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An Inner Model Proof
of the Strong Partition Property for ı2

1

Grigor Sargsyan

Abstract Assuming V D L.R/CAD, using methods from inner model theory,
we give a new proof of the strong partition property for

�
ı2
1 . The result was

originally proved by Kechris et al.

The main theorem of this note is the following special case of [3, Theorem 1.1]
originally due to Kechris, Kleinberg, Moschovakis, and Woodin.

Theorem 0.1 Assume V D L.R/ C AD. Then
�
ı2

1 has the strong partition prop-
erty, that is,

�
ı2

1 ! .
�
ı2

1/�
ı2

1 holds.

Our proof uses techniques from inner model theory and resembles Martin’s proof of
strong partition property for !1 (see Jackson [2]). We expect that it will have other
applications and, in particular, can be used to show that under ADC, if � is any
…1

1-like (i.e., closed under 8R and non-self-dual) scaled point class and ı D ı.�/,
then ı has the strong partition property. Our motivation to find a new proof of Theo-
rem 0.1 comes from a desire to prove Kechris–Martin-like results for …1

1-like scaled
point classes which will settle Schimmerling [8, Question 19] and most likely, sev-
eral other questions in the same neighborhood. We are optimistic that inner model-
theoretic techniques will settle this question, and our optimism comes from the fact
that the literature is already full of descriptive set-theoretic results that have been
proved using methods from inner model theory (see, e.g., Hjorth [1], Sargsyan [5],
and Steel [11]). More importantly for us, recently, Neeman, in [4], found a proof of
the Kechris–Martin theorem for …1

3 using techniques from inner model theory. Fi-
nally, we believe that our proof can be used to prove the strong partition property for
many cardinals ı D ı.�/ where � has strong closure properties. In fact, we expect
that it can be used to prove [3, Theorem 1.1], but we certainly have not done so.

We now start proving Theorem 0.1.
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Proof of Theorem 0.1 Let � D
�
ı2

1 . By Martin’s theorem (see [2, Theorem 2.31,
Definition 2.30]), it is enough to show that � is �-reasonable, that is, there is a non-
self-dual point class

�
� closed under 9R and a map ' with domain R satisfying

1. 8x.'.x/ � � � �/.
2. 8F W � ! �, 9x 2 R.'.x/ D F /.
3. 8ˇ < �, 8 < �, Rˇ; 2

�
� where

x 2 Rˇ; $ '.x/.ˇ; / ^ 8 0 < �
�
'.x/.ˇ;  0/ !  0

D 
�
:

4. Suppose ˇ < �, A 2 9R
�
�, and A � Rˇ D ¹x W 9 < �Rˇ; .x/º. Then

90 < � such that 8x 2 A9 < 0Rˇ; .x/.
Let � D †2

1. We claim that
�
� is as desired and spend the rest of the proof to argue

for it. In what follows, we will freely use the terminology developed for analyzing
HOD of models of ADC. This terminology has been exposited in many places in-
cluding Sargsyan [5], [6], [7], Schindler and Steel [9], Steel [11], and more recently
in Steel and Woodin [12]. In particular, recall the definitions of suitable premouse,
short tree, maximal tree, and short tree iterable. Given a suitable premouse P , we
let ıP be its Woodin cardinal and let �P be the least cardinal which is < ıP -strong
in P .

Suppose a 2 HC . We say that an a-premouse Q is good if
1. Q is .!; !1/-iterable,
2. Q � ZFC � Powerset C “there are no Woodin cardinals” C “there is a largest

cardinal,”
3. Q is full, that is, for every cutpoint � of Q, Lp.Qj�/ E Q.

If Q is good, then it has a unique .!; !1/-iteration strategy with the Dodd–Jensen
property. We let †Q be this strategy. Also, let �Q be the largest cardinal of Q. Given
an iteration tree T on Q according to †Q with last model R such that �T exists,
we let �Q;R W Q ! R be the iteration embedding. Notice that because †Q has
the Dodd–Jensen property, �T is independent of T . We say that Q is excellent if
whenever R is a †Q-iterate of Q such that �Q;R is defined R is good. In this case,
we also say that †Q is fullness preserving.

Suppose now that ˛ < � is such that it ends a weak gap (see Steel [10]). We then
let

F .˛; a/ D
®
Q W J˛.R/ � “Q is an excellent a-premouse”

¯
:

Given an a-premouse P such that J˛.R/ � “P is suitable and short tree iterable,”
we let F .˛; a; P / be the set of Q such that in J˛.R/, there is a correctly guided short
tree T on P with last suitable model P � such that for some P �-cardinal � � �P � ,
Q D P �j.�C/P � .

Lemma 0.2 Suppose that ˛ < � ends a weak gap, a 2 HC , and P is an
a-premouse such that J˛.R/ �“P is suitable and short tree iterable.” Then
F .˛; a; P / � F .˛; a/.

Proof Fix Q 2 F .˛; a; P /. Work in J˛.R/. Let T be a correctly guided
short tree on P with last suitable model P � such that for some P �-cardinal
� � �P � , Q D P �j.�C/P � . Because P is short tree iterable, we have that Q is
.!; !1/-iterable via a unique iteration strategy †. As the iterations of Q can also be
viewed as iterations of P �, we have that † is fullness preserving, implying that Q is
excellent.
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Notice that if ˇ > ˛ is such that ˇ ends a weak gap and Jˇ .R/ � “P is a suitable
and short tree iterable a-premouse,” then there could be Q 2 F .ˇ; a; P / which is
not in F .˛; a; P /. However, we always have the following easy lemma.

Lemma 0.3 Suppose that a 2 HC , P is an a-premouse and ˛ < ˇ < �. Suppose
that ˛ and ˇ end weak gaps such that both J˛.R/ and Jˇ .R/ satisfy that P is suitable
and short tree iterable. Then F .˛; a; P / � F .ˇ; a; P /.

Proof The lemma follows because any iteration tree on P which is correctly
guided and short in the sense of J˛.R/ is also correctly guided and short in the sense
of Jˇ .R/.

Next we define �˛;a on F .˛; a/ by setting Q �˛;a R if and only if there is an
iteration tree T on Q according to †Q with last model S such that �T exists, S E R,
and S D Rj.�C

S
/R. Also, let �˛;a;P D �˛;a� F .˛; a; P /. As usual, we have the

following.

Lemma 0.4 We have that �˛;a and �˛;a;P are directed, and �˛;a;P is dense in
�˛;a.

Let then M1.˛; a/ be the direct limit of .F .˛; a/; �˛;a/ under the iteration em-
beddings �Q;R. Also, let M1.˛; a; P / be the direct limit of .F .˛; a; P /; �˛;a;P /

under the iteration embeddings �Q;R. The next lemma follows from Lemma 0.4.

Lemma 0.5 We have M1.˛; a/ D M1.˛; a; P /.

We let �Q;1 W Q ! Q� E M1.˛; a; P / be the direct-limit embedding.1
We can now define '. First let S be the set of those reals x which code a pair

.yx ; Px/ such that
1. yx 2 R,
2. for some ˛ < � ending a weak gap, J˛.R/ � “Px is a suitable and short tree

iterable yx-premouse.”
Clearly S is †2

1. We let f W �2 ! � be such that f .ˇ; / is the least ˛ such that
J˛.R/ � max.ˇ; / <

�
ı2

1 . We also let g W S � �2 ! � be the function defined as
follows: for all .ˇ; / 2 �2 and x 2 S , if there is an ordinal ˛ > f .ˇ; / such that
J˛.R/ � “Px is suitable and short tree iterable yx-premouse,” then g.ˇ; / is the
least such ˛, and otherwise g.x; ˇ; / D 0. Notice that g is †2

1 in codes. We define
' as follows.

Definition 0.6 If x … S \ R, then let '.x/ D ;. Suppose now x 2 S . Let
.yx ; Px/ be the pair coded by x. Given ˇ;  < �, we let .ˇ; / 2 '.x/ if and only if
letting P D Px and g.x; ˇ; / D ˛, then ˛ > 0 and for some a 2 P the following
holds in J˛.R/:

1. P is suitable and short tree iterable;
2. a is the collapse of x.0/;
3. a � �P � �P ;
4. there is a correctly guided short tree T on P with last model S such that

�P ;S exists and an S-cardinal � such that
(a) .�C/S < �S ,
(b) if Q D S j.�C/S and aQ D �P ;S .a/\.���/, then .ˇ; / 2 �Q;1.aQ/\

rng.�Q;1/.
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Given ˛ < ‚, we let S˛ , f˛ , g˛ , and '˛ be what the above definitions give over
J˛.R/. The following lemmas establish that ' is as desired. We start with the fol-
lowing easy lemma.

Lemma 0.7 For each x 2 R, '.x/ D
S

˛<� '˛.x/.

Proof Suppose .ˇ; / 2 '.x/. Let ˛ > g.x; ˇ; / be such that it ends a weak gap.
Then .ˇ; / 2 '˛.x/. The other direction is similar.

Lemma 0.8 For every x 2 R, '.x/ � � � �.

Proof The claim follows from the fact that for every ˛ and a, M1.˛; a/ � J˛.R/.

Lemma 0.9 Suppose F W � ! �. Then there is x 2 dom.'/ such that '.x/ D F .

Proof Fix y such that F 2 HODy . There is then a suitable P over y such that
F 2 rng.�P ;;;1/.2 Notice that �P ;;;1.�P / D � (see [11, Chapter 8]). Let then
a � �P � �P be such that �P ;;;1.a/ D F , and let x code the pair .y; P / such that
x.0/ D a. It is then easy to see that '.x/ D F (use Lemma 0.7).3

Lemma 0.10 Suppose ˇ;  < �. Let

x 2 Rˇ; $ '.x/.ˇ; / ^ 8 0 < �
�
'.x/.ˇ;  0/ !  0

D 
�
:

Then Rˇ; is
�
�2

1.

Proof We have that the following are equivalent.
1. We have x 2 Rˇ; .
2. There is ˛ such that J˛.R/ � “x 2 dom.'˛/ and  is the unique ordinal such

that .ˇ; / 2 '˛.x/.”
3. For all ˛ > f .ˇ; / such that J˛.R/ � “x 2 dom.'˛/,”  is the unique

ordinal such that .ˇ; / 2 '˛.x/.
Clearly (1) implies (2) and (3). Also, that (3) implies (1) is straightforward. We

show that (2) implies (1). Fix then ˛ such that J˛.R/ � “x 2 dom.'˛/ and  is the
unique ordinal such that .ˇ; / 2 '˛.x/.” It follows from the definition of '˛ that
˛ > g.x; ˇ; /. Let .y; P / be the pair coded by x, and let a 2 P be the transitive
collapse of x.0/. Working in J˛.R/, let T be a correctly guided short tree on P with
last model S such that �P ;S exists and an S-cardinal � such that

1. .�C/S < �S ;
2. if Q D S j.�C/S and aQ D �P ;S .a/ � �, then .ˇ; / 2 �Q;1.aQ/ \

rng.�Q;1/.
Suppose now there is some � such that for some  0, .ˇ;  0/ 2 '�.x/. Working in
J�.R/, let T � be a correctly guided short tree on P with last model S� such that
�P ;S� exists and an S�-cardinal � such that

1. .�C/S�

< �S� ;
2. if R D S�j.�C/S� and aR D �P ;S�.a/ � �, then .ˇ;  0/ 2 �R;1.aR/ \

rng.�R;1/.
Let � D max.�; ˛/. The following is an easy claim.

Claim J�.R/ �“S and S� are suitable and short tree iterable.”
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Proof We have that P is suitable and short tree iterable in both J˛.R/ and J�.R/.
We also have J˛.R/ � “T is short” and J�.R/ � “T � is short.” It then follows that
J�.R/ � “T and T � are short trees on P .” It then follows that J�.R/ � “S and S�

are suitable and short tree iterable.”

We work now in J�.R/. Using the claim we can find S�� which is a suitable correct
iterate of both S and S�. Notice that since S�� is suitable, the iteration embeddings
i W S j.�C

S
/S ! S��j.�C

S��/S�� and j W S�j.�C

S�/S�

! S��j.�C

S��/S�� exist.
Suppose now that  ¤  0. Let . Ň; N; N 0/ 2 S�� be such that letting � D

max.i.�Q/; j.�R// and W D S��j.�C/S�� , �W ;1. Ň; N; N 0/ D .ˇ; ;  0/. It
then follows that . Ň; N/ 2 i.�T

P ;S
.a// and . Ň; N 0/ 2 j.�T �

P ;S�.a//. However,
i ı �T

P ;S
D j ı �T �

P ;S� , implying that i.�T
P ;S

.a// D j.�T �

P ;S�.a// and that

S�� � . Nb; N/ 2 i
�
�T

P ;S .a/
�

^ . Nb; N 0/ 2 i
�
�T

P ;S .a/
�
:

Let now .�; ��/ 2 Q be such that �Q;1.�; ��/ D .ˇ; /. By elementarity of i ,
we then get that S � “there is ��� ¤ �� such that .�; ���/ 2 �P ;S .a/.” Fix such a
���, and let & 2 .���; �S / be an S-cardinal. Then letting Q� D S j.&C/S we have
that .ˇ; �Q�;1.���// 2 '˛.x/ and �Q�;1.���/ ¤  , a contradiction.

The next lemma finishes the proof.

Lemma 0.11 Suppose ˇ < �, A 2
�
�2

1 and A � Rˇ D ¹x W 9 < �Rˇ; .x/º.
Then 90 < � such that 8x 2 A9 < 0Rˇ; .x/.

Proof Let h W A ! � be defined by h.x/ D � if � is the least such that � ends
a weak gap and J�.R/ � x 2 Rˇ . Then f is

�
†1 over J�.R/, and hence, as � is

R-admissible, f is bounded.

This completes the proof of Theorem 0.1.

Notes

1. Notice that because Q has a unique iteration strategy, �Q;1 is independent of ˛ and a.
Because of this we dropped them from our notation.

2. Recall the direct limit construction that converges to HODj‚. Here �P ;;;1 is the direct
limit embedding given by ;-iterability embeddings. For more details see either of the
aforementioned papers.

3. Notice that by reflection there is ˛ such that ˛ ends a weak gap and J˛.R/ � “P is
suitable and short tree iterable.” It is then the case that for any ˇ 2 .˛; �/ which ends a
weak gap, Jˇ .R/ � “P is suitable and short tree iterable.”
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