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Truth-Value Semantics and Functional Extensions
for Classical Logic of Partial Terms Based on Equality

F. Parlamento

Abstract We develop a bottom-up approach to truth-value semantics for clas-
sical logic of partial terms based on equality and apply it to prove the conserva-
tivity of the addition of partial description and selection functions, independently
of any strictness assumption.

0.1 Introduction We assume that the reader is familiar with the natural deduction
system for classical first-order logic, conceived as the result of the direct analysis of
actual mathematical reasoning, as presented by Gentzen in [3]. At the same time we
ask her or him to leave aside, for a moment, the now standard classical set-theoretic
formulation of the notion of logical consequence. By classical logic of partial terms
based on equality we mean the standard natural deduction system, with the proviso,
of a semantical nature, that not all terms are assumed to be necessarily denoting;
a feature that is syntactically reflected by the restriction of the usual 8-elimination
and 9-introduction rules, as formulated by Prawitz in [13], to variables or individ-
ual parameters only. On the other hand, that a term t is denoting is expressed by
the assumption 9x.x D t /, for x not occurring in t , in agreement with Quine’s the-
sis,1 as originally proposed by Hintikka in [7] and by Leblanc and Hailperin in [11].
Truth-valued semantics has been extensively investigated by Leblanc, among others
(see [8], [9], and especially [10]), who presents it as the result of a progressive sim-
plification of the standard set-theoretic semantics, first to countable models, then to
Henkin’s models, and finally to no model at all. Quite the opposite, we wish to show
that truth-value semantics can be approached from below, so to speak, by follow-
ing the search of the simplest mathematical means by which one can establish that a
proposition is not deducible from others, by the application of the given natural de-
duction rules, if that is indeed the case. We will explain to what extent that approach
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determines the usual truth tables for the propositional connectives and how it leads
to truth-value semantics, when quantifiers are involved. A distinguishing feature of
our treatment, with respect to Leblanc’s, is that it deals with first-order languages
endowed with function symbols, which, apart from its intrinsic interest, is clearly
necessary if tv-semantics for partial logic has to be applied to show the conservativ-
ity of the addition of partial description and selection functions. As in Gentzen [4]
and Prawitz [13], we refer to the articulation of a first-order language in which, be-
yond a countable supply of variables meant to be used for quantification, one has also
an infinite supply of individual parameters meant to remain free names for generic
objects of whatever (nonempty) domain one happens to be talking about. Once truth-
value semantics (tv-semantics, for short) is defined, we will sketch a proof that it is
indeed fully adequate, namely, that not only our motivating goal, namely, correct-
ness, but also completeness holds. Then we establish the extension property, which
will be basic for all later developments. The basic idea to deal semantically with the
undefinedness of a pure term t with respect to a truth-value valuation (tv-valuation
for short) v is simply to say that t is nondenoting with respect to v if for all individual
parameters a, v.a D t / D f . Our main purpose is then to employ tv-semantics to
show that the above logical framework is appropriate to deal with nonempty domains,
with a language in which individual parameters stand for objects of the domain but
more general terms, such as �1 or 1=.a � a/, when the natural or the real numbers
are involved, need not denote any object whatsoever (see Feferman [2] for a more
extended and very illuminating discussion). In fact, by using tv-semantics, we will
prove the conservativity of the addition of partial selection and description functions,
also when to the underlying logical framework we add the strictness axioms stating
that: (1) all constants are denoting, (2) if f t1 � � � tn is denoting, then t1; : : : ; tn are
denoting as well, and (3) for p other than D, if pt1 � � � tn holds, then t1; : : : ; tn are
denoting. To obtain our conservativity results, we have obviously to take into ac-
count all possible tv-valuations: those for which there is a nondenoting term can be
disposed with by choosing one such term. For the remaining ones, to be called totally
denoting tv-valuations, we have to enrich the language with a new constant, the un-
defined ", and show that the given valuation can be extended to the new language in
a way that actually leaves " undefined. To deal with the strictness axioms, we have to
adopt a corresponding type of tv-valuation and show that the extension property ap-
plies to them as well. The conservativity of the addition of partial selection functions
and partial description functions, with or without strictness axioms, then follows by a
straightforward correctness/completeness argument. Finally, it is to be noted that to-
tally denoting valuations are elementarily equivalent to classical set-theoretic struc-
tures (with total functions interpreting function symbols) and strict valuations are
elementarily equivalent to set-theoretic structures with partial functions interpreting
function symbols. As such, totally denoting tv-valuations constitute a natural inter-
mediate step for the introduction of what has become the standard semantics for clas-
sical first-order logic, with completeness achieved as a simple corollary. Correctness,
on the other hand, crucially depends on proving the substitution lemmas (which, pre-
sumably, involves the tedious details mentioned in Gumb’s obituary of Leblanc [6]).2

0.2 Pure terms and formulas

Definition 0.1 Given a first-order language L,
(a) a term t of L is pure if no variable occurs in t ;
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(b) a formula F of L is pure if no variable occurs free in F .
The collection of pure terms of L will be denoted by PureTermL.

In particular, sentences are pure formulas. This terminology is inspired by Gentzen’s
suggestion (“rein logische Formel”) in [3, p. 179] and in [5, p. 70].3

0.3 Natural deduction systems for partial logic As for the deductive apparatus, we
refer to the natural deduction system, which we denote by Nc , in which the 8-
elimination and 9-introduction rules take the restricted form

8xF

F ¹x=yº
F ¹x=yº
9xF

;

where y is either a free variable or an individual parameter. A deduction is said to
be pure when it involves pure formulas only, in particular in its 8-elimination and
9-introduction, and y must be a parameter. G1; : : : ; Gn Bc F denotes that there
is a deduction in Nc with conclusion F and active assumptions included among
G1; : : : ; Gn.

0.4 A “bottom-up” approach to truth-value semantics At the propositional level,
when required to explain why, for example, A does not follow from A ! B and B ,
one usually provides examples taken from ordinary or mathematical language, like
letting A be “the car runs out of gas” and B be “the car stops,” where all that is
relevant is our persuasion that if A is true, then B is true as well, but if B is true,
A need not necessarily be true. That naturally leads to the idea of a valuation of the
propositional atoms of the propositions we are investigating into at least two values.
Our goal of showing that F does not follow from G1; : : : ; Gn is reached if a method
of computing values for compound statements is found such that one specific value,
say, t, is preserved by deductions and a valuation v of the propositional atoms in
G1; : : : ; Gn; F is found, such that G1; : : : ; Gn takes the value t but F does not.

Clearly for that to work, at least two values are needed. Classical propositional
semantics makes the minimal choice of two values, say, t and f . Then, as discussed,
for example, by Massey in [12] and by Belnap and Massey in [1], letting Bpc be
the restriction of Bc obtained when only the application of propositional rules is al-
lowed, the rules for ^, the introduction rules for _ and!, together with the relations
A;:A Bpc B and A;:B Bpc :.A! B/, determine the classical truth table for ^,
half of the truth table for :, and three-fourths of the truth tables for _ and!. On
the ground of the further relations :A;:B Bpc :.A _ B/ and :A Bpc A ! B ,
it then suffices to assume that :A takes the value t, whenever A takes the value
f , to obtain the classical truth tables.4 When it comes to quantifiers we have that
v.F ¹x=aº/ (F ¹x=aº pure), for a an individual parameter, has to take the value t
whenever v.8xF / takes the value t, because of the 8-elimination rule. Similarly
v.9xF / has to take the value t if for some parameter a, v.F ¹x=aº/ takes the value t,
because of the 9-introduction rule. As we will show, an appropriate solution to our
problem is obtained by simply reversing the last two implications, namely, by stating
that it is sufficient for v.8xF / to take the value t, that for every individual parameter
a of the language, v.F ¹x=aº/ takes the value t, and similarly that it is necessary for
v.9xF / to take the value t, that for some parameter a, v.F ¹x=aº/ takes the value t.
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0.5 Truth-value valuations

Definition 0.2 Let L be a first-order language. A truth-value valuation (tv-
valuation for short) of L is a total function v from the collection of pure atomic
formulas of L into ¹t; fº such that v.?/ D f .

A tv-valuation v of L determines a unique extension Nv to the pure formulas of L,
according to the classical two-valued truth tables and the conditions:
� Nv.8xH/ D t if and only if for every parameter a, Nv.H ¹x=aº/ D t;
� Nv.9xH/ D t if and only if for some parameter a, Nv.H ¹x=aº/ D t.

Definition 0.3 A pure formula F is tv-satisfied by v if Nv.F / D t; F is tv-valid if
every tv-valuation v of L.F / satisfies F and F is a tv-semantic consequence of the
pure formulas G1; : : : ; Gn; F if every tv-valuation v of L.G1; : : : ; Gn; F / which
tv-satisfies G1; : : : ; Gn, tv-satisfies F as well.

0.6 Correctness and completeness for tv-semantics Correctness and completeness
of the tv-semantics determined as above by the tv-valuations, for the pure systemNc ,
holds.

Theorem 0.1 For G1; : : : ; Gn; F pure formulas, G1; : : : ; Gn Bc F if and only
if F is a tv-semantic consequence of G1; : : : ; Gn.

Proof Correctness is proved by a straightforward induction on the height of de-
ductions in pure Nc . The only not entirely trivial case occurs when the deduc-
tion ends with a 8 W I or 9 W E. For example in the former case, letting D be
the immediate subderivation with conclusion H ¹x=aº, given any parameter b of
L.G1; : : : ; Gn; F /, if b is used as proper in (some 8 W I or 9 W E rule applied in)
D , we first rename the occurrences of b in D by a parameter c new to D and then
replace a by b throughout. The result is a deduction of H ¹x=bº. By the induction
hypothesis, any tv-valuation which satisfies G1; : : : ; Gn satisfies H ¹x=bº as well.
But that means that it satisfies 8xH , as desired. Completeness can be proved, for
example, by applying the semantic tableaux method to pure formulas and consider-
ing only parameters in the  -reductions. If F is a consequence of G1; : : : ; Gn, the
systematic tableaux procedure, initialized with t:G1; : : : ; t:Gn; f:F , returns a closed
tableaux from which a deduction D of F from G1; : : : ; Gn can be obtained. Fur-
thermore, the variables which have bound occurrences in D are exactly those which
occur bound in G1; : : : ; Gn; F .

Note To have a correct and complete semantics for general formulas it suffices
to state that F is a tv-semantic consequence of G1; : : : ; Gn if for some substitution
� D ¹x1=a1; : : : ; xn=anº, where x1; : : : ; xn are the variables which have free oc-
currences in G1; : : : ; Gn; F , and a1; : : : ; an are distinct parameters not occurring in
G1; : : : ; Gn; F , we have that F� is a tv-semantic consequence of G1�; : : : ; Gn� .
Correctness holds since from a deduction D of F from G1; : : : ; Gn, after renam-
ing the parameters among a1; : : : ; an, which are used as proper in D , one obtains a
deduction of F� from G1�; : : : ; Gn� , simply by replacing x1; : : : ; xn by a1; : : : ; an

throughout D . As for completeness, we first note that its assumption and conclusion
are invariant under renaming of bound variables. Therefore, we may assume that
no variable occurs both free and bound in G1; : : : ; Gn; F . Since, by assumption,
F� is a pure semantic consequence of G1�; : : : ; Gn� , we may obtain a deduction
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of F� from G1�; : : : ; Gn� in pure Nc , which is transformed into a deduction of F
from G1; : : : ; Gn simply by replacing a1; : : : ; an with x1; : : : ; xn throughout. An
immediate consequence is that the definition of tv-semantic consequence for general
formulas does not depend on the choice of � .

0.7 Equality Following [11], as axioms for equality we take reflexivity, namely,
8.t D t /, where t is assumed to be parameter-free and 8 denotes universal closure,
and we take the axiom of substitutivity of the form

8
�
r D s !

�
F ¹v=rº ! F ¹v=sº

��
with r; s, and F parameter-free. The two schemata of reflexivity and substitutivity
will be denoted by RflDs and SbstDs . RflDsand SbstDs are easily seen to be equiva-
lent over Nc to RflDs and

SymmDs
8.r D s ! s D r/;

TransDs
8
�
r D s ! .s D t ! r D t /

�
;

CngDs
p 8

�
r1 D s1 ^ � � � ^ rn D sn !

�
p.r1; : : : ; rn/! p.s1; : : : ; sn/

��
;

CngDs
f 8

�
r1 D s1 ^ � � � ^ rn D sn ! f .r1; : : : ; rn/ D f .s1; : : : ; sn/

�
;

for any n-ary relation and function symbols p and f , where all the terms shown are
parameter-free. NDc results from Nc by allowing any formula in Rfls and Sbsts to be
considered as a discharged assumption.

Note The fact that the equality axioms, formulated for variables only, namely,
8x.x D x/ and 8x8y.x D y ! .F ¹v=xº ! F ¹v=yº//, are not sufficient for a
satisfactory development of the logic of partial terms was first noticed in [11].

0.8 tv-semantics for N D
c

Definition 0.4 A tv-valuation with equality of L is a tv-valuation of L, which
satisfies the axioms in RflDs , SymmDs , TransDs , and CngDs .

In other words, v is a tv-valuation with equality if the binary relation ¹.r; s/ W
v.r D s/ D tº, to be denoted by Dv , is a congruence relation with respect to the
canonical interpretation of the function symbols ¹..t1; : : : ; tn/; f .t1; : : : ; tn//º and
the relations pv D ¹.t1; : : : ; tn/ W v.p.t1; : : : ; tn// D tº, for p a relation symbol
in L, where t1; : : : ; tn range over PureTermL.

Correctness and completeness for NDc holds with respect to the notion of tv-
semantic consequence based on tv-valuations with equality.

Theorem 0.2 For G1; : : : ; Gn; F pure formulas, G1; : : : ; Gn BDc F if and
only if every tv-valuation with equality of L.G1; : : : ; Gn; F / which tv-satisfies
G1; : : : ; Gn, tv-satisfies F as well.

Proof Correctness is an immediate consequence of the correctness of Nc . Com-
pleteness can be achieved through the tableaux method by interleaving the logical
reduction steps with steps in which one appends, one after the other, the countably
many judgments of the form t:E, where E belongs to RflDs , SymmDs , TransDs , or
CngDs .

Extension to general formulas can be obtained as for Nc .
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0.9 The extension property The following property will be our basic tool for dealing
with tv-semantics for Nc and NDc .

Proposition 0.1 (Extension property) If v is a tv-valuation of L (with equality)
and L � L0, then there is a map ˆ from PureTermL0 onto PureTermL and a valua-
tion (with equality) v0 of L0 such that

(1) for a term t of L with variables among x1; : : : ; xk and pure terms r 01; : : : ; r 0k
of L0,

ˆ
�
t¹x1=r

0
1; : : : ; xk=r

0
kº
�
D t

®
x1=ˆ.r

0
1/; : : : ; xk=ˆ.r

0
k/
¯
;

in particular if t is a pure term of L, ˆ.t/ D t ;
(2) for a formula F of L with free variables among x1; : : : ; xk and pure terms

r 01; : : : ; r
0
k
of L0,

Nv0
�
F ¹x1=r

0
1; : : : ; xk=r

0
kº
�
D Nv

�
F
®
x1=ˆ.r

0
1/; : : : ; xk=ˆ.r

0
k/
¯�
I

in particular, if F is a pure formula of L, then Nv0.F / D Nv.F /.

Proof For every n-ary function symbol f 2 L0 n L, fix a total function
f W PureTermn

L ! PureTermL (for n D 0, f is either a constant or a parameter and
f is a pure term, say, f0, of L), which, in case v is a tv-valuation with equality, is
congruent with respect to Dv (e.g., f can be any constant function). If t is a param-
eter or a constant of L, let ˆ.t/ D t . If t 0 is a parameter or a constant in L0 n L,
let ˆ.t 0/ D t 00. If t 0 is g.t 01; : : : ; t 0n/ with g in L, let ˆ.t 0/ D g.ˆ.t 01/; : : : ; ˆ.t

0
n//.

Finally, if t 0 is f .t 01; : : : ; t 0n/, let ˆ.t 0/ D f.ˆ.t 01/; : : : ; ˆ.t 0n//. Furthermore for p, an
n-ary relation symbol of L, let

v0
�
p.t 01; : : : ; t

0
n/
�
D v

�
p
�
ˆ.t 01/; : : : ; ˆ.t

0
n/
��

and, for q, an n-ary relation symbol in L0 n L, let v0.q.t 01; : : : ; t 0n// be defined ar-
bitrarily provided that v0.q.s01; : : : ; s0n// D t, whenever v0.q.t 01; : : : ; t 0n// D t and
v0.t 01 D s

0
1/ D t; : : : ; v0.t 0n D s0n/ D t.

Both (1) and (2) are easily proved by induction on the height of t and F , respec-
tively.

Since, in the previous proof, it is the choice of f which determines v0, we will say
that v0 is the extension of v based on f .

Remark The notion of tv-valuation can be relativized to any fixed subset P0 of
the set of parameters of L, assumed to be nonempty, in the case when L has no
constant, by taking into account only the formulas whose parameters belong to P0

and considering only parameters in P0 in defining the meaning of the quantifiers. If
P0 is infinite, the proof of correctness remains unchanged. If P0 is finite, correctness
can be established along the lines of the previous proof. In fact, if v0 is a valuation
restricted to any set of parameters P0 which satisfies F , then it suffices to note that
v0 can be extended to a valuation v00 of L.F /, which still satisfies F , by mapping all
the parameters which do not belong to P0 into any one of the parameters in P0.

Thus, for example, the tv-valuation restricted to ¹a; bº,®�
p.a; a/; t

�
;
�
p.b; b/; t

�
;
�
p.a; b/; f

�
;
�
p.b; a/; f

�
;
�
.a D a/; t

�
;�

.b D b/; t
�
;
�
.a D b/; f

�
;
�
.b D a/; f

�¯
;
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which satisfies 8x9yp.x; y/, but does not satisfy 9x8yp.x; y/, suffices to show
that in NDc one cannot deduce the latter sentence from the former. Similarly the
tv-valuation restricted to ¹aº,®�

p.c/; t
�
;
�
p.a/; f

�
; .a D a; t/; .c D c; t/; .a D c; f/; .c D a; f/

¯
;

for c a constant, suffices to show that in NDc , 9xp.x/ cannot be deduced from p.c/,
and the tv-valuation restricted to ¹aº,®�

p
�
f n.a/; f nC1.a/

�
; t
�
W n 2 N

¯
[
®�
p
�
f n.a/; f m.a/

�
; f
�
W m ¤ nC 1

¯
[
®�
f n.a/ D f n.a/; t

�
W n 2 N

¯
[
®�
f n.a/ D f m.a/; f

�
W n ¤ m

¯
;

where f 0.a/ denotes a itself, suffices to show that 8x9yp.x; y/ is not deducible
from 8xp.x; f .x//. On the other hand, completeness for tv-valuations restricted
to finite sets of parameters clearly fails. For example, 9xp.x; x/ is not derivable in
NDc from 8x9yp.x; y/ and 8x8y8z.p.x; y/ ^ p.y; z/! p.x; z//, although it is
satisfied by any tv-valuation restricted to a finite set of parameters, which satisfies
the latter two sentences.

0.10 Totally denoting valuations

Notation t # denotes the formula 9y y D t , for y any variable not occurring
in t .

The usual natural deduction system with equality, in which 8-elimination and
9-introduction can be applied to any substitutable term, is easily seen to be equivalent
to NDc , provided that 8.t #/ is allowed as a discharged assumption, for any term t .
We denote with N #Dc the resulting deduction system. N #Dc is clearly equivalent to
NDc , provided that formulas of the form c # and 8x1; : : : ; xnf .x1; : : : ; xn/ #, for
all the constant c and function symbol f of the language, are allowed as discharged
assumptions.

Definition 0.5 A tv-valuation with equality v for L is said to be totally denoting
if for every pure term t of L, v tv-satisfies t #; namely, there is a parameter a such
that v.a D t / D t.

Proposition 0.2 A tv-valuation v for L with equality is totally denoting if and
only if every constant of L is denoting, and for every n-ary function symbol f and
n-tuple of parameters a1; : : : ; an, f .a1; : : : ; an/ is denoting.

Proof The proposition is proved by a straightforward induction on the height of
terms.

Theorem 0.3 Correctness and completeness for N #Dc holds with respect to the
notion of tv-semantic consequence based on totally denoting tv-valuations.

Proof The proof is immediate from the above propositions.

Note To every totally denoting tv-valuation v for L there corresponds an ele-
mentarily equivalent set-theoretic interpretation Iv . The domainDIv of Iv is the set
of parameters of L. The interpretation of a constant symbol in Iv is a parameter a,
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such that v.a D c/ D t. Similarly the interpretation of an n-ary function symbol f
is the total function:

f Iv D
®�
.a1; : : : ; an/; b

�
W v
�
b D f .a1; : : : ; an/

�
D t

¯
:

Finally, for any relation symbol p of L,

pIv D
®
.a1; : : : ; an/ W v

�
p.a1; : : : ; an/

�
D t

¯
:

Let � be any assignment of elements ofDIv to variables and parameters which leaves
all the parameters fixed, so that, under � , the value of any pure term t is t itself.
A straightforward induction shows that if F is a pure formula of L, then Nv.F / D t
if and only if Iv; � ˆ F . As a consequence, for every sentence F of L, Nv.F / D t if
and only if Iv ˆ F , which is what we mean by saying that v and Iv are elementarily
equivalent. The quotient of Iv with respect to Dv is a normal structure elementarily
equivalent to Iv and therefore to v. The completeness theorem for (the ordinary set-
theoretic semantics of) N #Dc is thus an immediate consequence of the completeness
of tv-semantics with equality for N #Dc .

Proposition 0.3 The extension property holds also for the totally denoting valua-
tions.

Proof If v is totally denoting and v0 is an extension of v to L0, then v0 is also totally
denoting since Nv0.9x.x D t 0// D Nv.9x.x D ˆ.t 0// and Nv.9x.x D ˆ.t 0// D t,
because ˆ.t 0/ is a pure term of L and v is totally denoting.

0.11 Introducing the undefined "

Proposition 0.4 A totally denoting tv-valuation v of L can be extended to a tv-
valuation v" with equality of the language LC ", where " is a constant not be-
longing to L, such that for every pure formula F of L, Nv.F / D Nv".F / and " is
nondenoting with respect to v".

Proof We set v".r D s/ D t if and only if r D s belongs to the smallest
set of equalities between pure terms of LC ", which contains all the equal-
ities t 0 D t 0 and r D s such that v.r D s/ D t and furthermore contains
f .r1; : : : ; rn/ D f .s1; : : : ; sn/ whenever for all 1 � i � n it already contains
ri D si . On all the remaining pure atomic formulas which contain ", v" takes the
value f and v".A/ D v.A/ for every pure atomic formula of L. The claim follows by
a straightforward induction on the height of F . To prove that v" is a valuation with
equality it suffices to show that v".r1 D s1 ^ � � � ^ rn D sn ! .p.r1; : : : ; rn/ !

p.s1; : : : ; sn/// D t. If all of r1; : : : ; sn belong to L, that holds since v" agrees
with v, which is a tv-valuation with equality. Thus let us assume that, for example,
" occurs in si . Then, by definition, v".p.s1; : : : ; sn// D f , and we have to show
that also v".p.r1; : : : ; rn// D f . That follows from the fact that if " occurs in si
and v".ri D si / D t, then " occurs also in ri . As a matter of fact we have that if
v".r D s/ D t and " occurs in s, then " occurs also in r and conversely, as it follows
immediately from the definition of v" on equalities. Obviously, that also guarantees
that " cannot be denoting.
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0.12 Strictness

Definition 0.6 Let NDs
c be the result of adding to NDc the following strictness

axioms:
(1) c #,
(2) 8.f .t1; : : : ; tn/ #! t1 # ^ � � � ^ tn #/,
(3) 8.p.t1; : : : ; tn/ ! t1 # ^ � � � ^ tn #/ for every relation symbol p other

thanD, and t1; : : : ; tn parameter-free.
A strict tv-valuation of L is a tv-valuation of L with equality which satisfies the
strictness axioms.

In (3) we have to leave aside D, since otherwise, from the adoption of t D t as
an axiom, it would follow that every t is defined. Thus our notion of strictness is
more relaxed than the one usually adopted when the existence predicate is taken as
primitive (see, e.g., [2]).

The proof of correctness and completeness of the semantics based on totally de-
noting tv-valuations for NDc can be easily adapted to establish the following.

Theorem 0.4 Correctness and completeness for NDs
c holds with respect to the

notion of tv-semantic consequence based on strict tv-valuations.

Proposition 0.5 The extension property holds also for strict tv-valuations, pro-
vided that the extension is based on functions f which are strict, namely, satisfy the
following condition:

(a) if v.f.r1; : : : ; rn/ #/ D t, then v.r1 #/ D t; : : : ; v.rn #/ D t.

Proof If v is strict and v0 is an extension of v to L0 based on a function f sat-
isfying condition .a/, then v0 is also strict. For, assume Nv0.f .t 01; : : : ; t 0n/ #/ D t,
namely, Nv0.9x.x D f .t 01; : : : ; t

0
n/// D t. If f 2 L0 n L by the extension property

it follows that Nv.9x.x D f.ˆ.t 01/; : : : ; ˆ.t 0n//// D t. By the strictness of f , it
follows that ˆ.t 01/ #; : : : ; ˆ.t 0n/ #, namely, Nv.9x1.x1 D ˆ.t 01/// D t; : : : ;
Nv.9xn.x1 D ˆ.t 0n/// D t, from which, by the extension property again, we
may conclude that Nv0.9x1.x1 D t 01// D t; : : : ; Nv0.9xn.xn D t 0n// D t, namely,
Nv0.t 01 #/ D t; : : : ; Nv0.t 0n #/ D t, as required for v0 to be strict. The case in which
f 2 L or Nv0.p.t 01; : : : ; t 0n// D t, for p other thanD, is entirely similar.

Note As for totally denoting tv-valuations, to every strict valuation v of L there
corresponds an elementarily equivalent (partial) set-theoretic interpretation Iv of L.
DIv is still the set of parameters of L, but f Iv is, in general, a partial function.
For a given assignment � of elements of DIv to variables and parameters, the value
�.t/ which t takes under � is an element of DIv if and only if t� is a denoting
term, namely, v.t� #/ D t. I; � ˆ F is defined by letting I; � ˆ r D s if and
only if v.�.r/; �.s// D t (even if �.r/ or �.s/ does not belong to DIv ); for p
other than D, Iv; � ˆ p.t1; : : : ; tn/ if and only if �.t1/; : : : ; �.tn/ belong to DIv

and .�.t1/; : : : ; �.tn// 2 pIv (namely, v.p.�.t1/; : : : ; �.tn// D t)). For compound
formulas Iv; � ˆ F is defined as usual. For every pure formula F of L and assign-
ment � , which leaves the parameters fixed, Nv.F / D t if and only if Iv; � ˆ F , so
that for a sentence F , Nv.F / D t if and only if Iv ˆ F . For, if F is of the form
p.t1; : : : ; tn/, from Nv.F / D t, by the strictness of v, it follows that t1; : : : ; tn are all
denoting terms, so that �.t1/; : : : ; �.tn/ belong toDIv , and .�.t1/; : : : ; �.tn// 2 pIv
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so that Iv; � ˆ F . As a consequence, we have the completeness ofNDs
c with respect

to partial set-theoretic interpretations.

Note If a tv-valuation v is extended into v#, rather than into Nv, by using the
clauses

(a) v#.8xH/ D t if and only if for every pure term t , v#.H ¹x=tº/ D t,
(b) v#.9xH/ D t if and only if for some pure term t , v#.H ¹x=tº/ D t,

then a straightforward modification of the previous arguments shows that the result-
ing semantics is correct and complete with respect to the usual natural deduction
system, without equality, in which 8-elimination and 9-introduction can be applied
to any substitutable term, to be denoted by N #c , and that the extension property still
holds. Furthermore, v# is elementarily equivalent to a (total) set-theoretic structure
Iv# , whose domain is the set DIv of the pure terms of the language, so that the
usual completeness theorem for N #c immediately follows. The same applies if v is
a valuation with equality, thus obtaining a correct and complete semantics for N #Dc .
Since if v is a totally denoting valuation, then obviously Nv D v#, the tv-semantics
for N #c based on v# subsumes the one based on totally denoting tv-valuations, so
that its completeness can also be inferred from the completeness of the latter. As in
the previous case, one can also immediately infer the usual completeness theorem
for N #Dc . That shows the interest of tv-semantics even if one is concerned only with
total classical logic with or without equality. In particular, the standard classical
set-theoretic semantics can be rather effectively introduced as a very natural gener-
alization of tv-totally denoting semantics, by replacing the fixed domain of the pure
terms of the language by an arbitrary nonempty set and the total canonical interpre-
tation of the function symbols by their interpretation with arbitrary total functions
on such a set. Concerning the last point, we wish to note the difficulty one faces
in motivating the choice of totality if the classical set-theoretic structures are to be
presented as a model of ordinary mathematical structures, which may carry partial,
rather than only total, operations, like the reals with the x�1 or log x function, for
example.

1 Conservativeness of Partial Selection Functions

Theorem 1.1 If D is a formula of L with distinct free variables x1; : : : ; xn; y,
and f is an n-ary function symbol not in L, then the conjunction of the following
two formulas is conservative over L with respect to NDc :

�1
y.f ID/ 8

�
f .x1; : : : ; xn/ #! 9yD

�
;

�2
y.f ID/ 8

�
9yD ! 9y

�
y D f .x1; : : : ; xn/ ^D

��
I

namely, ifG1; : : : ; Gn; F are formulas of L and f does not occur inG1; : : : ; Gn; F ,
and G1; : : : ; Gn; �

1
y.f ID/; �

2
y.f ID/ BDc F , then G1; : : : ; Gn BDc F . The same

holds for NDs
c .

Proof We deal first with the case in which G1; : : : ; Gn; F are pure. By the cor-
rectness and completeness of the tv-semantics with equality for NDc , it suffices to
show that the extension property can be applied to any tv-valuation with equal-
ity v of L so as to obtain a valuation v0 of L C f which satisfies �1

y.f ID/ and
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�2
y.f ID/. If v is not totally denoting, fix a nondenoting term t0 of L and an enu-
meration of all the parameters of L. If t1; : : : ; tn are all denoting terms of L, ai

is the first parameter in the fixed enumeration such that v.ai D ti / D t and b
is the first one such that v.D¹x1=a1; : : : ; xn=an; y=bº/ D t; provided that there
is such a b, we let f.t1; : : : ; tn/ D b; if on the contrary there is no b such that
v.D¹x1=a1; : : : ; xn=an; y=bº/ D t or for some 1 � i � n, ti is nondenoting, then
we let f.t1; : : : ; tn/ D t0. As it is easy to check, f is congruent with respect toDv , so
that the extension v0 of v to LC f , based on f , is a tv-valuation with equality, and
it is also strict. Furthermore, Nv0 satisfies �1

y.f ID/ and �2
y.f ID/. Since �1

y.f ID/

follows in NDc from 8x1 : : :8xn8y.f .x1; : : : ; xn/ D y ! D/, it suffices to verify
that Nv0 satisfies the last formula, namely, that for every .n C 1/-tuple of parameters
a1; : : : ; an; b, if Nv0.f .a1; : : : ; an// D b, then Nv0.D¹x1=a1; : : : ; xn=an; y=bº/ D t.
By the extension property, Nv0.f .a1; : : : ; an/ D b/ D Nv.f.a1; : : : ; an/ D b/. Thus
from Nv0.f .a1; : : : ; an/ D b/ D t it follows that Nv.f.a1; : : : ; an/ D b/ D t, which,
by the definition of f , can only happen if Nv.D¹x1=a1; : : : ; xn=an; y=bº/ D t.

As for �2
y.f ID/, we have to verify that for every n-tuple of parameters a1; : : : ; an,

if Nv0.9yD¹x1=a1; : : : ; xn=anº/ D t, then Nv0.9y.y D f .a1; : : : ; an/^D¹x1=a1; : : : ;

xn=anº// D t. From the assumption, by the extension property it follows that
Nv.9yD¹x1=a1; : : : ; xn=anº/ D t. Thus there is a parameter b, which we may assume
is the first in the given enumeration, such that Nv.D¹x1=a1; : : : ; xn=an; y=bº/ D t.
Therefore f.a1; : : : ; an/ D b. On the other hand, Nv0.9y.y D f .a1; : : : ; an/ ^

D¹x1=a1; : : : ; xn=anº// D t if and only if there is a parameter c such that
Nv0.c D f .a1; : : : ; an/ ^ D¹x1=a1; : : : ; xn=an; y=cº/ D t. By the extension prop-
erty that holds if and only if there is a parameter c such that Nv.c D f.a1; : : : ; an/ ^

D¹x1=a1; : : : ; xn=an; y=cº/ D t. Therefore it suffices to take b for c to conclude
that our claim holds. If v is totally denoting, it suffices to consider its extension
with the “undefinite” v" and replace t0 by " in the previous argument, to obtain
the desired extension of v. By the extension property for strict valuation the result
applies to NDs

c as well. To extend the result to general formulas it suffices to repeat
the argument given for the extension of the completeness theorem.

1.1 Conservativity of partial description functions

Theorem 1.2 IfD is a formula of L with distinct free variables x1; : : : ; xn; y, and
f is an n-ary function symbol not in L, then the following formula is conservative
over L with respect to NDc :

�y.f ID/ 8
�
f .x1; : : : ; xn/ D y � D ^ 8y

0
�
D¹y=y0º ! y0 D y

��
:

The same holds for NDs
c .

Proof Given D, let DŠ be D ^ 8y0.D¹y=y0º ! y0 D y/. By the proof of
the first part of Theorem 1.1 applied to DŠ, we can conservatively add the for-
mula .a/ 8.f .x1; : : : ; xn/ D y ! DŠ/. Furthermore, we can conservatively add
�2

y.f ID
Š/. From DŠ it logically follows that 9y.D ^ 8y0.D¹y=y0º ! y0 D y//,

from which by �2
y.f ID

Š/ it follows that 9y.y D f .x1; : : : ; xn/ ^ D ^ 8y
0.D¹y=

y0º ! y0 D y//. Let then z be such that z D f .x1; : : : ; xn/^D¹y=zº^8y
0.D¹y=

y0º ! y0 D z/. From z D f .x1; : : : ; xn/ ^D¹y=zº by DŠ it follows that z D y;
hence f .x1; : : : ; xn/ D y. Thus also the reverse implication in .a/, and therefore
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�y.f ID/, is deducible in the conservative extension provided by Theorem 1.1 with
respect toDŠ. Hence �y.f ID/ is conservative over L with respect to NDc .

Corollary 1.1 Under the assumption of Theorem 1.2,
8
�
f .x1; : : : ; xn/ D y � D

�
is conservative over NDc C UyD where UyD states the uniqueness condition for y
satisfyingD, namely, 8.D ^D¹y=y0º ! y0 D y/.
Proof Under UyD, D ^ 8y0.D¹y=y0º � y0 D y/ and D are obviously logically
equivalent, so that it suffices to substitute the latter for the former in �y.f W D/, in
Theorem 1.2.

Directions for further work As we noted, the notion of strictness we have adopted
is tailored to fit the proposal in [11], to deal with singular terms; hence it doesn’t
assume that if t D t holds, then t is denoting. It would be interesting to match
the present treatment with the more demanding notion of strictness, by finding an
appropriate axiomatization of equality. The tv-semantic approach to the conserva-
tivity of partial description functions and of partial selection functions, in the latter
case under the assumption of the determinacy of equality, namely, the assumption
8x8y.x D y _ x ¤ y/, should be extended to the case of intuitionistic logic.
Obviously such questions call also for a proof-theoretic treatment. That requires a
preliminary investigation of logic with equality and the proof of an appropriate sub-
term and subformula property (for cut free derivations in a suitable sequent calculus).
Joint work with F. Previale in that direction is well under way.

Notes

1. So christened in [7, p. 128] and expressed by Quine’s dictum from [14, p. 32], “to be is
to be the value of a variable.”

2. Leblanc found truth-value semantics to be a useful teaching device enabling students
to grasp fundamental semantic concepts more easily, because it abstracted from tedious
details in standard, set-theoretic semantics.

3. The concept of a formula is ordinarily used in a more general sense; the special case
defined (above) might thus perhaps be described as a purely logical formula.

4. Note that none of the rules and relations concerning Bpc which are being used are spe-
cific to classical logic.

References

[1] Belnap, N. D., Jr., and G. J. Massey, “Semantic holism,” Studia Logica, vol. 49 (1990),
pp. 67–82. MR 1078439. DOI 10.1007/BF00401554. 385

[2] Feferman, S., “Definedness,” pp. 295–320 in Varia, with a Workshop on the Founda-
tions of Partial Functions and Programming (Irvine, Calif., 1995), vol. 43 of Erkenntnis,
Kluwer, Dordrecht, 1995. MR 1396840. DOI 10.1007/BF01135376. 384, 391

[3] Gentzen, G., “Untersuchungen über das logische Schließen,”Mathematische Zeitschrift,
vol. 39 (1935), pp. 176–210, 405–31. 383, 385

[4] Gentzen, G., “Die Wiederspruchsfreiheit der reinen Zahlentheorie,” Mathematische An-
nalen, vol. 112 (1936), pp. 493–565. MR 1513060. DOI 10.1007/BF01565428. 384

http://www.ams.org/mathscinet-getitem?mr=1078439
http://dx.doi.org/10.1007/BF00401554
http://www.ams.org/mathscinet-getitem?mr=1396840
http://dx.doi.org/10.1007/BF01135376
http://www.ams.org/mathscinet-getitem?mr=1513060
http://dx.doi.org/10.1007/BF01565428


Truth-Value Semantics and Functional Extensions 395

[5] Gentzen, G., The Collected Papers of Gerhard Gentzen, edited by M. E. Szabo, Stud-
ies in Logic and the Foundations of Mathematics, North Holland, Amsterdam, 1969.
Zbl 0209.30001. MR 0262050. 385

[6] Gumb, R., “Obituary of Hugues Leblanc,” Bulletin of Symbolic Logic, vol. 6 (2000),
pp. 230–31. 384

[7] Hintikka, J., “Existential presuppositions and existential commitments,” Journal of Phi-
losophy, vol. 56 (1959), pp. 125–37. 383, 394

[8] Leblanc, H., “Truth-value semantics for a logic of existence,” Notre Dame Journal of
Formal Logic, vol. 12 (1971), pp. 153–68. MR 0292640. 383

[9] Leblanc, H., Truth-Value Semantics, North-Holland, Amsterdam, 1976. MR 0457144.
383

[10] Leblanc, H., “Alternatives to standard first order semantics,” pp. 53–131 in Handbook of
Philosophical Logic, Vol. 2, 2nd ed., Kluwer, Dordrecht, 2001. MR 1884629. 383

[11] Leblanc, H., and T. Hailperin, “Nondesignating singular terms,” Philosophical Review,
vol. 68 (1959), pp. 239–43. 383, 387, 394

[12] Massey, G. J., “The pedagogy of logic: Humanistic dimensions,” Teaching Philosophy,
vol. 4 (1981), pp. 303–36. 385

[13] Prawitz, D., Natural Deduction: A Proof-Theoretical Study, vol. 3 of Stockholm Studies
in Philosophy, Almqvist and Wiksell, Stockholm, 1965. Zbl 0173.00205. MR 0193005.
383, 384

[14] Quine, W. V. O., “On what there is,” Review of Metaphysics, vol. 2 (1948), pp. 21–38.
394

Acknowledgments

The author is grateful to Alberto Marcone and Flavio Previale for helpful conversations
and remarks, and to the referees for very useful comments and suggestions.

Department of Mathematics and Computer Science
University of Udine
via Delle Scienze 206, 33100 Udine
Italy
franco.parlamento@uniud.it

http://www.emis.de/cgi-bin/MATH-item?0209.30001
http://www.ams.org/mathscinet-getitem?mr=0262050
http://www.ams.org/mathscinet-getitem?mr=0292640
http://www.ams.org/mathscinet-getitem?mr=0457144
http://www.ams.org/mathscinet-getitem?mr=1884629
http://www.emis.de/cgi-bin/MATH-item?0173.00205
http://www.ams.org/mathscinet-getitem?mr=0193005
mailto:franco.parlamento@uniud.it

	0.1 Introduction
	0.2 Pure terms and formulas
	0.3 Natural deduction systems for partial logic
	0.4 A ``bottom-up'' approach to truth-value semantics
	0.5 Truth-value valuations
	0.6 Correctness and completeness for tv-semantics
	0.7 Equality
	0.8 tv-semantics for Nc=
	0.9 The extension property
	0.10 Totally denoting valuations
	0.11 Introducing the undefined 
	0.12 Strictness
	1 Conservativeness of Partial Selection Functions
	1.1 Conservativity of partial description functions

	Notes
	References
	Acknowledgments
	Author's addresses

