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Pseudofinite and Pseudocompact Metric Structures

Isaac Goldbring and Vinicius Cifú Lopes

Abstract The definition of a pseudofinite structure can be translated verba-
tim into continuous logic, but it also gives rise to a stronger notion and to two
parallel concepts of pseudocompactness. Our purpose is to investigate the re-
lationship between these four concepts and establish or refute each of them for
several basic theories in continuous logic. Pseudofiniteness and pseudocompact-
ness turn out to be equivalent for relational languages with constant symbols,
and the four notions coincide with the standard pseudofiniteness in the case of
classical structures, but the details appear to be slightly more important here
than in the usual translation of definitions from classical logic. We also prove
that injective “formula-definable” endofunctions are surjective, and conversely,
in strongly pseudofinite omega-saturated structures.

1 Introduction

Pseudofiniteness is a well-known, interesting, and useful notion in classical logic
(see, e.g., Ax [1], Felgner [12], Hrushovski [14], Väänänen [17]). Our goal is to
introduce a concept in continuous logic in the setting of Ben Yaacov, Berenstein,
Henson, and Usvyatsov in [3] and [5] which corresponds as much as possible to the
classical one. This should also provide conceptual framework for Farah, Hart, and
Sherman [11, Section 5] (note that their pseudofiniteness is our pseudocompactness)
and Moore [15].

However, in view of the lack of actual negations in the formal language, two
different notions arise in our study. We choose to define them after the names of
pseudofiniteness and strong pseudofiniteness; each resembles a different aspect of
the classical notion.

We also introduce the related concept of pseudocompactness (and a correspond-
ing stronger version), because compact structures in many cases appear to be the right
counterpart in continuous logic of finite structures in classical logic: they are satu-
rated, have no proper ultrapowers, and indeed are totally categorical. (We dedicate
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an appendix to this fact.) Although we show that pseudocompactness is equivalent
to pseudofiniteness in many cases, the stronger versions are distinct in an essential
way, and thus we end up considering three different concepts.

Section 2 defines those four properties and proves some elementary results about
them. We present detailed proofs for statements which correspond to trivial or well-
known properties of classical pseudofiniteness, in order to highlight the nuances of
continuous logic.

In Section 3, we show that, in the case of classical languages and structures, the
four notions coincide with the original one; this seems to require unusual attention.

Section 4 introduces some examples and questions based on the fundamental the-
ories of continuous logic.

Section 5 proves the equivalence of pseudofiniteness and pseudocompactness for
relational languages and argues considerably in favor of a conjecture of general
equivalence. Currently, we need to recourse to almost structures, which satisfy a
weaker clause of modulus of continuity for each nonlogical symbol.

In Section 6, we discuss the injectivity-surjectivity of definable endofunctions,
that is, whether injective definable functions of the form X ! X are surjective, and
conversely. In classical logic, that property is a straightforward consequence of (and
one main source of interest in) pseudofiniteness, although it holds independently of
the latter as well. In continuous logic, work is more complex and requires strong
pseudofiniteness and a strong assumption on the definable function; it also helps to
distinguish between pseudofiniteness and strong pseudofiniteness.

The basics of (bounded) continuous logic are established rigorously in [5] and
the comprehensive monograph [3]. In contrast to classical first-order logic, contin-
uous logic substitutes a closed bounded interval (assumed to be Œ0; 1� in this dis-
cussion for sake of simplicity) for ¹>;?º as the set of truth values. Each sort of
a structure is a bounded metric space (of diameter at most 1 in this discussion),
which can assumed to be complete without changing the intended semantics. Since
x D y , d.x; y/ D 0, 0 is the truth value that mimics “true” while positive values
represent approximations.

Predicate symbols are interpreted as uniformly continuous functions into Œ0; 1�,
and function symbols are interpreted as uniformly continuous functions of the ap-
propriate arity. One adopts all continuous functions Œ0; 1�n ! Œ0; 1� as connectives,
and supremum and infimum play the role of quantifiers in the following way: if ' is
a formula with free variables x; Ey, say, then supx ' and infx ' are formulas with free
variables Ey. Now given a structure M , any formula ' induces a function 'M into
Œ0; 1� which is defined on the appropriate product or power of sorts of M .

Moreover, every metric signature must specify a modulus of uniform continuity for
each of its function and predicate symbols: given �W .0; 1� ! .0; 1�, metric spaces
M;N , and f WM ! N , we say that f has � as a modulus of uniform continuity if
for all � 2 .0; 1� and x; y 2 M ,

dM .x; y/ < �.�/ ) dN
�
f .x/; f .y/

�
� �:

Doing so ensures that every formula induces a uniformly continuous function in a
uniform way across structures; for example, this is needed to ensure that an ultra-
product of structures is again a structure.

Finally, since every continuous f W Œ0; 1� ! Œ0; 1� which is 0 on .0; 1� also satisfies
f .0/ D 0, we realize that there is no proper negation connective in continuous logic,
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whence one cannot a priori express implications. However, we will repeatedly use
the following well-known fact to circumvent this issue.

Fact 1.1 ([3, Proposition 7.14]) Suppose that L is a 1-bounded continuous sig-
nature, M is an !-saturated L-structure, and '.x/ and  .x/ are two L-formulas,
where x is an n-tuple of variables. Then the following are equivalent.

1. For all a 2 M n, if 'M .a/ D 0, then  M .a/ D 0.
2. There is an increasing, continuous function ˛W Œ0; 1� ! Œ0; 1� satisfying
˛.0/ D 0 so that, for all a 2 M n, we have  M .a/ � ˛.'M .a//.

The import of this fact is that the second condition is indeed expressible by the con-
dition supx. .x/ :� ˛.'.x/// D 0.

2 Definitions and Basic Properties

Until further notice, L is a 1-bounded metric signature (assumed to be one-sorted for
simplicity) and M is an L-structure.

Definition 2.1 We say that M is pseudofinite (resp., pseudocompact) if �M D 0

for any L-sentence � such that �A D 0 for all finite (resp., compact) L-structures A.

Remark 2.2 The term pseudocompact is already in use in the topology litera-
ture: a space X is said to be pseudocompact if any continuous function X ! R is
bounded. There is no relationship between our notion and the previous notion, and
thus this should not be a source of confusion.

Remark 2.3 IfL is a many-sorted language, then anL-structure is said to be finite
(resp., compact) if the underlying universe of each sort is finite (resp., compact),
regardless of the number of sorts. Then one defines pseudofinite and pseudocompact
L-structures exactly as in the above definition.

Clearly pseudofinite structures are pseudocompact.

Lemma 2.4 The following are equivalent:
1. M is pseudofinite (resp., pseudocompact);
2. for any L-sentence � , if �M D 0, then for any � > 0, there is a finite (resp.,

compact) L-structure A such that �A � �;
3. there is a set ¹Ai W i 2 I º of finite (resp., compact) L-structures and an ultra-

filter U on I such that M �
Q

UAi .

As usual, (3) together with the Keisler–Shelah theorem (see Henson and Iovino [13,
Chapter 10] for a proof in the context of the approximate semantics predating con-
tinuous logic), provides an algebraic characterization of pseudofinite (resp., pseu-
docompact) structures, namely, as those which have some ultrapower isomorphic to
some ultraproduct of finite (resp., compact) structures.

Proof .1/ ) .2/: Suppose that (1) holds but (2) fails. Then there is an L-sentence
� and � > 0 such that �M D 0 but �A � � for all finite (resp., compact)
L-structures A. But then .� :

� �/A D 0 for all such A, whence �M � � by (1),
which is a contradiction. Note for future reference that the converse is similar. Sup-
pose that (2) holds and that �M DW r > 0. Consider � 2 .0; r/; then j�A � r j � �

for some such A, whence �A > 0.
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.2/ ) .3/: Assume that (2) holds. Let T D Th.M/, and let J be the collection
of finite subsets of T . For each � 2 J and k 2 N>0, let A�;k be a finite (resp.,
compact) L-structure such that A�;k ˆ max� �

1
k

, and let

X�;k D

°
.�; l/ 2 J � N>0WA�;l ˆ max� �

1

k

±
:

Note that ¹X�;k W .�; k/ 2 J � N>0º has the finite intersection property: given
�1; : : : ; �m 2 J and k1; : : : ; km 2 N>0, we have that�

�1 [ � � � [�m;max.k1; : : : ; km/
�

2 X�1;k1
\ � � � \X�m;km

:

Let U be an ultrafilter on J � N>0 extending ¹X�;k W .�; k/ 2 J � N>0º, and set
N WD

Q
UA�;k . To show that M � N , assume that �M D 0, and take any k > 0.

Then X¹�º;k 2 U, so that �N �
1
k

. Since k > 0 is arbitrary, we have that �N D 0.
That .3/ ) .1/ is clear.

Lemma 2.5 Any ultraproduct of pseudofinite L-structures is pseudofinite. If M
is pseudofinite, so is any L-structure elementarily equivalent to M , any reduct of
M to a sublanguage of L, and any expansion of M by constants. The analogous
statements for pseudocompactness also hold.

Proof The only statement whose proof is not identical to that in classical logic is
the one about expansion by constants, yet the procedure is similar. Given a sentence
� in the expanded language, replace the new constant symbols by fresh variables x,
thus obtaining an L-formula '.x/. Assume that �B D 0 for every finite structure
B in the expanded language, that is, 'A.a/ D 0 for every L-structure A and every
adequate sequence of parameters a from A. Note then Œsupx '.x/�A D 0 for any
such A, hence Œsupx '.x/�M D 0, and so �M 0

D 0 for any expansion M 0 of M with
interpretations for the new constant symbols.

In the classical analogue of Lemma 2.4, item (2) is replaced by the following state-
ment: Whenever M ˆ � , then A ˆ � for some finite structure A. (Equivalence
holds due to the use of the negation connective.) This motivates the following defi-
nition.

Definition 2.6 We say that M is strongly pseudofinite (resp., strongly pseudo-
compact) if for any L-sentence � such that �M D 0, there is a finite (resp., compact)
L-structure A such that �A D 0.

Strongly pseudofinite structures are strongly pseudocompact, and Lemma 2.4 yields
that each strong concept implies its corresponding plain version (see Examples 4.2
and 6.5 for proved distinctions).

Observe also that a finitely axiomatizable theory with no finite models cannot be
strongly pseudofinite.

The following preservation lemma is almost as bold as the previous one: our
examples (especially Example 6.5) will show that strong pseudofiniteness is not pre-
served under ultraproducts.

Lemma 2.7 If M is strongly pseudofinite, so is any L-structure elementarily
equivalent to M , any reduct of M to a sublanguage of L, and any expansion of M
by constants. The analogous statements for pseudocompactness also hold.
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Proof Again, we only deal with the expansion by constants. Given any sentence
in the expanded language, replace the new constant symbols by fresh variables, and
quantify over each of them using the inf quantifier, then recall that inf quantifiers are
actually realized in finite or compact structures.

In the next results, we follow the approach to imaginaries and the notation from
[3, Section 5], which we briefly recall here. Given a family .'n.x; yn/Wn 2 N/ of
L-formulas, we consider the definable predicate  .x; Y / WD F lim 'n, which is the
forced limit of these formulas. For each such  .x; Y /, we add an imaginary sort
.S ; d / for canonical parameters of instances of  ; given a tuple b of sort Y in
some L-structure M , we let Œb� denote its image in M eq of sort S . We also add a
predicate symbol P .x; z/ (where z is of sort S ), whose interpretation will satisfy
P .x; Œb� / D  .x; b/, and predicate symbols 
 ;n which are approximations to the
graph of the quotient map between tuples and their equivalence classes in S . We let
Leq denote the resulting language and let T eq

0 denote theLeq-theory axiomatizing the
properties of the new symbols (so the models of T eq

0 are precisely the eq-expansions
of L-structures). We emphasize that this approach to imaginaries is independent of
any ambient L-structure.

Given a finite or countable tuple b and m > 0, we set bjm to be the truncation of
b to the first m elements; we also refer to bjm simply as a truncation of b.

Lemma 2.8 Let '.u; v1; : : : ; vn/ be an Leq-formula, where u is a tuple of vari-
ables from L and v1; : : : ; vn are variables from imaginary sorts. Given � > 0, there
is an L-formula '0.u; v1; : : : ; vn/ such that for all L-structures M and Œbi � 2 M eq

of the same sort as vi , there are truncations b0
i such that

M eq
ˆ sup

u

ˇ̌
'

�
u; Œb1�; : : : ; Œbn�

�
� '0.u; b0

1; : : : ; b
0
n/

ˇ̌
� �:

In particular, for any Leq-sentence � and any � > 0, there is an L-sentence � 0 such
that T eq

0 ˆ j� � � 0j � �.

Proof Proceed by induction on the complexity of ', which we assume is not an
L-formula. First suppose that ' is atomic. Thus, there is a definable predicate
 .x; Y / D F lim.'n.x; yn// such that ' has one of the forms

P .x; z/; d .z; z
�/; or 
'n; .yn; z/:

In the first case, choose N such that 2�N � �. Then

M eq
ˆ sup

x

ˇ̌
P 

�
x; Œb�

�
� 'N .x; bjN /

ˇ̌
� �:

In the second case, choose N so that 2�NC1 � �. Then

M eq
ˆ

ˇ̌̌
d

�
Œb�; Œb��

�
� sup

x

ˇ̌
'N .x; bjN / � 'N .x; b

�
jN /

ˇ̌ˇ̌̌
� �:

Finally, for the third case, choose N so that 2�N � �. Then

M eq
ˆ sup

yn

ˇ̌̌

'n

�
yn; Œb�

�
� sup

x

ˇ̌
'n.x; yn/ � 'N .x; bjN /

ˇ̌ˇ̌̌
� �:

The connective step of the proof follows immediately from uniform continuity. There
are two quantifier cases to consider. First, suppose that '.u; v1; : : : ; vn/ D infw �.u;
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w; v1; : : : ; vn/, where w is a variable of L. Let �0.u;w; v1; : : : ; vn/ be as in the
conclusion of the lemma for � and �. Then set

'0.u; v1; : : : ; vn/ WD inf
w
�0.u;w; v1; : : : ; vn/:

Now assume that '.u; v1; : : : ; vn/ D infw �.u; v1; : : : ; vn; w/, where w is an imag-
inary variable. Let �0.u; v1; : : : ; vn; w0/ be an L-formula satisfying the conclusion
of the lemma for � and �. Then set '0.u; v1; : : : ; vn/ WD infw0 �0.u; v1; : : : ; vn; w0/.
The supremum is dealt with similarly.

Now we modify the eq-construction for finite structures slightly. Suppose that A is a
finite L-structure and that  .x; Y / is a definable predicate, where Y is a countable
tuple of parameter variables. Observe that then there is a finitary definable predicatee .x; y/ (i.e., y is a finite tuple) such that  and e are logically equivalent. Conse-
quently, there is no need to add the sort S if one adds the sort Se . Thus, we insist
that the eq-construction for finite structures only add sorts for canonical parameters
of finitary imaginaries. In this way, Aeq is once again a finite structure. Observe that
if A is a compact structure, then Aeq is also a compact structure.

Proposition 2.9 If M is pseudofinite (resp., pseudocompact), then so is M eq.

Proof Suppose that M is pseudofinite and that M eq ˆ � D 0. Fix � > 0, and
let � 0 be as in Lemma 2.8, so M ˆ � 0 � �. Then there is a finite (resp., compact)
L-structure A such that A ˆ � 0 � 2�, whence Aeq ˆ � � 3�.

Question 2.10 Are the notions of strong pseudofiniteness and strong pseudocom-
pactness preserved when adding imaginaries? More generally, how natural is strong
pseudofiniteness in continuous logic, which relies heavily on approximations?

3 The Case of a Classical Structure

In this section, we let L denote a signature for classical logic. In order to treat L
as a signature for continuous logic, we interpret each predicate symbol as a function
into ¹0; 1º (where 0; 1 replace >;?, resp.), and we specify �.�/ WD � as a modulus
of uniform continuity for each function and predicate symbol. Now any classical
L-structure, when equipped with the discrete metric, is a metric L-structure.

For the rest of this section, let M denote a classical L-structure. If M is pseudo-
finite in the classical sense, that is, M satisfies the first-order theory of finite struc-
tures, then we will say thatM is classically pseudofinite. Thus, when we say thatM
is pseudofinite, we are considering M as a metric L-structure. It is not immediately
clear that those two notions agree, as there are metric L-structures that are not the
result of viewing classical L-structures as metric structures, plus the two syntaxes
are different. Nonetheless, in this section, we will prove the following.

Theorem 3.1 Given a classical L-structure, the five notions classically pseudofi-
nite, pseudofinite, strongly pseudofinite, pseudocompact, and strongly pseudocom-
pact coincide.

Toward proving this result, note that, since all five notions are invariant under ele-
mentary equivalence, we may replace M with an elementary extension, thus reduc-
ing to the case that M is !-saturated (as a metric structure).

One proves the next lemma by induction on the complexity of formulas (see also
[3, Remark 9.21]), which is uniform over all classical structures.
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Lemma 3.2 For any continuous L-formula '.x/, there is finite R' � Œ0; 1� such
that, for any classical L-structure A and any adequate tuple a from A, one has
'A.a/ 2 R' . Moreover, for each r 2 R' there is a classical L-formula 'r .x/ such
that, for all those pairs .A; a/, we have 'A.a/ D r , A ˆ 'r .a/.

Corollary 3.3 If M is classically pseudofinite, then M is strongly pseudofinite.

Proof Assume thatM is classically pseudofinite, let � be a continuousL-sentence
such that �M D 0, and take �0 given by Lemma 3.2. Since M ˆ �0 there is a finite
classical L-structure A such that A ˆ �0, whence �A D 0.

Remark 3.4 Lemma 3.2 also provides a way to see that if A 4 B (resp., A � B)
as classical structures, then A 4 B (resp., A � B) as metric structures.

Now note that, for all a; b 2 M , we have d.a; b/ �
1
2

) d.a; b/ D 0. Thus,
sinceM is !-saturated, there is an increasing, continuous ˛W Œ0; 1� ! Œ0; 1� such that
˛.0/ D 0 and d.a; b/ � ˛.d.a; b/ :� 1

2
/ for all a; b 2 M .

Lemma 3.5 If M is strongly pseudocompact, then M is strongly pseudofinite.

Proof Suppose that M is strongly pseudocompact and that �M D 0. Then

M ˆ max
�
�; sup
x;y

�
d.x; y/ :� ˛

�
d.x; y/ :�

1

2

���
D 0:

Thus the displayed sentence has value 0 in some compact L-structure A. However,
the second “conjunct” forces A to be discrete, whence finite.

It remains to prove that ifM is pseudocompact, then it is classically pseudofinite. To-
wards this end, given a classical L-formula '.x/, we define its continuous transforme'.x/ by recursion as follows:

� if '.x/ is t1.x/ D t2.x/, then e'.x/ is d.t1.x/; t2.x//;
� if '.x/ is P.t1.x/; : : : ; tn.x//, then e'.x/ is '.x/ (which will correspond to a

function into ¹0; 1º);
� Œ:'�� is 1 :� e';
� Œ' ^  �� is max.e';e /;
� Œ9y  .x; y/�� is infy e .x; y/.

Now for any classical L-structure B , any classical L-formula '.x/, and any b
from B , we have e'B.b/ 2 ¹0; 1º; moreover, B ˆ '.b/ , e'B.b/ D 0.

Now suppose that M is pseudocompact and that � is a classical L-sentence such
that M ˆ � . We will find a finite classical L-structure B such that B ˆ � .

For every predicate symbol P in � and every suitable tuple a from M , we
have PM .a/ �

1
2

) PM .a/ D 0. Thus, there is an increasing, continuous
˛P W Œ0; 1� ! Œ0; 1� with ˛P .0/ D 0 such that �MP D 0, where

�P WD sup
x

�
P.x/ :� ˛P

�
P.x/ :�

1

2

��
:

Similarly, letting � WD supx;y.d.x; y/ :� ˛.d.x; y/ :� 1
2
// with ˛ as above, we also

have that �M D 0. Let � 0 WD max.e�; .�P /P ; �/, where P ranges over the predicate
symbols appearing in � .

Since M is pseudocompact, there is a compact structure A such that .� 0/A �
1
4
.

Define a binary relation E on A by E.x; y/ W, d.x; y/ �
1
4
. Clearly E is reflexive
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and symmetric. However, E is also transitive: indeed, if d.x; y/; d.y; z/ �
1
4
, then

d.x; z/ �
1
2
; since �A �

1
4
, we get d.x; z/ �

1
4
. We now define B as follows: Its

underlying set is the set of E-equivalence classes of A. Since A has a finite 1
4
-net,

B is finite. We only define the symbols appearing in � . Given a predicate symbol
P , first we check that if d.ai ; a0

i / �
1
4

for each i , then PA.a/ �
1
2

, PA.a0/ �
1
2
.

Indeed, .�P /A �
1
4
, so PA.a/ �

1
2

implies PA.a/ �
1
4
; since �P .�/ D �, we

obtain jPA.a/ � PA.a0/j �
1
4
. Therefore, we declare Œa� 2 PB if and only if

PA.a/ �
1
2
. Similarly, for a function symbol f , we can define f B.Œa�/ WD Œf A.a/�

because Œa� D Œa0� implies jf A.a/ � f A.a0/j �
1
4
.

Let L0 be the reduct of L that only contains the symbols of � . One proves by
induction on the complexity of formulas, and using that inf quantifiers are realized
in compact structures, the following.

Lemma 3.6 Suppose that '.x/ is a classical L0-formula. Then for any suitable
tuple a in A, we have the following.

1. If e'A.a/ �
1
4
, then B ˆ '.Œa�/.

2. If e'A.a/ �
3
4
, then B ˆ :'.Œa�/.

Therefore, since e�A �
1
4
, we have B ˆ � .

This finishes the proof of Theorem 3.1. We should remark that the above discus-
sion is unusual in the sense that when one generalizes a notion to continuous logic,
it is often immediate that it agrees with the classical notion on classical structures.
For example, if T is a classical theory, then it is immediate to see that T is stable as
a classical theory if and only if T is stable as a continuous theory. Pseudofiniteness
appears to be the first notion where some work is required to show that the notions
agree on classical structures.

4 Examples and Questions

Example 4.1 Let L be the signature naturally used for closed unit balls of inner
product spaces (see [3, Example 2.1]). For n � 1, let Bn denote the closed unit ball
of Rn, let U be any nonprincipal ultrafilter on N, and letH D

Q
U Bn. ClearlyH is

the closed unit ball of an infinite-dimensional Hilbert space. By completeness, any
closed unit ball of a Hilbert space is pseudocompact. We will be able to show that
H is not strongly pseudofinite: the function H ! H , x 7!

1
2
x, is injective but not

surjective.
There are two relevant pseudocompact expansions of H . First, consider .H;

P / D
Q

U.Bn; Pn/, where PnWRn ! Rn is a projection operator onto an bn=2c-
dimensional subspace of Rn. Then .H;P / is a model of the theory of beautiful pairs
of Hilbert spaces, namely, an infinite-dimensional Hilbert space equipped with a pro-
jection with infinite-dimensional image and infinite-dimensional orthogonal comple-
ment. (See Berenstein and Villaveces [7].)

Next, let ¹zi W i < !º be a countable dense subset of the circle ¹z 2 CW jzj D 1º.
Let .H;U / D

Q
U.Bn; Un/, where UnWCn ! Cn is a unitary operator with eigen-

values ¹z0; : : : ; znº. Then for any m � n, we have
.Bm; Um/ ˆ inf

x
max

�ˇ̌
hx; xi � 1

ˇ̌
;


U.x/ � znx



�
D 0:

It follows from the work in Ben Yaacov, Usvyatsov, and Zadka [6] that .H;U / is a
model of the theory of Hilbert spaces equipped with a generic automorphism.
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Example 4.2 Let L be the signature for probability structures (see [3, Sec-
tion 16]). Let Bn be the probability structure with event algebra 2n and counting
measure �n. Let U be a nonprincipal ultrafilter on N, and let B D

Q
U Bn. We

claim that B is an atomless probability structure; by completeness, it will follow that
any atomless probability structure is pseudofinite, but not strongly pseudofinite since
its theory is finitely axiomatizable. Towards this end, suppose that x D Œ.xn/� 2 B

is such that �.x/ > 0. Set mn WD jxnj; then mn > 1 for almost all n, because
otherwise �n.xn/ �

1
n

and hence �.x/ D limU �n.xn/ D 0. For such n, let
yn � xn be such that jynj D

1
2
mn if mn is even or jynj D

1
2
.mn � 1/ if mn is

odd. Then Bn ˆ infy j�.xn \ y/ � �.xn \ yc/j �
1
n

for almost all n, whence
B ˆ infy j�.x \ y/ � �.x \ yc/j D 0. It follows that B is atomless.

Similarly, any atomless probability structure equipped with a generic (or aperi-
odic) automorphism is also pseudofinite, but not strongly pseudofinite. Indeed, the
theory of atomless probability structures equipped with a generic automorphism (de-
noted APAA in [3, Section 18]) is axiomatized (in the language of probability struc-
tures expanded by a unary function symbol � ) by the axioms of atomless probability
structures equipped with an automorphism together with, for each n � 1, the axiom

inf
e

max
�ˇ̌̌ 1
n

� �.e/
ˇ̌̌
; �

�
e \ �.e/

�
; : : : ; �

�
e \ �n�1.e/

��
D 0:

We equip the above probability structures Bm with the automorphisms �m induced
by the point map x 7! x C 1 mod m. Fix n � 1, and suppose that m > n.
Choose k 2 ¹1; : : : ; mº maximal with respect to .k � 1/=.m � 1/ �

1
n

. Let
e D ¹1; 1C n; : : : ; 1C .k � 1/nº 2 Bm. Observe that jej D k, soˇ̌̌

�.e/ �
1

n

ˇ̌̌
�

ˇ̌̌ k
m

�
k

m � 1

ˇ̌̌
C

ˇ̌̌ k

m � 1
�
k � 1

m � 1

ˇ̌̌
C

ˇ̌̌ k � 1

m � 1
�
1

n

ˇ̌̌
�

3

m � 1
:

Furthermore, observe that for i 2 ¹0; 1; : : : ; n � 1º we have � im.e/ \ e � ¹1º, so
�.� im.e/ \ e/ �

1
m

for each such i . Consequently,

.Bm; �m/ ˆ inf
e

max
�ˇ̌̌1
n

� �.e/
ˇ̌̌
; �

�
e \ �.e/

�
; : : : ; �

�
e \ �n�1.e/

��
�

3

m � 1

for each m � n. Let �1 D limU �m. It follows that

.B; �1/ ˆ inf
e

max
�ˇ̌̌1
n

� �.e/
ˇ̌̌
; �

�
e \ �.e/

�
; : : : ; �

�
e \ �n�1.e/

��
D 0:

Since n � 1 was arbitrary, we have that .B; �1/ ˆ APAA.

Example 4.3 More generally, let L be a countable classical signature: we claim
that if M is a pseudofinite L-structure, then any of its Keisler randomizations are
pseudofinite metric structures. (See Ben Yaacov and Keisler [4] for information on
this notion; the theory of atomless probability algebras is the theory of the Keisler
randomization of a two-element set.) To see this, suppose thatM �

Q
UMn, where

.MnW n 2 N/ is a family of finite L-structures and U is a nonprincipal ultrafilter on
N; observe that since L is countable, we may always find such a countable family of
finite structures. We consider the probability structures Bn from the previous exam-
ple, and we let Kn WD M

¹1;:::;nº
n . We claim that .K;B/ WD

Q
U.Kn;Bn/ ˆ T R,

where T WD Th.M/; since T R is complete, it suffices to prove this claim. The valid-
ity, Boolean, distance, fullness, event, and measure axioms are clearly true in each of
the factor structures, and hence true in the ultraproduct. As above, the ultraproduct
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satisfies the atomless axiom. It remains to verify the transfer axiom; namely, for every
sentence � 2 T , we need .K;B/ ˆ d.ŒŒ���;>/ D 0. Note that dBn.ŒŒ���;>/ D 0

if and only if Mn ˆ � ; since � 2 T , then Mn ˆ � for almost all n, whence
dB.ŒŒ���;>/ D limU d

Bn.ŒŒ���;>/ D 0. Note that this example provides us with
our first examples of unstable pseudofinite theories (other than the classical ones).
Indeed, if T is not stable, then T R is unstable (see [4]). Also, by a result of Ben Yaa-
cov (see [2, Corollary 4.15]), if T is simple unstable, then T R is not simple. Thus,
if T is the theory of the random graph or the theory of pseudofinite fields, then T R
is pseudofinite but not simple.

Example 4.4 Let .X; d/ be a proper metric space (i.e., its closed balls are com-
pact). Fix a base point p 2 X , and consider .X; d; p/ as a many-sorted structure
in the natural way. (See Carlisle [8] for all the concepts.) Then the asymptotic cone
of .X; d; p/ with respect to any nonprincipal ultrafilter on N will be pseudocompact,
and hence pseudofinite by Theorem 5.1 below. Of particular interest is the case when
.X; d/ is the Cayley graph of a finitely generated group G. In the case when G is
hyperbolic, this asymptotic cone will be an R-tree. If G is hyperbolic and nonele-
mentary (i.e., it does not contain an infinite cyclic group of finite index), for example
G D F2 the free group on two generators, then the R-tree is richly branching. Again
by completeness, every richly branching R-tree is pseudofinite.

Question 4.5 Let U denote the bounded Urysohn space, that is, the unique Pol-
ish metric space of diameter 1 which is ultrahomogeneous and contains an isometric
copy of every Polish metric space of diameter bounded by 1. Let TU denote the
theory of U in the metric signature containing only the distance symbol. Is U pseu-
dofinite?

The Urysohn space is the continuous analogue of the random graph, and so one might
expect the answer to be positive. The model theory of U is quite well understood; TU

is complete, admits quantifier elimination, is @0-categorical, and is rosy with respect
to finitary imaginaries, but it is not simple (see Usvyatsov [16], Ealy and Goldbring
[10]). In [16], an axiomatization for TU is given by writing down conditions in
continuous logic describing a collection of “extension axioms.” Thus, the following
lemma (and Theorem 5.1) might prove useful to decide the question.

Lemma 4.6 Suppose that ¹
 D 0W 
 2 �º ˆ Th.M/ for some collection � of
L-sentences, and suppose that, for every 
1; : : : ; 
n 2 � and every � > 0, there is a
finite (resp., compact) L-structure A such that A ˆ max.
1; : : : ; 
n/ � �. Then M
is pseudofinite (resp., pseudocompact).

Proof Let � be an L-sentence such that �M D 0, and set ı > 0. Then by com-
pactness, there is � > 0 and 
1; : : : ; 
n 2 � such that ¹max.
1; : : : ; 
n/ � �; � � ıº

is unsatisfiable, so, for A as in the statement, we obtain �A < ı.

We should remark that the Urysohn space is not the underlying metric space of any
Keisler randomization, which eliminates a strategy for proving its pseudofiniteness.
Indeed, the metric space consisting of the vertices of an equilateral triangle together
with the centroid cannot be realized in a randomization. (We thank Julien Melleray
and Todor Tsankov for pointing this out to us.)

Question 4.7 Is there an example of an essentially continuous strongly pseudofi-
nite (resp., strongly pseudocompact) structure that is not finite (resp., compact)?
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While the term essentially continuous is admittedly vague (although there have been
attempts by others to make this notion precise), we use it to preclude discrete/classi-
cal examples. In fact, since continuous logic is an approximate logic, we conjecture
that the answer to the above question might be negative. It would even be interesting
to settle this question under some extra set-theoretic hypotheses.

We should remark that an exercise from classical logic also works in contin-
uous logic, and thus it fails to construct a nontrivial strongly pseudofinite struc-
ture. Suppose that .Ai W i 2 I / is a family of finite (resp., compact) L-structures,
and that U is an !1-complete ultrafilter on I (see Chang and Keisler [9, Sec-
tion 4.2]), and letM WD

Q
UAi . Such anM is strongly pseudofinite (resp., strongly

pseudocompact). Indeed, suppose that � is a sentence such that �M D 0. Let
In WD ¹i 2 I WAi ˆ �Ai �

1
n

º 2 U. Then by assumption, there is i 2
T
n�1 In, and

�Ai D 0 for this i . However, M is actually finite (resp., compact). In fact, let

Dn WD
®
i 2 I W jAi j � n

¯
:

If each Dn 2 U, then their intersection is also in U, contradicting that each Ai is
finite. Consequently, I nDn 2 U for some n, whence jM j < n. (For compactness,
given � > 0, take

Dn WD ¹i 2 I WAi does not have an �-net of size � nº:/

5 Relationship Between Pseudofiniteness and Pseudocompactness

In this section, L denotes a 1-bounded, one-sorted metric signature. We will prove
the following.

Theorem 5.1 Suppose thatL contains only predicate and constant symbols. Then
the two notions pseudofinite and pseudocompact coincide.

We will also obtain a similar result for languages with function symbols.
In this section, M denotes a compact L-structure. For each m � 1, let Xm � M

be a finite 1
m

-net for M .
Suppose first that L is relational. View each Xm as a substructure of M , and let

N WD
Q

UXm, where U is some nonprincipal ultrafilter on N. We denote sequences
from

Q
Xm as .am/, and we write Œam� for the corresponding equivalence class inN .

Suppose next that c is a constant symbol in L; choose cXm 2 Xm so that
d.cM ; cXm/ < 1

m
. Now Xm continues to be an L-structure, though it need not be a

substructure of M .
Finally, if f is a function symbol in L and a is a suitable tuple in Xm, define

f Xm.a/ 2 Xm so that d.f Xm.a/; f M .a// < 1
m

. Observe that Xm may not be
an L-structure for the singular reason that it may not respect the modulus of uni-
form continuity for f specified by L. However, Xm is an almost L-structure in the
following sense.

Definition 5.2 An almost L-structure X is defined as an L-structure, except that
the clause of modulus of continuity for each function symbol f is weakened thus:
for sufficiently small � and every a; b from X ,

d.a; b/ < �f .�/ ) d
�
f X .a/; f X .b/

�
� �;

and the clause of modulus of continuity for each predicate symbol is weakened anal-
ogously. (Every L-structure is an almost L-structure.)
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Indeed, since Xm is finite, there is rm > 0 such that d.a; b/ � rm for each
pair of distinct a; b 2 Xm, in which case, when �f .�/ < rm, we have that
d.a; b/ < �f .�/ ) a D b. (We assume here that lim�!0C �f .�/ D 0, which is
usually the case.)

Once again, let N WD
Q

UXm. Observe that N is an actual L-structure. Indeed,
fix � > 0, and suppose that Œam�; Œbm� are tuples in N such that d.Œam�; Œbm�/ <
�f .�/. Then for almost all m, we have d.am; bm/ < �f .�/, whence d.f Xm.am/;

f Xm.bm// � � C
2
m

. Consequently, d.f N .Œam�/; f N .Œbm�// � �.

Lemma 5.3 For any � > 0 andL-term t .x/, there isK 2 N so that for allm � K

and all suitable a from Xm, we have d.tM .a/; tXm.a// < �.

Proof We prove by induction on the complexity of t . The basic cases follow from
the definitions of interpretation in Xm. Now suppose that t .x/ D f .t1.x/; : : : ;

tk.x//. Choose K 0 so that 1
K0 < �f .

�
2
/, and then choose K > 2

�
so that our claim

holds for t1; : : : ; tk with 1
K0 in place of �. Suppose thatm � K and that a lies in Xm.

Then d.tMi .a/; t
Xm

i .a// < 1
K0 for each i , whence

d
�
f M

�
tM1 .a/; : : : ; t

M
k .a/

�
; f M

�
t
Xm

1 .a/; : : : ; t
Xm

k
.a/

��
�
�

2
;

whence

d
�
f M

�
tM1 .a/; : : : ; t

M
k .a/

�
; f Xm

�
t
Xm

1 .a/; : : : ; t
Xm

k
.a/

��
�
�

2
C
1

m
< �:

Lemma 5.4 For any � > 0 and L-formula '.x/, there is K 2 N so that for all
m � K and all suitable a from Xm, we have j'M .a/ � 'Xm.a/j < �.

Proof We induct on the complexity of '. First, suppose that '.x/ is the atomic
formula d.t1.x/; t2.x//. Note thatˇ̌

d
�
tM1 .x/; t

M
2 .x/

�
� d

�
t
Xm

1 .x/; t
Xm

2 .x/
�ˇ̌

� d
�
tM1 .x/; t

Xm

1 .x/
�

C d
�
tM2 .x/; t

Xm

2 .x/
�
;

and apply Lemma 5.3. Now suppose that '.x/ is the atomic formula P.t1.x/; : : : ;
tk.x//. Thenˇ̌

PM
�
tM1 .x/; : : : ; t

M
k .x/

�
� PXm

�
t
Xm

1 .x/; : : : ; t
Xm

k
.x/

�ˇ̌
D

ˇ̌
PM

�
tM1 .x/; : : : ; t

M
k .x/

�
� PM

�
t
Xm

1 .x/; : : : ; t
Xm

k
.x/

�ˇ̌
< �

if m is sufficiently large so that d.tMi .x/; t
Xm

i .x// < �P .�/ for each i . Uniform
continuity of connectives takes care of the connective case.

Finally, suppose that '.x/ D infy  .x; y/. (The supremum case is analogous.)
Let K 0 be as in the conclusion of the lemma for  .x; y/ and �

3
. Choose K � K 0

so that 1
K

� � .
�
3
/. Suppose that m � K and that a lies in Xm. Let r D 'M .a/,

and let s D 'Xm.a/. Let b 2 M be such that  M .a; b/ < r C
�
3
. Let c 2 Xm be

such that d.b; c/ �
1
m

. Then  M .a; c/ � r C
2�
3

, and so  Xm.a; c/ < r C �, hence
s < r C �. On the other hand, let e 2 Xm be such that  Xm.a; e/ < s C

�
3
. Then

 M .a; e/ < s C
2�
3

, so r < s C �.

In particular, for any sentence � , we have �M D limU �
Xm , and thus the following.

Corollary 5.5 We have M � N .
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This proves Theorem 5.1 because then every Xm will be a finite L-structure.
If we now assume that the language has function symbols and that M as above

is locally finite, then we can arrange each Xm as above to be a finite substructure of
M , proving that M is once again pseudofinite. If now A is a uniformly locally finite
pseudocompact structure in a language with only finitely many function symbols,
then it follows that A is elementarily equivalent to an ultraproduct of locally finite
compact structures, proving the following.

Corollary 5.6 For uniformly locally finite structures in languages with only
finitely many function symbols, the two notions pseudofinite and pseudocompact
coincide.

To state the general result, we need the following concepts, which will be used also
in the next section.

Definition 5.7 An L-structure Z is almost pseudofinite (resp., almost pseudo-
compact) if whenever �A D 0 for an L-sentence � and all finite (resp., compact)
almost L-structures A, then �Z D 0.

Similarly, Z is almost strongly pseudofinite (resp., almost strongly pseudocom-
pact) if whenever �Z D 0 for an L-sentence � , then there is a finite (resp., compact)
almost L-structure A such that �A D 0.

(In all four cases, the almost version of a property is a consequence of the property
itself.)

Lemma 5.8 Z is almost pseudofinite if and only if, whenever � > 0 and � is an
L-sentence such that �Z D 0, then there is a finite almost L-structure A such that
�A � �.

Proof This is analogous to the equivalence of (1) and (2) in Lemma 2.4.

Thus, sinceM � N andN is an ultraproduct of finite almostL-structures, we obtain
the following.

Proposition 5.9 Every compact L-structure is almost pseudofinite, and thus
pseudocompactness ) almost pseudofiniteness ) almost pseudocompactness.

We conjecture that the notions of pseudofiniteness and pseudocompactness always
agree. We will see in the next section (e.g., Example 6.5), however, that the strong
versions are not equivalent.

6 Injectivity-Surjectivity of Endofunctions

In classical logic, ifM is pseudofinite and f WM ! M is definable, then f is injec-
tive if and only if it is surjective. In the continuous setting, already in the simplest
case this seems to require a few more assumptions. Suppose that L is a 1-bounded,
one-sorted metric signature, and suppose that M is a metric L-structure.

Definition 6.1 Say that f WM ! M is formula-definable if there is an L-formula
'.x; y; z/, where z is a tuple of variables, and there is a tuple a from M such that
d.f .x/; y/ D '.x; y; a/ for all x; y 2 M .

Theorem 6.2 Suppose that M is !-saturated and strongly pseudofinite. Suppose
that f WM ! M is a formula-definable function. Then f is injective if and only if it
is surjective.
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Proof Suppose that f is injective but not surjective. By !-saturation, there is
y 2 M and an � > 0 such that d.f .x/; y/ � � for all x 2 M . Fix '.x; y; a/ as in
the above definition. Note that, for all x; y1; y2 2 M , we have

max
�
'.x; y1; a/; '.x; y2; a/

�
D 0 ) d.y1; y2/ D 0:

Since .M; a/ is !-saturated, there is an increasing continuous function ˛W Œ0; 1� !

Œ0; 1� satisfying ˛.0/ D 0 and such that, for all x; y1; y2 2 M ,
d.y1; y2/ � ˛

�
max

�
'.x; y1; a/; '.x; y2; a/

��
:

Similarly, since f is injective, there is an increasing continuous ˇW Œ0; 1� ! Œ0; 1�

satisfying ˇ.0/ D 0 and such that, for all x1; x2; y 2 M ,
d.x1; x2/ � ˇ

�
max

�
'.x1; y; a/; '.x2; y; a/

��
:

Consider the following formulas:
P.z/ WD sup

x
inf
y
'.x; y; z/;

Q.z/ WD sup
x;y1;y2

�
d.y1; y2/

:
� ˛

�
max

�
'.x; y1; z/; '.x; y2; z/

���
;

R.z/ WD sup
x1;x2;y

�
d.x1; x2/

:
� ˇ

�
max

�
'.x1; y; z/; '.x2; y; z/

���
;

S.z/ WD inf
y

sup
x

�
� :� '.x; y; z/

�
:

Then
M ˆ inf

z
max

�
P.z/;Q.z/; R.z/; S.z/

�
D 0:

Since M is strongly pseudofinite, there is a finite L-structure A such that
A ˆ inf

z
max

�
P.z/;Q.z/; R.z/; S.z/

�
D 0:

Since A is finite, inf quantifiers are actually realized, and thus there is a0 2 A such
that '.x; y; a0/ defines an injective function A ! A which is not surjective, leading
to a contradiction.

Conversely, suppose that f is surjective but not injective. Define P.z/ and Q.z/
as above. Since f is not injective, there are b1; b2 2 M such that d.b1; b2/ DW � > 0

and f .b1/ D f .b2/. Consequently, there is an increasing continuous 
 W Œ0; 1� !

Œ0; 1� satisfying 
.0/ D 0 and so that, for all w1; w2 2 M ,
d.w1; w2/ � 


�
max

�
'.b1; w1; a/; '.b2; w2; a/

��
:

Consider the following formulas:
�.x1; x2; z/ WD sup

w1;w2

�
d.w1; w2/

:
� 


�
max

�
'.x1; w1; z/; '.x2; w2; z/

���
;

T .z/ WD inf
x1;x2

max
�ˇ̌
d.x1; x2/ � �

ˇ̌
; �.x1; x2; z/

�
;

U.z/ WD sup
y

inf
x
'.x; y; z/:

Then
M ˆ inf

z
max

�
P.z/;Q.z/; T .z/; U.z/

�
D 0;

leading to a similar contradiction.

Remark 6.3 The above proof only required that M was almost strongly pseudo-
finite.
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Remark 6.4 Similarly, if X is the zero set of a formula in a power of M , and
f WX ! X is formula-definable (so there are '; a such that d.f .x/; y/ D '.x; y; a/

for all x; y 2 X ), then f is injective if and only if f is surjective.

Example 6.5 Let S1 D ¹z 2 CW jzj D 1º have the metric which is half the
one induced by the canonical metric in C (so it has values in Œ0; 1�), and consider
the ternary relation P.u; v; w/ WD d.uv;w/, where the usual product in C is used.
Consider also f W S1 ! S1, f .z/ D z2, which is surjective, but not injective. Then
the relational structure .S1; P / (in the minimal adequate language with the right
modulus of uniformity for P ) is compact, hence pseudofinite. Because of the total
categoricity of compact models, .S1; P / is saturated. Also, f is formula-definable
in .S1; P /: we have d.f .z/; w/ D P.z; z; w/. Therefore, .S1; P / is not strongly
pseudofinite.

Example 6.6 Let Œ0; 1� have the usual metric, and consider f W Œ0; 1� ! Œ0; 1�,
f .x/ D x=2, which is injective, but not surjective. Similarly to the previous exam-
ple, one obtains a compact, pseudofinite, but not strongly pseudofinite structure.

Question 6.7 Is there a natural property of endofunctions in continuous logic
corresponding to injectivity-surjectivity, and which holds in pseudofinite structures?

Note that the function f W Œ0; 1� ! Œ0; 1� defined thus: f .x/ D 2x if 0 � x �
1
2

and f .x/ D 1 otherwise, is surjective, yet f �1.1/ is large by several metric and
topological standards.

In general, suppose that P WM n ! Œ0; 1� is a definable predicate inM (over some
countable parameter set). Let LP be the language obtained by adding a predicate
symbol for P , together with its own modulus of uniform continuity, and let .M;P /
be the natural expansion ofM to an LP -structure. Given an LP -formula  .y/ with-
out parameters and an L-formula '.x; a/ with parameters a, where x is an n-tuple,
one naturally gets an L.a/-formula  ' by replacing every occurrence of P.t/ in  
with '.t; a/ (for any occurring tuple t of terms).

Lemma 6.8 If M is !1-saturated, then .M;P / is !1-saturated.

Proof Suppose that ¹ i .y/ D 0W i 2 I º is a finitely satisfiable collection of
LP -conditions in countably many parameters. Replace  i .y/ D 0 by  i

'i
n

.y/ �
1
n

,
where 'in is an L-formula approximating P well enough, so as to obtain a finitely
satisfiable collection of L-conditions in countably many parameters. Then use
!1-saturation of M .

Corollary 6.9 Suppose that f WM ! M is a definable function in an!1-saturated
structure M , let P.x; y/ D d.f .x/; y/, and suppose further that .M;P / is almost
strongly pseudofinite. Then f is injective if and only if it is surjective.

Such a result naturally poses the following question.

Question 6.10 If M is strongly pseudofinite, is .M;P / almost strongly pseudo-
finite?

We can settle the corresponding question for pseudofinite structures.

Lemma 6.11 Given any LP -formula  .y/ and � > 0, there are parameters a
in M and an L.a/-formula '.x; a/ such that j .M;P /.b/ �  M' .b/j � � for every
b 2 M .
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Proof If  is actually an L-formula, then there is nothing to do. Otherwise,
if  .y/ is atomic, then it is P.t1.y/; : : : ; tn.y//, where t1; : : : ; tn are L-terms;
now choose '.x; a/ such that jPM .x/ � 'M .x; a/j � � for all x 2 M n, so
'.t1.y/; : : : ; tn.y/; a/ is the desired formula. Proceeding by induction, connectives
are handled as usual and the case of quantifiers is also immediate.

Proposition 6.12 If M is pseudofinite, then .M;P / is almost pseudofinite.

Proof Suppose that � is an LP -sentence such that � .M;P / D 0. Given � > 0, let
'.x; a/ be such that .M; a/ ˆ �' �

�
2
. Thus, M ˆ infy �'.y/ �

�
2
. Assuming that

M is pseudofinite, we have that A ˆ infy �'.y/ � � for some finite L-structure A.
Let b 2 A be such that .A; b/ ˆ �'.b/ � �, then makeA into an almostLP -structure
by interpreting P.x/ as '.x; b/, so .A; PA/ ˆ � � �.

Appendix: Compact Structures

As mentioned in the Introduction, compact structures have no proper ultrapowers;
indeed, since any sequence from a compact space has a unique ultralimit, the diag-
onal embedding M ! MU of a compact structure M into any of its ultrapowers is
surjective. From this it follows that M is totally categorical, that is, if N � M , then
N Š M . To see this, we use the Keisler–Shelah theorem for continuous logic: if
N � M , then NU Š MU for some ultrafilter U, hence NU is compact. By Łoś’s
theorem, we see that N is compact, whence we have N Š NU Š MU Š M .

Here, we give a more elementary proof that compact structures are totally cate-
gorical.

Theorem Suppose that L is a countable signature and that M is a compact
L-structure. Then for any L-structure N , if N � M , then N Š M .

Proof Let N � M . Without loss of generality, we may assume that N is
!1-saturated. Indeed, if U is a nonprincipal ultrafilter on N, then NU � M and
NU is !1-saturated. If further NU Š M , then again N Š M by Łoś’s theorem.

For ease of notation, we work with one unary predicate symbol P and one unary
function symbol F . The proof below extends immediately to finite languages. For a
countably infinite language, one needs to replace single conditions by partial types.

For m � 1, let ¹am1 ; : : : ; a
m
n.m/

º be a finite 1
m

-net for M . Then for each
i 2 ¹1; : : : ; n.m/º, let r.i;m/ WD PM .ami /, and fix j.i;m/ 2 ¹1; : : : ; n.m/º such
that

d
�
F.ami /; a

m
j.i;m/

�
�
1

m
:

For i; j 2 ¹1; : : : ; n.m/º, set s.i; j;m/ WD d.ami ; a
m
j /. Consider the following for-

mulas:

 m.x1; : : : ; xn.m// WD sup
x

�
min

1�i�n.m/

�
d.x; xi /

:
�
1

m

��
;

�m.x1; : : : ; xn.m//

WD max
1�i�n.m/

�
max

�ˇ̌
P.xi / � r.i;m/

ˇ̌
; d

�
F.xi /; xj.i;m/

� :
�
1

m

��
;

�m.x1; : : : ; xn.m// WD max
1�i;j�n.m/

ˇ̌
d.xi ; xj / � s.i; j;m/

ˇ̌
;

'm.x1; : : : ; xn.m// WD max. m; �m; �m/:
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Since N � M and N is !1-saturated, we have that there exists, for each m � 1,
bm1 ; : : : ; b

m
n.m/

2 N such that 'Nm .bm1 ; : : : ; bmn.m// D 0. Set Am WD ¹am1 ; : : : ; a
m
n.m/

º

and Bm WD ¹bm1 ; : : : ; b
m
n.m/

º. It remains to observe that A WD
S
mAm is dense in M

and that B WD
S
m Bm is dense in N .

Our proof shows that, unlike finite structures in finite languages in classical logic,
compact structures in a finite language are not finitely axiomatizable, but rather,
countably axiomatizable.
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