Independence, Relative Randomness, and PA Degrees

Adam R. Day and Jan Reimann

We study pairs of reals that are mutually Martin-Löf random with Abstract respect to a common, not necessarily computable probability measure. We show that a generalized version of van Lambalgen's theorem holds for noncomputable probability measures, too. We study, for a given real A, the independence spec*trum* of A, the set of all B such that there exists a probability measure μ so that $\mu{A, B} = 0$ and (A, B) is $(\mu \times \mu)$ -random. We prove that if A is computably enumerable (c.e.), then no Δ_2^0 -set is in the independence spectrum of A. We obtain applications of this fact to PA degrees. In particular, we show that if A is c.e. and P is of PA degree so that $P \not\geq_T A$, then $A \oplus P \geq_T \emptyset'$.

1 Independence and Relative Randomness

The property of independence is central to probability theory. Given a probability space with measure μ , we call two measurable sets A and B independent if

$$\mu \mathcal{A} = \frac{\mu(\mathcal{A} \cap \mathcal{B})}{\mu \mathcal{B}}.$$

The idea behind this definition is that if event \mathcal{B} occurs, it does not make event \mathcal{A} any more or less likely. This paper considers a similar notion, that of relative randomness. The theory of algorithmic randomness provides a means of defining which elements of Cantor space (2^{ω}) are random. We call $A \in 2^{\omega}$ Martin-Löf random if A is not an element of any effective null set. We denote the class of all Martin-Löf random reals by MLR.

We say that A is Martin-Löf random relative to B, or $A \in MLR(B)$ if A is not an element of any null set effective in B. Relative randomness is analogous to independence because if $A \in MLR(B)$, then not only is A a random real but even given the information in B, we cannot capture A in an effective null set. If we start

Received July 10, 2012; accepted August 10, 2012 2010 Mathematics Subject Classification: Primary 03D32 Keywords: algorithmic randomness, independence, PA degrees, c.e. sets, van Lambalgen's theorem

© 2014 by University of Notre Dame 10.1215/00294527-2377842

with the assumption that A and B are both Martin-Löf random, then the following theorem of van Lambalgen establishes that relative randomness is symmetrical.

Theorem 1.1 (van Lambalgen [12]) If $A, B \in MLR$, then $A \in MLR(B)$ if and only if $B \in MLR(A)$ if and only if $A \oplus B \in MLR$.

We can extend the notion of relative randomness to any probability measure. We take $\mathcal{P}(2^{\omega})$ to be the set of all Borel probability measures on Cantor space. Endowed with the weak-* topology, $\mathcal{P}(2^{\omega})$ becomes a compact metrizable space. The measures that are a finite, rational-valued, linear combination of Dirac measures form a countable dense subset, and one can choose a metric on $\mathcal{P}(2^{\omega})$ that is compatible with the weak-* topology so that the distance between those basic measures is a computable function, and with respect to which $\mathcal{P}(2^{\omega})$ is complete. In other words, $\mathcal{P}(2^{\omega})$ can be given the structure of an *effective Polish space*. We can represent measures via Cauchy sequences of basic measures. This allows for coding measures as reals, and one can show that there exists a continuous, surjective mapping $\rho : 2^{\omega} \to \mathcal{P}(2^{\omega})$ such that for any $X \in 2^{\omega}$,

$$\rho^{-1}(\{\rho(X)\})$$
 is a $\Pi^0_1(X)$ -class.

For details of this argument, see Day and Miller [2]. If $\mu \in \mathcal{P}(2^{\omega})$, any real *R* with $\rho(R) = \mu$ is called a *representation* of μ .

We want to define randomness relative to a parameter with respect to a probability measure μ . Martin-Löf's framework easily generalizes to tests that have access to an oracle. However, our test should have access to *two* sources: the parameter of relative randomness and the measure (in the form of a representation).

Definition 1.2 Let R_{μ} be a representation of a measure μ , and let $A \in 2^{\omega}$.

- 1. An (R_{μ}, A) -test is given by a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ of uniformly $\Sigma_1^0(R_{\mu} \oplus A)$ classes $\mathcal{V}_n \subseteq 2^{\omega}$ such that for all $n, \mu(\mathcal{V}_n) \leq 2^{-n}$.
- 2. A real $X \in 2^{\omega}$ passes an (R_{μ}, A) -test (V_n) if $X \notin \bigcap_n V_n$.
- 3. A real $X \in 2^{\omega}$ is (R_{μ}, A) -random, or R_{μ} -random relative to A, if it passes all (R_{μ}, A) -tests.

If, in the previous definition, $A = \emptyset$, we simply speak of an R_{μ} -test and of X being R_{μ} -random.

The previous definition defines randomness with respect to a specific representation. If X is random for one representation, it is not necessarily random for other representations. On the other hand, we can ask whether a real exhibits randomness with respect to *some* representation, so the following definition makes sense.

Definition 1.3 A real $X \in 2^{\omega}$ is μ -random relative to $A \in 2^{\omega}$, or simply μ -*A*-random, if there exists a representation R_{μ} of μ such that X is (R_{μ}, A) -random. We denote by MLR_{μ}(A) the set of all μ -*A*-random reals.

For Lebesgue measure λ , we sometimes suppress the measure. Hence, in accordance with established notation, MLR(A) denotes the set of all Martin-Löf random reals.

A most useful property of the theory of Martin-Löf randomness is the existence of *universal tests*. Universal tests subsume all other tests. Furthermore, they can be defined uniformly with respect to any parameter. The construction can be extended to tests with respect to a measure μ . More precisely, there exists a uniformly c.e.

sequence $(U_n: n \in \mathbb{N})$ of sets $U_n \subseteq 2^{<\omega}$ such that if we set, for $R, A \in 2^{\omega}$,

$$\mathcal{U}_n^{R,A} = \big\{ [\sigma] \colon \langle \sigma, \tau_0, \tau_1 \rangle \in U_n, \tau_0 \prec R, \tau_1 \prec A \big\},\$$

then $(\mathcal{U}_n^{R,A})$ is an (R, A)-test and $X \in 2^{\omega}$ is (R, A)-random if and only if $X \notin \bigcap_n \mathcal{U}_n^{R,A}$. We call (U_n) a *universal oracle test*.

Since for any $R \in 2^{\omega}$, $\rho^{-1}(\rho(R))$ is $\Pi_1^0(R)$, we can eliminate the representation of a measure in a test for randomness by defining, for any $A \in 2^{\omega}$,

$$\widetilde{\mathcal{U}}_n^{R,A} = \bigcap_{S \in \rho^{-1}(\{\rho(R)\})} \mathcal{U}_n^{S,A}$$

The resulting class $\widetilde{\mathcal{U}}_n^A$ is still $\Sigma_1^0(R)$, since $\rho^{-1}(\{\rho(R)\})$ is $\Pi_1^0(R)$ and hence compact.

Proposition 1.4 For any $R, A \in 2^{\omega}$ with $\rho(R) = \mu$, a real X is μ -A-random if and only if

$$X \notin \bigcap_{n} \widetilde{\mathcal{U}}_{n}^{R,A}$$

Proof If *X* is μ -*A*-random, then it passes every (R_{μ}, A) -test for some representation R_{μ} of μ , in particular, the instance $(\mathcal{U}_{n}^{R_{\mu},A})$ of the universal oracle test. Since $R_{\mu} \in \rho^{-1}(\{\rho(R)\})$, it follows that *X* passes $\widetilde{\mathcal{U}}_{n}^{R,A}$.

On the other hand, if for every representation R_{μ} of μ , X fails the test $(\mathcal{U}_{n}^{R,A})$, then $X \in \bigcap_{n} \widetilde{\mathcal{U}}_{n}^{R,A}$.

Proposition 1.4 shows that the test $\widetilde{\mathcal{U}}_n^{R,A}$ is related to the concept of a *uniform test*, originally introduced by Levin [8], and further developed by Gács [4] and Hoyrup and Rojas [5]. Hence we call it a *uniform oracle test*. Note that if R, S are both representations of a measure μ , then the uniform oracle tests $(\widetilde{\mathcal{U}}_n^{R,A})_n$ and $(\widetilde{\mathcal{U}}_n^{S,A})_n$ are identical.

Definition 1.5 Take $A, B \in 2^{\omega}$ and $\mu \in \mathcal{P}(2^{\omega})$. We say that A and B are *relatively random with respect to* μ if $A \in MLR_{\mu}(B)$ and $B \in MLR_{\mu}(A)$.

Note that the representations of μ witnessing randomness for *A* and *B*, respectively, do not have to be identical. If *A* and *B* are relatively random with respect to some measure μ , then μ might offer some information about the relationship between *A* and *B*. For example, we know that if *A* and *B* are relatively random with respect to Lebesgue measure, then any real they both compute must be K-trivial.

A trivial case of relative randomness occurs when *A* and *B* are both *atoms* of the underlying measure. A real *X* is an atom of a measure μ if $\mu{X} > 0$. A measure with no atoms is called *nonatomic*. Given this, perhaps the most obvious question to ask about relative randomness is the following.

Question 1.6 For which $A, B \in 2^{\omega}$ does there exist a measure μ such that A and B are relatively random with respect to μ and neither A nor B is an atom of μ ?

This question is closely related to a theorem of Reimann and Slaman [10]. They proved that an element X of Cantor space is noncomputable if and only if there exists a measure μ such that X is μ -random and X is not an atom of μ .

Van Lambalgen's theorem shows that *A* and *B* are relatively random if and only if $A \oplus B \in MLR$. If we take λ to be the uniform measure, then $A \oplus B \in MLR$

if and only if the pair $(A, B) \in 2^{\omega} \times 2^{\omega}$ is Martin-Löf random with respect to the product measure $\lambda \times \lambda$, that is, $(A, B) \in MLR_{\lambda \times \lambda}$. We begin our investigation into relative randomness by showing that van Lambalgen's theorem holds for any Borel probability measure on Cantor space.

Theorem 1.7 Let $\mu \in \mathcal{P}(2^{\omega})$, and let $A, B \in 2^{\omega}$. Then $(A, B) \in MLR_{\mu \times \mu}$ if and only if $A \in MLR_{\mu}$ and $B \in MLR_{\mu}(A)$, that is, if and only if A and B are relatively random with respect to μ .

Proof Let *R* be any representation of μ . First, let us consider if $B \notin MLR_{\mu}(A)$. In this case we have that $B \in \bigcap_n \mathcal{U}_n^{R,A}$. We define an (R, \emptyset) -test for $2^{\omega} \times 2^{\omega}$ by $\mathcal{V}_n^R = \{[\tau] \times [\sigma] : \exists \eta \prec R(\langle \sigma, \eta, \tau \rangle \in U_n)\}$. This ensures that $(A, B) \in \bigcap_n \mathcal{V}_n^R$. By applying Fubini's theorem we can establish that

$$(\mu \times \mu)(\mathcal{V}_n^R) = \int_{2^{\omega} \times 2^{\omega}} \chi_{\mathcal{V}_n^R}(X, Y) \, d\mu \times d\mu$$
$$= \int_{2^{\omega}} \left(\int_{2^{\omega}} \chi_{\mathcal{U}_n^{R, X}}(Y) \, d\mu(Y) \right) d\mu(X)$$
$$\leq \int_{2^{\omega}} 2^{-n} \, d\mu(X) = 2^{-n}.$$

Hence (A, B) is not (R, \emptyset) -random. As this is true for any representation R of μ , we have $(A, B) \notin MLR_{\mu \times \mu}$. The same argument shows a fortiori that if $A \notin MLR_{\mu}$, then $(A, B) \notin MLR_{\mu \times \mu}$.

To establish the other direction, assume that $(A, B) \notin MLR_{\mu \times \mu}$. Again let *R* be any representation of μ .

Hence $(A, B) \in \bigcap_n \mathcal{V}_n^R$, where (\mathcal{V}_n^R) is a universal *R*-test for $2^{\omega} \times 2^{\omega}$. Let

$$\mathcal{W}_n^{R,X} = \{Y : (X,Y) \in \mathcal{V}_n^R\}.$$

We have that $W_n^{R,X}$ is a $\Sigma_1^0(R \oplus X)$ -class and this is uniform in n. However, given any X, we do not know whether or not $\mu(W_n^{R,X}) \leq f(n)$ for some decreasing computable function f such that $\lim_n f(n) = 0$. Hence we cannot necessarily turn this into a Martin-Löf test relative to X. In fact, it is not even necessarily true that $\lim_n n_\mu(W_n^{R,X}) = 0$. We will show that the failure to turn this into a Martin-Löf test for some $X \in 2^{\omega}$ implies that $X \notin MLR_{\mu}$. This is a slight strengthening of the result that van Lambalgen obtained in his thesis. Van Lambalgen showed that if $\lim_n n_\mu(W_n^{R,X}) \neq 0$, then $X \notin MLR_{\mu}$.

However, we can generalize the proof of van Lambalgen's theorem given in Nies [9]. We define another *R*-test by letting

$$\mathcal{T}_n^R = \big\{ X \in 2^\omega : \mu(\mathcal{W}_{2n}^{R,X}) > 2^{-n} \big\}.$$

To see that $\mathcal{T}_n^R \leq 2^{-n}$, note that

$$\begin{aligned} (\mu \times \mu) \mathcal{V}_{2n}^{R} &\geq \int_{\mathcal{T}_{n}^{R} \times 2^{\omega}} \chi_{\mathcal{V}_{2n}^{R}}(X, Y) \, d\mu \times d\mu \\ &= \int_{\mathcal{T}_{n}^{R}} \int_{2^{\omega}} \chi_{\mathcal{W}_{2n}^{R, X}}(Y) \, d\mu(Y) \, d\mu(X) \\ &\geq \int_{\mathcal{T}_{n}^{R}} 2^{-n} \, d\mu(X) = 2^{-n} \mu(\mathcal{T}_{n}^{R}). \end{aligned}$$

Now as $2^{-2n} \ge (\mu \times \mu) \mathcal{V}_{2n}^R$, we have $\mu(\mathcal{T}_n^R) \le 2^{-n}$. Hence (\mathcal{T}_n^R) is an *R*-test. Assume that *A* is not *R*-random. Then *A* avoids all but finitely many of the sets \mathcal{T}_n^R . Hence for all but finitely many *n* we have $\mu \mathcal{W}_{2n}^{R,A} \le 2^{-n}$, and so by modifying finitely many $\mathcal{W}_{2n}^{R,A}$ we can obtain an (R, A)-test that covers *B*. Therefore *B* is not *R*-random relative to *A*.

For all representations R of μ , we have shown that either A is not R-random or B is not R-random relative to A. However, to prove the theorem, it is essential that we get the *same* outcome for all representations; that is, if $(A, B) \notin MLR_{\mu}$, then either for all representations R of μ , A is not R-random or for all representations R of μ , B is not R-random relative to A.

We can resolve this problem by taking our test (\mathcal{V}_n^R) on the product space to be a uniform oracle test. (A uniform oracle test on $2^{\omega} \times 2^{\omega}$ can be defined analogously to the uniform oracle test on 2^{ω} defined above.) In this case we always obtain the same "projection tests" $(\mathcal{W}_n^{R,X})$ (independent of *R*) and hence the same outcome for any representation of μ .

Corollary 1.8 If $A \ge_T B$ and $(A, B) \in MLR_{\mu \times \mu}$, then B must be an atom of μ .

Proof This holds because $B \in MLR_{\mu}(A)$ if and only if B is an atom of μ .

We note that we cannot extend one direction of van Lambalgen's theorem to product measures of the form $\mu \times \nu$. In particular, it is not true that if $A \in MLR_{\mu}$ and $B \in MLR_{\nu}(A)$, then $(A, B) \in MLR_{\mu \times \nu}$. For example, it is possible to code a real *B* into a measure μ in such a way that *B* is computable from every representation of μ and choose a measure ν so that there exist $A \in MLR_{\mu}$, $B \in MLR_{\nu}(A)$, with $\mu\{A\} = \nu\{B\} = 0$. But for any such μ, ν we cannot have $(A, B) \in MLR_{\mu \times \nu}$, since any $\mu \times \nu$ -test has access to μ and hence can compute *B*.

Given any $X \in 2^{\omega}$, we will use $\mathcal{R}(X)$ to denote the set of reals Y such that X and Y are relatively random with respect to some measure μ and neither X nor Y are atoms of μ ; that is,

$$\mathcal{R}(A) = \left\{ B \in 2^{\omega} : \left(\exists \mu \in \mathcal{P}(2^{\omega}) \right) [(A, B) \in \mathrm{MLR}_{\mu \times \mu}, \text{ and } \mu\{A\} = \mu\{B\} = 0] \right\}.$$

We call $\mathcal{R}(A)$ the *independence spectrum of A*.

The following proposition lists some basic properties of the independence spectrum.

Proposition 1.9 For all $A, B \in 2^{\omega}$ the following hold:

- (1) $A \in \mathcal{R}(B)$ if and only if $B \in \mathcal{R}(A)$;
- (2) $B \in \mathcal{R}(A)$ implies that $A \mid_T B$;
- (3) if A is noncomputable and v is a nonatomic measure with a computable representation, then $\mathcal{R}(A)$ has v-measure 1;
- (4) if $A \in MLR$, then $MLR(A) \subsetneq \mathcal{R}(A)$.

Proof Condition (1) is by definition, and (2) is by Corollary 1.8.

For (3) suppose that A is noncomputable and v is a computable measure with $v\{A\} = 0$. There is a measure μ such that A is not an atom of μ and $A \in MLR_{\mu}$, say, via a representation R_{μ} . Let $\kappa = (\mu + \nu)/2$. There exists a representation $R_{\kappa} \leq_{\mathrm{T}} R_{\mu}$, as v is computable. We claim that A is R_{κ} -random. For if not, then A fails some R_{κ} -test ($W_{n}^{R_{\kappa}}$). We have

$$\mu \mathcal{W}_n^{R_{\kappa}} = 2\kappa \mathcal{W}_n^{R_{\kappa}} - \nu \mathcal{W}_n^{R_{\kappa}} \le 2\kappa \mathcal{W}_n^{R_{\kappa}} \le 2^{n-1}.$$

Since $R_{\kappa} \leq_{\mathrm{T}} R_{\mu}$, $(\mathcal{W}_{n+1}^{R_{\kappa}})$ would define an R_{μ} -test that covers A, contradicting the assumption that A is R_{μ} -random. Furthermore, by assumption on μ and ν , $\kappa\{A\} = 0$. Hence

$$\left(\mathrm{MLR}_{\kappa}(A) \setminus \{B : \kappa\{B\} \neq 0\}\right) \subseteq \mathcal{R}(A)$$

by van Lambalgen's theorem.

Now $\nu(MLR_{\kappa}(A)) = 1$ because the complement of $MLR_{\nu}(A)$ is a κ -null set and hence a ν -null set (ν is absolutely continuous with respect to κ by definition). Moreover, the set of atoms of κ is countable and so has ν -measure 0 by the assumption that ν is nonatomic. This gives us

$$\nu(\mathrm{MLR}_{\kappa}(A) \setminus \{B : \kappa\{B\} \neq 0\}) = 1$$

and thus $\nu \mathcal{R}(A) = 1$.

For (4) suppose that A is Martin-Löf random. By the definition of $\mathcal{R}(A)$ and Theorem 1.7 we have MLR $(A) \subseteq \mathcal{R}(A)$.

On the other hand, *A* is not computable, and hence by (3), $\mathcal{R}(A)$ has measure 1 for any computable, nonatomic measure. Let ν be a computable, nonatomic measure orthogonal to Lebesgue measure (e.g., the (1/3, 2/3)-Bernoulli measure). Since $\nu \mathcal{R}(A) = 1$, $\mathcal{R}(A)$ has to contain a ν -random element *X*. But *X* cannot be relatively Martin-Löf random. Therefore, MLR(A) $\subseteq \mathcal{R}(A)$.

The proposition shows that, outside the upper and lower cone of a real A, the complement of $\mathcal{R}(A)$ is rather small measurewise. On the other hand, the above properties leave open the possibility that $\mathcal{R}(A)$ is just the set of reals that are Turing incomparable with A. We will now establish that this is not necessarily the case.

Proposition 1.10 Let R be a representation of a measure μ . If $A \in 2^{\omega}$ is such that

1. A is c.e.,²

2. A is R-random, and

3. A is not an atom of μ ,

then $R \oplus A \geq_{\mathrm{T}} R'$.

Proof Given such an *R* and *A*, let A_s be a computable approximation to *A*. We define the function $f \leq_T A \oplus R$ by

$$f(x) = \min\{s : (\exists m \le s)(A_s \upharpoonright m = A \upharpoonright m \land \mu_s[A \upharpoonright m] < 2^{-x})\}.$$

In this definition we take $\mu_s[\sigma]$ to be an *R*-computable approximation to $\mu[\sigma]$ from above. Note that *f* is well defined because *A* is not an atom of μ . We claim that if *g* is any partial function computable in *R*, then for all but finitely many $x \in \text{dom}(g)$, we have f(x) > g(x). To establish this claim, let *g* be an *R*-computable partial function. We will build an *R*-test $\{U_n\}_{n\in\omega}$ by defining U_n to be

$$\left\{X \in 2^{\omega} : (\exists x > n)(\exists m)(g(x) \downarrow \land \mu[A_{g(x)} \upharpoonright m] < 2^{-x} \land X \succ (A_{g(x)} \upharpoonright m))\right\}.$$

Because any $x \in \text{dom}(g)$ adds a single open set $([A_{g(x)} \upharpoonright m]$ for some m) of measure less than 2^{-x} to those U_n with n < x, we have constructed a valid test. Now if $g(x) \downarrow \ge f(x)$, then by definition of f, there is some $m \le f(x)$ such that $\mu[A \upharpoonright m] < 2^{-x}$ and $A \upharpoonright m = A_{f(x)} \upharpoonright m = A_{g(x)} \upharpoonright m$. Here we use the fact that A is c.e. Thus for all $n < x, A \in U_n$. Because A is R-random, we have f(x) > g(x) for all but finitely many x in dom(g). Let g(x) be the *R*-computable partial function with domain R' such that g(x) is the unique *s* such that $x \in R'_{s+1} \setminus R'_s$. For almost all *x*, we have $x \in R'$ if and only if $x \in R'_{f(x)}$, and so $R' \leq_{\mathrm{T}} A \oplus R$.

Theorem 1.11 Let R be a representation of a measure μ . If

- 1. A is c.e.,
- 2. A is μ -random, and
- *3. A* is not an atom of μ ,

then $R \oplus A \geq_{\mathrm{T}} \emptyset'$.

Proof Note the following characteristics of the previous proof. First, the totality of f does not depend on the fact that A is R-random; it only depends on the fact that A is not an atom of μ . The construction is uniform, so there is a single index e such that $\Phi_e(A \oplus \hat{R})$ is total if \hat{R} is any representation of μ . Additionally, if A is \hat{R} -random, then for all but finitely many x, $\Phi_e(A \oplus \hat{R}; x) \ge g(x)$, where g is any \hat{R} -computable partial computable function.

Let *R* be any representation of μ . The set $\{A \oplus \hat{R} : \hat{R} \text{ is a representation of } \mu\}$ is a $\Pi_1^0(A \oplus R)$ -class, and Φ_e is total on this class. From $A \oplus R$ we can compute a function *f* that dominates $\Phi_e(A \oplus \hat{R})$, where *A* is \hat{R} -random. As *f* dominates any \hat{R} -computable partial function, we have $A \oplus R \ge_T \emptyset'$.

Corollary 1.12 If A is c.e. and $B \leq_{\mathrm{T}} \emptyset'$, then $B \notin \mathcal{R}(A)$.

The question remains, however, how big the independence spectrum of a real can be outside its upper and lower cones.

Question 1.13 Is the set of all X such that $X \mid_T A$ and $X \notin \mathcal{R}(A)$ countable?

2 Computably Enumerable Sets and PA Degrees

We will now give two (somehow unexpected) applications of Theorem 1.11 to the interaction between c.e. sets and sets of PA degree. Recall that a set $A \subseteq \mathbb{N}$ is of *PA degree* if it is Turing equivalent to a set coding a complete extension of Peano arithmetic (PA). PA degrees have many interesting computability-theoretic properties. For instance, a set is of PA degree if and only if it computes a path through every nonempty Π_1^0 -class. However, a complete degree-theoretic characterization of the PA degrees is still not known. If $A \geq_T \emptyset'$, then A is of PA degree. On the other hand, Gödel's first incompleteness theorem implies that no c.e. set can be a complete extension of PA. Jockusch and Soare [6] showed, moreover, that if a set is of incomplete c.e. degree, it cannot be of PA degree. This also follows from the Arslanov completeness criterion, since any PA degree computes a fixed-point free function (see [1]).

It seems therefore worthwhile to gain a complete understanding how c.e. sets and PA degrees are related. The crucial fact that links Theorem 1.11 to PA degrees is a result by Day and Miller [2]. They showed that every set of PA degree computes a representation of a *neutral measure*. Such a measure has the property that *every* real is random with respect to it, that is, $2^{\omega} = MLR_{\mu}$. The existence of neutral measures was first established by Levin [8].

Our first result shows that below \emptyset' , c.e. sets and PA degrees behave quite complementary.³

Corollary 2.1 (to Theorem 1.11) If A is a c.e. set and P a set of PA degree such that $P \not\geq_{T} A$, then $P \oplus A \geq_{T} \emptyset'$.

Proof By the result of Day and Miller [2] mentioned above, P computes a representation R_{μ} of a neutral measure μ and $A \in MLR_{\mu}$. Day and Miller [2] also showed that a real X is an atom of a neutral measure if every representation of the measure computes X. Now because $P \not\geq_T A$, we have that A is not an atom of μ . Thus all hypotheses of Theorem 1.11 are satisfied, and we have $P \oplus A \geq_T \emptyset'$. \Box

Corollary 2.1 strengthens a result due to Kučera and Slaman (unpublished). Recall that a function $f : \mathbb{N} \to \mathbb{N}$ is *diagonally noncomputable* if $f(n) \neq \varphi_n(n)$ for all n, where φ_n denotes, as usual, the *n*th partial computable function. Kučera and Slaman constructed a low₂ c.e. set so that $A \oplus f \equiv_{\mathbb{T}} \emptyset'$ for any diagonally noncomputable function $f \leq_{\mathbb{T}} \emptyset'$. It is well known that every PA degree computes a $\{0, 1\}$ -valued diagonally noncomputable function. Hence the set constructed by Kučera and Slaman joins any PA degree below \emptyset' to \emptyset' . As we will see below (Corollary 2.4), Corollary 2.1 yields that this is in fact true for any nonlow c.e. set.

One can ask which kind of incomplete c.e. sets *can* be bounded by PA degrees below \emptyset' . This question was first raised by Kučera [7].

For which incomplete c.e. sets A does there exist a set P of PA degree such that $A <_T P <_T \emptyset'$?

We can use Corollary 2.1 to completely answer this question. We say that a set *B* is of *PA degree relative* to a set *A*, written $B \gg A$ (see Simpson [11]), if *B* computes a path through every nonempty $\Pi_1^0(A)$ -class. One well-known fact we will make use of is the following. If *P* is of *PA* degree, then there exists a set *Q* of *PA* degree such that $P \gg Q$. One way to prove this fact is to observe that the Π_1^0 -class

$$\{(A, B) \in 2^{\omega} \times 2^{\omega} : A \in \text{DNR}_2 \land B \in \text{DNR}_2(A)\}$$

is nonempty, where DNR₂ and DNR₂(A) are the classes of {0, 1}-valued diagonally noncomputable functions and {0, 1}-valued diagonally noncomputable functions relative to A, respectively.

Theorem 2.2 If A is a c.e. set, then the following are equivalent.

- (1) A is low.
- (2) There exist P, $P \gg A$, and P is low.
- (3) There exists P of PA degree such that $\emptyset' >_{T} P >_{T} A$.

Proof (1) \Rightarrow (2): There is a (nonempty) $\Pi_1^0(A)$ -class of sets $B \gg A$. Relativize the low basis theorem to find $P \gg A$ and $P' \equiv_T A'$. As A is low, so is P.

 $(2) \Rightarrow (3)$: This is clear.

(3) \Rightarrow (1): Take any Q of PA degree such that $P \gg Q$. Now $Q \ge_T A$ because otherwise $Q \oplus A \ge \emptyset'$, but this is impossible because $P \ge_T Q \oplus A$ and $P \not\ge_T \emptyset'$. Hence $P \gg A$. But now we have that \emptyset' is c.e. in A and also that \emptyset' computes a DNR function relative to A. Hence by relativizing Arslanov's completeness criterion we have $A' \equiv_T \emptyset'$.

Observe that in the proof of $(3) \Rightarrow (1)$, showing $P \gg A$ only used the facts that $P \not\geq_T \emptyset'$ and $P \geq_T A$. Hence we get the following corollary.

Corollary 2.3 If P is a set of PA degree and A is a c.e. set such that $P \ge_T A$ and $P \not\ge_T \emptyset'$, then $P \gg A$.

We also obtain the strengthening of the Kučera-Slaman result mentioned above.

Corollary 2.4 If A is a nonlow c.e. set, then $A \oplus P \equiv_{T} \emptyset'$ for all $P \leq_{T} \emptyset'$ of PA degree.

Notes

- 1. For a comprehensive presentation of the theory of Martin-Löf randomness, see the monographs by Downey and Hirschfeldt [3] and Nies [9].
- 2. We mean here, of course, that A is computably enumerable viewed as a subset of \mathbb{N} , by identifying a subset of \mathbb{N} with the real given by its characteristic sequence.
- 3. After the authors announced the result presented in Corollary 2.1, proofs not involving measure-theoretic arguments have been found independently by A. Kučera and J. Miller.

References

- Arslanov, M. M., "On some generalizations of the fixed-point theorem," *Soviet Mathematics*, vol. 25 (1981), pp. 1–10.
- [2] Day, A. R., and J. S. Miller, "Randomness for non-computable measures," *Transactions of the American Mathematical Society*, vol. 365 (2013), pp. 3575–91. MR 3042595. DOI 10.1090/S0002-9947-2013-05682-6. 2, 7, 8
- [3] Downey, R. G., and D. R. Hirschfeldt, *Algorithmic Randomness and Complexity*, Theory and Applications of Computability, Springer, New York, 2010. MR 2732288. DOI 10.1007/978-0-387-68441-3. 9
- [4] Gács, P., "Uniform test of algorithmic randomness over a general space," *Theoretical Computer Science*, vol. 341 (2005), pp. 91–137. Zbl 1077.68038. MR 2159646. DOI 10.1016/j.tcs.2005.03.054. 3
- [5] Hoyrup, M., and C. Rojas, "Computability of probability measures and Martin-Löf randomness over metric spaces," *Information and Computation*, vol. 207 (2009), pp. 830– 47. Zbl 1167.68023. MR 2519075. DOI 10.1016/j.ic.2008.12.009. 3
- [6] Jockusch, C. G., Jr., and R. I. Soare "Degrees of members of Π⁰₁ classes," *Pacific Journal of Mathematics*, vol. 40 (1972), pp. 605–16. Zbl 0209.02201. MR 0309722. 7
- [7] Kučera, A., "Remarks on randomness and PA sets," conference presentation at "Logic, Computability, and Randomness," Cordoba, Argentina, 2004. 8
- [8] Levin, L. A., "Uniform tests for randomness," *Doklady Akademii Nauk SSSR*, vol. 227 (1976), pp. 33–35. MR 0414222. 3, 7
- [9] Nies. A., Computability and Randomness, vol. 51 of Oxford Logic Guides, Oxford University Press, Oxford, 2009. MR 2548883. DOI 10.1093/acprof:oso/9780199230761 .001.0001. 4, 9
- [10] Reimann, J., and T. A. Slaman, "Measures and their random reals," preprint, arXiv:0802.2705v2 [math.LO]. 3
- [11] Simpson, S. G., "Degrees of unsolvability: A survey of results," pp. 631–52 in Handbook of Mathematical Logic, edited by J. Barwise, vol. 90 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1977. MR 0457132. 8
- [12] M. van Lambalgen. "Random sequences," Ph.D. dissertation, University of Amsterdam, Amsterdam, 1987. 2

Acknowledgments

Reimann was partially supported by National Science Foundation grant DMS-1201263. The authors would like to thank Steve Simpson for stimulating and insightful discussions.

Day School of Mathematics, Statistics and Operations Research Victoria University of Wellington Wellington 6140 New Zealand adam.day@vuw.ac.nz

Reimann Department of Mathematics Pennsylvania State University University Park State College, Pennsylvania 16802 USA reimann@math.psu.edu

10