppose that SIp is relatively definable within p.M/2. We will show that
S
p
7! is closed in Sp;p . By Remark 1.2(8) Sp! [ S

p
 is closed; clearly it contains

S
p
7!, so cl.Sp7!/ � S

p
! [ S

p
 . On the other hand, by Remark 1.2(9) we have

cl.Sp7!/ � S
p
7! [ S

p
?

. Therefore

cl.Sp7!/ � .S
p
! [ S

p
 / \ .S

p
7! [ S

p
?
/ D Sp7! :

Therefore Sp7! is closed in Sp;p , and the conclusion follows by Theorem 2.7.

Corollary 2.9 (T is NSOP) If p 2 S.;/ is asymmetric, then Sp7! (is infinite and)
has an accumulation point in Sp

?
. In particular, Sp

?
¤ ; and p.x/ [ p.y/ [ x?py

is consistent.

Proof By Remark 1.2(9) we have cl.Sp7!/ � S
p
7! [ S

p
?

. The NSOP assumption
combined with Theorem 2.7 implies that Sp7! is not closed in Sp;p , so there exists
q 2 cl.Sp7!/XS

p
7!. Then q is an accumulation point of Sp7! and q 2 Sp

?
. In particular,

S
p
?
¤ ;, so p.x/ [ p.y/ [ x?py is consistent.
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Theories with few links were introduced by Benda in [2]: T has few links if whenever
p. Nx/ and q. Ny/ are complete types, then there are only finitely many complete types
r. Nx; Ny/ � p. Nx/ [ q. Ny/ such that r. Nc; Ny/ is nonisolated in S. Nc/ for all Nc realizing
p. Nx/. Pillay in [5, Theorem 5] proved that any Ehrenfeucht theory with few links
has the strict order property. He noted that his proof uses only the assumption when
p D q is a powerful type. Indeed, it is not hard to realize that the few-links assump-
tion implies that Sp7! is finite for any p 2 S.;/: If Na; Nb ˆ p and Na 7! Nb, then tp. Na= Nb/
is nonisolated; there are only finitely many possibilities for tp. Na= Nb/, so Sp7! is finite.
In particular, Sp7! is closed in Sp;p , and we have the following.

Corollary 2.10 Any theory with few links and an asymmetric type has the strict
order property.

In the same article, Pillay [5, Section 6] commented on the few-links assumption:
“This condition is admittedly rather artificial, but it enables some proofs to go
through.” An easy consequence of the few-links assumption is that CB.Sp;p/ � 1
holds for all p 2 S.;/ (simply because Sp;p cannot have infinitely many accumula-
tion points). So CB.Sp;p/ D 1 seems to be a more natural condition. There are such
Ehrenfeucht theories, the first example having been found by Woodrow in [13].

Question 4 Is there a powerful type p in an NSOP theory satisfying
CB.Sp;p/ D 1?

In this article, we do not give much evidence towards answering this question.

Corollary 2.11 (T is small, NSOP) Suppose that p 2 S.;/ is asymmetric (not
necessarily powerful) and that CB.Sp;p/ D 1 holds. Then

(1) jSp7!j � @0 and jSp
?
j � 1, and

(2) there are infinitely many pairwise inequivalent p-principal formulas.

Proof Condition (1) follows from Corollary 2.9. To prove (2), note that
CB.Sp;p/ D 1 implies that there are infinitely many members of Sp7! isolated
in Sp;p . If tp.ab/ 2 Sp7! is such a type, then tp.b=a/ is isolated and contains a
p-principal formula.

3 Incomparability

In this section, we start dealing with the SIp-incomparability of realizations of an
asymmetric type. By Corollary 2.9, it is an interesting relation especially in NSOP
theories. The next theorem deals with the case when SIp has relatively definable
intersection with the product of two relatively definable subsets of p.M/. We will
prove that there is a pair of incomparable elements .a; b/ 2 D1 �D2. The intended
combinatorial description of this situation is formalized in Proposition 4.3: if we
have two large, unbounded, relatively definable subsets of p.M/, then some pair of
their elements is incomparable.

Theorem 3.1 Suppose that p 2 S1.;/ is nonisolated and that D1;D2 � M are
Ne-definable subsets of M such that the following conditions are satisfied.

(1) SIp \ .D1 �D2/ ¤ ; is relatively Ne-definable within D1 �D2.
(2) For all a 2 D1 \ p.M/ there is b 2 D2 \ p.M/ such that a 7! b.
(3) For all b 2 D2 \ p.M/ there is a 2 D1 \ p.M/ such that b ! a.
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Then there is an Ne-definable quasiorder onM such that no element ofD1\p.M/

is below a maximal one of D1. In particular, T has the strict order property.

Proof Suppose that Di is defined by Di .x; Ne/ and that relative definability is wit-
nessed by �.x; y; Ne/. So we have

p.x/ [ p.y/ [
®
D1.x; Ne/;D2.y; Ne/; �.x; y; Ne/

¯
` y 2 Semp.x/ _ x 2 Semp.y/:

The right-hand side is a long disjunction, so by compactness there is an L-formula
'.x; y/ witnessing y 2 Semp.x/ and there is an L-formula  �.x; y/ witnessing
x 2 Semp.y/ such that

p.x/ [ p.y/ [
®
D1.x; Ne/;D2.y; Ne/; �.x; y; Ne/

¯
` '.x; y/ _  �.y; x/:

Let  .x; y/ WD  �.y; x/. Then for any pair .a; b/ 2 D1 �D2 of realizations of p,
we have

either ˆ :�.a; b; Ne/ or: at least one of a !' b and b ! a holds. (3.1)

(The first disjunction here is exclusive because �.x; y; Ne/ relatively defines SIp \
D1 �D2.) Further, we express assumption (3) by

p.x/ [
®
D2.x; Ne/

¯
`

_
 0.x;y/

9y
�
D1.y; Ne/ ^  

0.x; y/
�
; (3.2)

where the disjunction is taken over all  0.x; y/ witnessing p-semi-isolation. By
compactness, for some  0.x; y/ we have

for all b 2 D2 \ p.M/ there is c 2 D1 \ p.M/ such that b ! 
0

c holds. (3.3)

After replacing both  and  0 by their disjunction, we may assume that  D  0.
Let '.x; y; Ne/ be 9z.D2.z; Ne/^ '.x; z/^ .z; y//. Then '.a; y; Ne/ ` p.y/ for any
a realizing p.

Claim 1 For any a 2 D1 \ p.M/, there exists c 2 D1 satisfying a 7! c and
ˆ '.a; c; Ne/.

Proof Let a 2 D1 \ p.M/. By (3.2) there is b 2 D2 \ p.M/, and by (3.3)
there is c 2 D1 \ p.M/ such that a 7! b !

 
c holds. Then .a; b/ 2 SIp implies

ˆ �.a; b; Ne/, and a … Semp.b/ implies that b ! a does not hold. By (3.1) we
derive a 7!' b. Thus a 7!' b !

 
c, and soˆ '.a; c; Ne/.

Define a0 � b0 iff '.b0;M; Ne/ \D1 � '.a0;M; Ne/ \D1. Clearly, � is a definable
quasiorder on M . We will show that no element of D1 \ p.M/ is below a maximal
one of D1.

Claim 2 If a; c 2 D1 \ p.M/ and a 7! c, then a � c.

Proof Suppose that d 2 '.c;M; Ne/ \ D1, and let b 2 D2 be such that
c !

'
b !

 
d . Then a 7! c ! b implies a 7! b, so b ! a does not hold;

also, .a; b/ 2 SIp implies ˆ �.a; b; Ne/. By (3.1) we conclude that a 7!' b holds,
and then a 7!' b !

 
d implies '.a; d; Ne/. Thus d 2 '.a;M; Ne/. This shows that

'.c;M; Ne/ \D1 � '.a;M; Ne/ \D1; that is, a � c.
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Now, let a1 2 D1 \ p.M/. By Claim 1 there is c1 2 D1 such that a1 7! c1 and
ˆ '.a1; c1; Ne/. By Claim 2 we have a1 � c1. Repeating the same procedure with
c1, we find a2 2 D1 satisfying c1 7! a2, ˆ '.c1; a2; Ne/, and c1 � a2. In particular,
a1 � a2; that is, '.a2;M; Ne/ \ D1 � '.a1;M; Ne/ \ D1. Then c1 … '.a2;M; Ne/;
otherwise ˆ '.a2; c1; Ne/ would witness a2 ! c1, which is in contradiction with
c1 7! a2. Thus c1 2 '.a1;M; Ne/ n '.a2;M; Ne/ and a1 < a2. Continuing in this way
we get an infinite strictly increasing chain of elements of D1 \ p.M/.

4 Semi-Isolation on Minimal Powerful Types

Throughout this section we will assume that T (is small and) has a powerful type.
We will say that p 2 S.;/ is a minimal powerful type if it is powerful and there
is a formula �.x/ 2 p such that p is the unique powerful type containing � . Min-
imal powerful types exist in any Ehrenfeucht theory—take a powerful type of min-
imal CB-rank. To simplify notation, unless otherwise stated we will assume that
p 2 S1.;/ is powerful.

We will be interested in sets definable over a single parameter; we do not a pri-
ori assume that the parameter realizes even a nonisolated type. We will say that
D D '.d;M/ is a p-set if D \ p.M/ ¤ ; and there exists b 2 D \ p.M/ such
that at least one of the following two conditions holds:

1. b does not semi-isolate d ;
2. tp.d/ is not powerful.

The intended intuitive description of a p-set is that D \ p.M/ is large and un-
bounded; this is formalized in Lemma 4.2 below.

Remark 4.1 Suppose that p is a powerful type.

(1) If tp.d/ is not powerful, then the second condition from the definition of a
p-set is satisfied, so D D '.d;M/ is a p-set if and only if it contains a
realization of p.

(2) Suppose that p is a minimal powerful type and that �.x/ 2 p witnesses the
minimality. Let d 2 �.M/ X p.M/. Then, by part (1), D D '.d;M/ is a
p-set whenever it contains a realization of p.

(3) Suppose that d ˆ p and that '.x; y/ witnesses the asymmetry of p-semi-
isolation; there are a; b 2 p.M/ such that a 7!' b. Then b witnesses that
the first condition from the definition holds for D D '.a;M/, so '.a;M/ is
a p-set. In particular,  .a;M/ is a p-set for any p-principal formula  .x; y/
and a ˆ p.

(4) Suppose that p is a minimal powerful type and that the minimality is wit-
nessed by �.x/ 2 p.x/. If '.x; y/ is a p-principal formula, then for all
d 2 �.M/, D D '.d;M/ is a p-set if and only if it contains a realization
of p. For d 2 p.M/ this follows from part (3), and for d … p.M/ from
part (1).

Lemma 4.2 Suppose that �.x/ 2 p.x/ witnesses that p 2 S1.;/ is a minimal
powerful type, d 2 �.M/, and that D D '.d;M/ is a p-set. Then D \ p.M/ does
not have an SIp-upper bound.
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Proof Suppose on the contrary that a 2 p.M/ is an upper bound for D \ p.M/.
Then c ! a holds for all c 2 D \ p.M/:

p.x/ [
®
'.d; x/

¯
`

_
 

 .x; a/:

By compactness there are �0.x/ 2 p.x/ (wlog implying �.x/) and  .x; y/ witness-
ing p-semi-isolation such that ˆ .�0.x/ ^ '.d; x//)  .x; a/. Define

�.y; z/ WD 8t
��
�0.t/ ^ '.y; t/

�
)  .t; z/

�
:

Thenˆ �.d; a/ holds, and according to the definition we have two cases.

Case 1 There exists b 2 D \ p.M/ such that b does not semi-isolate d .

In this case, we have
ˆ '.d; b/ ^ �.d/ ^ 9z�.d; z/: (4.1)

Since b does not semi-isolate d , any formula from tp.d=b/ is consistent with infin-
itely many types from S1.;/, so there exists d 0 2 M which does not realize p and
satisfies (4.1) in place of d . Note that ˆ �.d 0/ and the minimality of p together
imply that tp.d 0/ is not powerful. Let a0 be such that

ˆ '.d 0; b/ ^ �.d 0/ ^ �.d 0; a0/:

We claim that �.d 0; z/ ` p.z/ holds. Assume ˆ �.d 0; c/. Then from b 2 �0.M/ \

'.d 0;M/ and the definition of � , we get ˆ  .b; c/. Since  witnesses p-semi-
isolation, the claim follows.
T is small, so there is an isolated type in S1.d 0/ containing �.d 0; t / (it is an

extension of p). Thus d 0 isolates an extension of p, and because p is powerful,
tp.d 0/ has to be powerful too. This is a contradiction.

Case 2 tp.d/ is not powerful.

Since D is a p-set, there exists b0 2 '.d;M/ \ p.M/. Assuming ˆ �.d; c0/ and
arguing as in the first case, we derive b0 ! c0, so �.d; z/ ` p.z/. Again, we can
find an isolated extension of p in S1.d/ and conclude that tp.d/ is powerful. This is
a contradiction.

Next we show that SIp-incomparability appears quite often on the locus of a minimal
powerful type in an NSOP theory.

Proposition 4.3 (T is NSOP) Suppose that �.x/ 2 p.x/ witnesses that p is a
minimal powerful type, di 2 �.M/, and that each Di D 'i .di ;M/ is a p-set for
i D 1; 2. Then there are a 2 D1; b 2 D2 realizing p such that a ?p b.

Proof Otherwise, for all a 2 D1; b 2 D2 realizing p we have .a; b/ 2 SIp , so
at least one of a! b and b ! a holds. (4.2)

In particular, SIp \ .D1 �D2/ is relatively d1d2-definable within p.M/2, and the
first assumption of Theorem 3.1 is satisfied. We will prove that the other two are
satisfied too.

Suppose that the second condition fails, and witness the failure by a 2 D1\p.M/.
Then, by (4.2), b ! a would hold for all b 2 D2 \ p.M/, so a would be an upper
bound forD2\p.M/; this is in contradiction with Lemma 4.2. Therefore the second
and, similarly, the third condition are fulfilled. By Theorem 3.1, T has the strict order
property. This is a contradiction.
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Thus SIp is in some sense a “wide” quasiorder. Because p is powerful, it is also
directed downwards. It is interesting to know whether it has to be directed upwards.

Question 5 Must SIp be directed upwards on the locus of a minimal powerful
type in an NSOP theory?

We have proved in Corollary 2.9 that Sp
?

has at least one element, and here, under
much stronger assumptions, we will prove that jSp

?
j � 2.

Proposition 4.4 Suppose that T is a binary NSOP theory with three countable
models and that p 2 S1.;/ has CB-rank 1. Then q.x; y/ D p.x/ [ p.y/ [ x?py

has at least two completions in S2.;/.

Proof In a theory with three countable models there is a unique isomorphism type
of a “middle model,” that is, a countable model prime over a realization of a non-
isolated type. The middle model is weakly saturated because every finitary type is
realized in some finitely generated model. Thus any nonisolated type is powerful
and, in particular, p is powerful. Let �.x/ 2 p be a formula of CB-rank 1 and
CB-degree 1. Then p is the unique nonisolated type containing �.x/, and p is a
minimal powerful type.
p is asymmetric, so by Corollary 2.9, q.x; y/ is consistent. Now suppose

that the conclusion of the proposition fails: q.x; y/ has a unique completion
q0.x; y/ 2 S2.;/. Choose a b ˆ q0; then a ?p b holds. By Corollary 2.9, q0 is an
accumulation point of Sp7!, so each of tp.ab/, tp.a=b/, and tp.b=a/ is nonisolated.
By the three model assumption, we know that the model prime over ab is also
prime over a realization d of p (because any two models prime over a realization
of a nonisolated type are isomorphic). Note that both tp.ab=d/ and tp.d=ab/ are
isolated. Hence there is a formula �.x; y; z/ 2 tp.dab/ such that �.d; y; z/ isolates
tpyz.ab=d/ and �.x; a; b/ isolates tpx.d=ab/. Now we use the assumption that T is
binary: there are formulas '0;  0; � such that

ˆ
�
'0.x; y/ ^  0.x; z/ ^ �.y; z/

�
$ �.x; y; z/:

The assumed isolation properties of � imply

'0.x; a/ ^  0.x; b/ ^ �.a; b/ ` p.x/I (4.3)
'0.d; y/ ^  0.d; z/ ^ �.y; z/ ` tp.ab=d/: (4.4)

Let tp.a=d/ be isolated by '.d; y/ 2 tp.a=d/, and let tp.b=d/ be isolated by
 .d; z/ 2 tp.b=d/. Without loss of generality, assume that they are chosen so that
ˆ .'.x; y/) '0.x; y// ^ . .x; y/)  0.x; y//. Then by (4.3) and (4.4):

'.x; a/ ^  .x; b/ ^ �.a; b/ ` p.x/I (4.5)
'.d; y/ ^  .d; z/ ^ �.y; z/ ` tp.ab=d/: (4.6)

Now consider the formula .9x/.�.x/ ^ '.x; y/ ^  .x; z/ ^ �.y; z// which is in
tpyz.ab/ D q0.y; z/. Since Sp

?
D ¹q0º, by Corollary 2.9, q0 is an accumulation

point of Sp7!, so there are a0b0 satisfying this formula such that tp.a0b0/ 2 Sp7!; hence
.a0; b0/ 2 SIp . Then for some d 0 we have

ˆ �.d 0/ ^ '.d 0; a0/ ^  .d 0; b0/ ^ �.a0; b0/: (4.7)

d 0 does not realize p; otherwise (4.6) would imply a0b0 ˆ q0, which is in con-
tradiction with .a0; b0/ 2 SIp . Thus d 0 2 �.M/ X p.M/, so by Remark 4.1(2),
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D1 D '.d 0;M/ and D2 D  .d 0;M/ are p-sets. By Proposition 4.3, there are
a00 2 D1 and b00 2 D2 realizing p such that a00 ?p b00 holds. The uniqueness of q0
implies a00b00 ˆ q0 andˆ �.a00; b00/. Thus

ˆ '.d 0; a00/ ^  .d 0; b00/ ^ �.a00; b00/:

By (4.5) and tp.ab/ D tp.a00b00/ D q0, we get d 0 ˆ p. This is a contradiction.

5 PGPIP for Binary Theories

Throughout this section we will assume that T is a small, binary theory and that
p is a powerful 1-type. We have already noted in Remark 1.6 that SIp is directed
downwards. In Remark 1.7 we noted a stronger form: for any pair of elements
a; b 2 p.M/ there exists d 2 p.M/ and p-principal formulas '; such that both
d !

'
a and d ! b hold. In all the basic examples ' and  can be chosen from

a finite (fixed in advance) set. This property is labeled in [8] as the global pairwise
intersection property (GPIP) for p. Precisely, it means that there is a formula '.x; y/
which is a disjunction of p-principal formulas and such that .p.M/; '.M 2// is an
acyclic digraph satisfying

for all a; b 2 p.M/ there exists d ˆ p such thatˆ '.d; a/ ^ '.d; b/. (5.1)

Here we introduce a somewhat stronger property.

Definition 5.1 p has PGPIP if there is a formula '.x; y/ which is a disjunction
of p-principal formulas and is such that .p.M/2; '.M// is an acyclic digraph, and
for all a; b 2 p.M/ there exists d ˆ p satisfying

tp.ab=d/ is isolated and ˆ '.d; a/ ^ '.d; b/: (5.2)

We leave it to the reader to check that nonisolated 1-types from Ehrenfeucht’s and
Peretyatkin’s (see [4]) examples have PGPIP.

Theorem 5.2 (T is binary, NSOP) Suppose that '.x; y/ D
Wn
iD1 'i .x; y/,

where each 'i .x; y/ is p-principal, witnesses PGPIP for p. Then n � 2 and
CB.Sp;p.;// < n2.

Proof Fix d realizing p. For each pair i; j � n, define

D.i;j / D
®
.a; b/ 2 p.M/2

ˇ̌
tp.ab=d/ is isolated and ˆ 'i .d; a/ ^ 'j .d; b/

¯
;

C.i;j / D
®
tp.ab=d/

ˇ̌
.a; b/ 2 D.i;j /

¯
S.i;j / D

®
tp.ab/

ˇ̌
.a; b/ 2 D.i;j /

¯
:

Note that PGPIP implies that
S
.i;j / S.i;j / D Sp;p.;/ holds; in particular, if n D 1,

then S.1;1/ D Sp;p.;/.

Claim 1 For every q.x; y/ 2 S.i;j / there is �q.x; y/ 2 q which has a unique
extension in C.i;j /.

Proof Let .a; b/ 2 D.i;j / realize q. Then tp.ab=d/ is isolated and, because T is
binary and 'i ’s are p-principal, there is a formula �q.x; y/ 2 q.x; y/ such that

'i .d; x/ ^ 'j .d; y/ ^ �q.x; y/ ` tp.ab=d/:

Since any extension of �q.x; y/ in C.i;j / contains the formula on the left-hand side,
we conclude that the extension is unique.
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Now, we claim that each S.i;j / is a discrete subset of Sp;p.;/. Suppose on the con-
trary that q.x; y/ 2 S.i;j / is an accumulation point of S.i;j /. Then �q is contained
in some q0 2 S.i;j / which is distinct from q. Thus �q has at least two extensions in
C.i;j /: the one extending q and the one extending q0. This is a contradiction.

The first part of our theorem follows: if n D 1, then S.1;1/ D Sp;p.;/ is discrete
and, because it is compact, it has to be finite. Then by Corollary 2.4, T has the strict
order property. This is a contradiction. Therefore n � 2.

The second part follows from the following topological fact: a compact space
which is a union ofm discrete subsets has CB-rank smaller thanm (easily proved by
induction). In our situation Sp;p.;/ D

S
.i;j / S.i;j / is a union of n2 discrete subsets,

so CB.Sp;p.;// < n2.
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