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Independence, Relative Randomness, and PA Degrees

Adam R. Day and Jan Reimann

Abstract We study pairs of reals that are mutually Martin-Löf random with
respect to a common, not necessarily computable probability measure. We show
that a generalized version of van Lambalgen’s theorem holds for noncomputable
probability measures, too. We study, for a given real A, the independence spec-
trum of A, the set of all B such that there exists a probability measure � so that
�¹A;Bº D 0 and .A;B/ is .� � �/-random. We prove that if A is computably
enumerable (c.e.), then no �02-set is in the independence spectrum of A. We
obtain applications of this fact to PA degrees. In particular, we show that if A is
c.e. and P is of PA degree so that P 6�T A, then A˚ P �T ;

0.

1 Independence and Relative Randomness

The property of independence is central to probability theory. Given a probability
space with measure �, we call two measurable sets A and B independent if

�A D
�.A \B/

�B
:

The idea behind this definition is that if event B occurs, it does not make event A any
more or less likely. This paper considers a similar notion, that of relative randomness.
The theory of algorithmic randomness provides a means of defining which elements
of Cantor space (2!) are random. We call A 2 2! Martin-Löf random if A is not an
element of any effective null set. We denote the class of all Martin-Löf random reals
by MLR.1

We say that A is Martin-Löf random relative to B , or A 2 MLR.B/ if A is
not an element of any null set effective in B . Relative randomness is analogous to
independence because if A 2 MLR.B/, then not only is A a random real but even
given the information in B , we cannot capture A in an effective null set. If we start
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with the assumption that A and B are both Martin-Löf random, then the following
theorem of van Lambalgen establishes that relative randomness is symmetrical.

Theorem 1.1 (van Lambalgen [12]) If A;B 2 MLR, then A 2 MLR.B/ if and
only if B 2 MLR.A/ if and only if A˚ B 2 MLR.

We can extend the notion of relative randomness to any probability measure. We take
P.2!/ to be the set of all Borel probability measures on Cantor space. Endowed with
the weak-� topology, P.2!/ becomes a compact metrizable space. The measures that
are a finite, rational-valued, linear combination of Dirac measures form a countable
dense subset, and one can choose a metric on P.2!/ that is compatible with the
weak-� topology so that the distance between those basic measures is a computable
function, and with respect to which P.2!/ is complete. In other words, P.2!/ can
be given the structure of an effective Polish space. We can represent measures via
Cauchy sequences of basic measures. This allows for coding measures as reals, and
one can show that there exists a continuous, surjective mapping � W 2! ! P.2!/

such that for any X 2 2! ,

��1
�®
�.X/

¯�
is a…0

1.X/-class.

For details of this argument, see Day and Miller [2]. If � 2 P.2!/, any real R with
�.R/ D � is called a representation of �.

We want to define randomness relative to a parameter with respect to a probability
measure �. Martin-Löf’s framework easily generalizes to tests that have access to an
oracle. However, our test should have access to two sources: the parameter of relative
randomness and the measure (in the form of a representation).

Definition 1.2 Let R� be a representation of a measure �, and let A 2 2! .
1. An .R�; A/-test is given by a sequence .VnWn 2 N/ of uniformly†01.R�˚A/-

classes Vn � 2
! such that for all n, �.Vn/ � 2�n.

2. A real X 2 2! passes an .R�; A/-test .Vn/ if X …
T
n Vn.

3. A real X 2 2! is .R�; A/-random, or R�-random relative to A, if it passes
all .R�; A/-tests.

If, in the previous definition, A D ;, we simply speak of an R�-test and of X being
R�-random.

The previous definition defines randomness with respect to a specific representa-
tion. If X is random for one representation, it is not necessarily random for other
representations. On the other hand, we can ask whether a real exhibits randomness
with respect to some representation, so the following definition makes sense.

Definition 1.3 A real X 2 2! is �-random relative to A 2 2! , or simply �-A-
random, if there exists a representation R� of � such that X is .R�; A/-random. We
denote by MLR�.A/ the set of all �-A-random reals.

For Lebesgue measure �, we sometimes suppress the measure. Hence, in accordance
with established notation, MLR.A/ denotes the set of all Martin-Löf random reals.

A most useful property of the theory of Martin-Löf randomness is the existence
of universal tests. Universal tests subsume all other tests. Furthermore, they can be
defined uniformly with respect to any parameter. The construction can be extended
to tests with respect to a measure �. More precisely, there exists a uniformly c.e.
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sequence .UnWn 2 N/ of sets Un � 2<! such that if we set, for R;A 2 2! ,
UR;A
n D

®
Œ��W h�; �0; �1i 2 Un; �0 � R; �1 � A

¯
;

then .UR;A
n / is an .R;A/-test and X 2 2! is .R;A/-random if and only if

X …
T
n U

R;A
n . We call .Un/ a universal oracle test.

Since for any R 2 2! , ��1.�.R// is …0
1.R/, we can eliminate the representation

of a measure in a test for randomness by defining, for any A 2 2! ,eUR;A
n D

\
S2��1.¹�.R/º/

US;A
n :

The resulting class eUA
n is still †01.R/, since ��1.¹�.R/º/ is…0

1.R/ and hence com-
pact.

Proposition 1.4 For any R;A 2 2! with �.R/ D �, a real X is �-A-random if
and only if

X …
\
n

eUR;A
n :

Proof If X is �-A-random, then it passes every .R�; A/-test for some representa-
tion R� of �, in particular, the instance .UR�;A

n / of the universal oracle test. Since
R� 2 �

�1.¹�.R/º/, it follows that X passes eUR;A
n .

On the other hand, if for every representation R� of �, X fails the test .UR;A
n /,

then X 2
T
n
eUR;A
n .

Proposition 1.4 shows that the test eUR;A
n is related to the concept of a uniform test,

originally introduced by Levin [8], and further developed by Gács [4] and Hoyrup
and Rojas [5]. Hence we call it a uniform oracle test. Note that if R; S are both
representations of a measure �, then the uniform oracle tests .eUR;A

n /n and .eUS;A
n /n

are identical.

Definition 1.5 Take A;B 2 2! and � 2 P.2!/. We say that A and B are rela-
tively random with respect to � if A 2 MLR�.B/ and B 2 MLR�.A/.

Note that the representations of � witnessing randomness for A and B , respectively,
do not have to be identical. If A and B are relatively random with respect to some
measure �, then � might offer some information about the relationship between A
and B . For example, we know that if A and B are relatively random with respect to
Lebesgue measure, then any real they both compute must be K-trivial.

A trivial case of relative randomness occurs when A and B are both atoms of the
underlying measure. A real X is an atom of a measure � if �¹Xº > 0. A measure
with no atoms is called nonatomic. Given this, perhaps the most obvious question to
ask about relative randomness is the following.

Question 1.6 For which A;B 2 2! does there exist a measure � such that A and
B are relatively random with respect to � and neither A nor B is an atom of �?

This question is closely related to a theorem of Reimann and Slaman [10]. They
proved that an element X of Cantor space is noncomputable if and only if there
exists a measure � such that X is �-random and X is not an atom of �.

Van Lambalgen’s theorem shows that A and B are relatively random if and only
if A ˚ B 2 MLR. If we take � to be the uniform measure, then A ˚ B 2 MLR
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if and only if the pair .A;B/ 2 2! � 2! is Martin-Löf random with respect to the
product measure � � �, that is, .A;B/ 2 MLR���. We begin our investigation into
relative randomness by showing that van Lambalgen’s theorem holds for any Borel
probability measure on Cantor space.

Theorem 1.7 Let � 2 P.2!/, and let A;B 2 2! . Then .A;B/ 2 MLR��� if and
only if A 2 MLR� and B 2 MLR�.A/, that is, if and only if A and B are relatively
random with respect to �.

Proof Let R be any representation of �. First, let us consider if B … MLR�.A/.
In this case we have that B 2

T
n U

R;A
n . We define an .R;;/-test for 2! � 2! by

VR
n D ¹Œ� � � Œ�� W 9� � R.h�; �; �i 2 Un/º. This ensures that .A;B/ 2

T
n VR

n . By
applying Fubini’s theorem we can establish that

.� � �/.VR
n / D

Z
2!�2!

�VRn
.X; Y / d� � d�

D

Z
2!

�Z
2!
�

U
R;X
n

.Y / d�.Y /
�
d�.X/

�

Z
2!
2�n d�.X/ D 2�n:

Hence .A;B/ is not .R;;/-random. As this is true for any representation R of �, we
have .A;B/ … MLR���. The same argument shows a fortiori that if A … MLR�,
then .A;B/ … MLR���.

To establish the other direction, assume that .A;B/ … MLR���. Again let R be
any representation of �.

Hence .A;B/ 2
T
n VR

n , where .VR
n / is a universal R-test for 2! � 2! . Let

WR;X
n D

®
Y W .X; Y / 2 VR

n

¯
:

We have that W
R;X
n is a †01.R ˚ X/-class and this is uniform in n. However, given

any X , we do not know whether or not �.WR;X
n / � f .n/ for some decreasing

computable function f such that limn f .n/ D 0. Hence we cannot necessarily turn
this into a Martin-Löf test relative to X . In fact, it is not even necessarily true that
lim infn �.WR;X

n / D 0. We will show that the failure to turn this into a Martin-Löf
test for some X 2 2! implies that X … MLR�. This is a slight strengthening of
the result that van Lambalgen obtained in his thesis. Van Lambalgen showed that if
lim infn �.WR;X

n / ¤ 0, then X … MLR�.
However, we can generalize the proof of van Lambalgen’s theorem given in Nies

[9]. We define another R-test by letting

T R
n D

®
X 2 2! W �.W

R;X
2n / > 2�n

¯
:

To see that T R
n � 2

�n, note that

.� � �/VR
2n �

Z
T Rn �2

!

�VR
2n
.X; Y / d� � d�

D

Z
T Rn

Z
2!
�

W
R;X
2n

.Y / d�.Y / d�.X/

�

Z
T Rn

2�n d�.X/ D 2�n�.T R
n /:
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Now as 2�2n � .� � �/VR
2n, we have �.T R

n / � 2�n. Hence .T R
n / is an R-test.

Assume that A is not R-random. Then A avoids all but finitely many of the sets
T R
n . Hence for all but finitely many n we have �W

R;A
2n � 2

�n, and so by modifying
finitely many W

R;A
2n we can obtain an .R;A/-test that covers B . Therefore B is not

R-random relative to A.
For all representations R of �, we have shown that either A is not R-random or B

is not R-random relative to A. However, to prove the theorem, it is essential that we
get the same outcome for all representations; that is, if .A;B/ … MLR�, then either
for all representations R of �, A is not R-random or for all representations R of �,
B is not R-random relative to A.

We can resolve this problem by taking our test .VR
n / on the product space to be a

uniform oracle test. (A uniform oracle test on 2! � 2! can be defined analogously to
the uniform oracle test on 2! defined above.) In this case we always obtain the same
“projection tests” .WR;X

n / (independent of R) and hence the same outcome for any
representation of �.

Corollary 1.8 If A �T B and .A;B/ 2 MLR���, then B must be an atom of �.

Proof This holds because B 2 MLR�.A/ if and only if B is an atom of �.

We note that we cannot extend one direction of van Lambalgen’s theorem to product
measures of the form � � �. In particular, it is not true that if A 2 MLR� and
B 2 MLR�.A/, then .A;B/ 2 MLR��� . For example, it is possible to code a real
B into a measure � in such a way that B is computable from every representation
of � and choose a measure � so that there exist A 2 MLR�, B 2 MLR�.A/, with
�¹Aº D �¹Bº D 0. But for any such �; � we cannot have .A;B/ 2 MLR��� , since
any � � �-test has access to � and hence can compute B .

Given any X 2 2! , we will use R.X/ to denote the set of reals Y such that X
and Y are relatively random with respect to some measure � and neither X nor Y
are atoms of �; that is,
R.A/ D

®
B 2 2! W

�
9� 2 P.2!/

��
.A;B/ 2 MLR���; and �¹Aº D �¹Bº D 0

�¯
:

We call R.A/ the independence spectrum of A.
The following proposition lists some basic properties of the independence spec-

trum.

Proposition 1.9 For all A;B 2 2! the following hold:
(1) A 2 R.B/ if and only if B 2 R.A/;
(2) B 2 R.A/ implies that A jT B;
(3) if A is noncomputable and � is a nonatomic measure with a computable rep-

resentation, then R.A/ has �-measure 1;
(4) if A 2 MLR, then MLR.A/ ¨ R.A/.

Proof Condition (1) is by definition, and (2) is by Corollary 1.8.
For (3) suppose that A is noncomputable and � is a computable measure with

�¹Aº D 0. There is a measure � such that A is not an atom of � and A 2 MLR�,
say, via a representation R�. Let � D .� C �/=2. There exists a representation
R� �T R�, as � is computable. We claim that A is R�-random. For if not, then A
fails some R�-test .WR�

n /. We have
�WR�

n D 2�WR�
n � �WR�

n � 2�WR�
n � 2n�1:
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Since R� �T R�, .WR�
nC1/ would define an R�-test that covers A, contradicting

the assumption that A is R�-random. Furthermore, by assumption on � and �,
�¹Aº D 0. Hence �

MLR�.A/ n
®
B W �¹Bº ¤ 0

¯�
� R.A/

by van Lambalgen’s theorem.
Now �.MLR�.A// D 1 because the complement of MLR�.A/ is a �-null set and

hence a �-null set (� is absolutely continuous with respect to � by definition). More-
over, the set of atoms of � is countable and so has �-measure 0 by the assumption
that � is nonatomic. This gives us

�
�
MLR�.A/ n

®
B W �¹Bº ¤ 0

¯�
D 1

and thus �R.A/ D 1.
For .4/ suppose that A is Martin-Löf random. By the definition of R.A/ and

Theorem 1.7 we have MLR.A/ � R.A/.
On the other hand, A is not computable, and hence by .3/, R.A/ has measure 1

for any computable, nonatomic measure. Let � be a computable, nonatomic measure
orthogonal to Lebesgue measure (e.g., the .1=3; 2=3/-Bernoulli measure). Since
�R.A/ D 1, R.A/ has to contain a �-random elementX . ButX cannot be relatively
Martin-Löf random. Therefore, MLR.A/ ¨ R.A/.

The proposition shows that, outside the upper and lower cone of a realA, the comple-
ment of R.A/ is rather small measurewise. On the other hand, the above properties
leave open the possibility that R.A/ is just the set of reals that are Turing incompa-
rable with A. We will now establish that this is not necessarily the case.

Proposition 1.10 Let R be a representation of a measure �. If A 2 2! is such
that

1. A is c.e.,2
2. A is R-random, and
3. A is not an atom of �,

then R˚ A �T R
0.

Proof Given such an R and A, let As be a computable approximation to A. We
define the function f �T A˚R by

f .x/ D min
®
s W .9m � s/

�
As � m D A � m ^ �sŒA � m� < 2�x

�¯
:

In this definition we take �sŒ�� to be an R-computable approximation to �Œ�� from
above. Note that f is well defined because A is not an atom of �. We claim that if g
is any partial function computable in R, then for all but finitely many x 2 dom.g/,
we have f .x/ > g.x/. To establish this claim, let g be an R-computable partial
function. We will build an R-test ¹Unºn2! by defining Un to be®
X 2 2! W .9x > n/.9m/

�
g.x/ # ^�ŒAg.x/ � m� < 2�x ^X � .Ag.x/ � m/

�¯
:

Because any x 2 dom.g/ adds a single open set (ŒAg.x/ � m� for some m) of
measure less than 2�x to those Un with n < x, we have constructed a valid test.
Now if g.x/ #� f .x/, then by definition of f , there is some m � f .x/ such that
�ŒA � m� < 2�x and A � m D Af .x/ � m D Ag.x/ � m. Here we use the fact that
A is c.e. Thus for all n < x, A 2 Un. Because A isR-random, we have f .x/ > g.x/
for all but finitely many x in dom.g/.
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Let g.x/ be the R-computable partial function with domain R0 such that g.x/ is
the unique s such that x 2 R0sC1 n R0s . For almost all x, we have x 2 R0 if and only
if x 2 R0

f .x/
, and so R0 �T A˚R.

Theorem 1.11 Let R be a representation of a measure �. If
1. A is c.e.,
2. A is �-random, and
3. A is not an atom of �,

then R˚ A �T ;
0.

Proof Note the following characteristics of the previous proof. First, the totality
of f does not depend on the fact that A is R-random; it only depends on the fact
that A is not an atom of �. The construction is uniform, so there is a single index
e such that ˆe.A˚ OR/ is total if OR is any representation of �. Additionally, if A is
OR-random, then for all but finitely many x, ˆe.A ˚ ORI x/ � g.x/, where g is any
OR-computable partial computable function.
Let R be any representation of �. The set ¹A˚ OR W OR is a representation of �º

is a…0
1.A˚ R/-class, and ˆe is total on this class. From A˚ R we can compute a

function f that dominates ˆe.A˚ OR/, where A is OR-random. As f dominates any
OR-computable partial function, we have A˚R �T ;

0.

Corollary 1.12 If A is c.e. and B �T ;
0, then B … R.A/.

The question remains, however, how big the independence spectrum of a real can be
outside its upper and lower cones.

Question 1.13 Is the set of all X such that X jT A and X … R.A/ countable?

2 Computably Enumerable Sets and PA Degrees

We will now give two (somehow unexpected) applications of Theorem 1.11 to the
interaction between c.e. sets and sets of PA degree. Recall that a set A � N is of
PA degree if it is Turing equivalent to a set coding a complete extension of Peano
arithmetic (PA). PA degrees have many interesting computability-theoretic proper-
ties. For instance, a set is of PA degree if and only if it computes a path through
every nonempty …0

1-class. However, a complete degree-theoretic characterization
of the PA degrees is still not known. If A �T ;

0, then A is of PA degree. On the
other hand, Gödel’s first incompleteness theorem implies that no c.e. set can be a
complete extension of PA. Jockusch and Soare [6] showed, moreover, that if a set
is of incomplete c.e. degree, it cannot be of PA degree. This also follows from the
Arslanov completeness criterion, since any PA degree computes a fixed-point free
function (see [1]).

It seems therefore worthwhile to gain a complete understanding how c.e. sets and
PA degrees are related. The crucial fact that links Theorem 1.11 to PA degrees is a
result by Day and Miller [2]. They showed that every set of PA degree computes a
representation of a neutral measure. Such a measure has the property that every real
is random with respect to it, that is, 2! D MLR�. The existence of neutral measures
was first established by Levin [8].

Our first result shows that below ;0, c.e. sets and PA degrees behave quite com-
plementary.3
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Corollary 2.1 (to Theorem 1.11) If A is a c.e. set and P a set of PA degree such
that P 6�T A, then P ˚ A �T ;

0.
Proof By the result of Day and Miller [2] mentioned above, P computes a rep-
resentation R� of a neutral measure � and A 2 MLR�. Day and Miller [2] also
showed that a real X is an atom of a neutral measure if every representation of the
measure computes X . Now because P 6�T A, we have that A is not an atom of �.
Thus all hypotheses of Theorem 1.11 are satisfied, and we have P ˚ A �T ;

0.

Corollary 2.1 strengthens a result due to Kučera and Slaman (unpublished). Recall
that a function f W N ! N is diagonally noncomputable if f .n/ ¤ 'n.n/ for all n,
where 'n denotes, as usual, the nth partial computable function. Kučera and Slaman
constructed a low2 c.e. set so that A˚ f �T ;

0 for any diagonally noncomputable
function f �T ;

0. It is well known that every PA degree computes a ¹0; 1º-valued
diagonally noncomputable function. Hence the set constructed by Kučera and Sla-
man joins any PA degree below ;0 to ;0. As we will see below (Corollary 2.4),
Corollary 2.1 yields that this is in fact true for any nonlow c.e. set.

One can ask which kind of incomplete c.e. sets can be bounded by PA degrees
below ;0. This question was first raised by Kučera [7].

For which incomplete c.e. sets A does there exist a set P of PA degree such that
A <T P <T ;

0?
We can use Corollary 2.1 to completely answer this question. We say that a set B

is of PA degree relative to a setA, writtenB � A (see Simpson [11]), ifB computes
a path through every nonempty…0

1.A/-class. One well-known fact we will make use
of is the following. If P is of PA degree, then there exists a setQ of PA degree such
that P � Q. One way to prove this fact is to observe that the…0

1-class®
.A;B/ 2 2! � 2! WA 2 DNR2 ^ B 2 DNR2.A/

¯
is nonempty, where DNR2 and DNR2.A/ are the classes of ¹0; 1º-valued diagonally
noncomputable functions and ¹0; 1º-valued diagonally noncomputable functions rel-
ative to A, respectively.
Theorem 2.2 If A is a c.e. set, then the following are equivalent.

(1) A is low.
(2) There exist P , P � A, and P is low.
(3) There exists P of PA degree such that ;0 >T P >T A.

Proof .1/) .2/: There is a (nonempty) …0
1.A/-class of sets B � A. Relativize

the low basis theorem to find P � A and P 0 �T A
0. As A is low, so is P .

.2/) .3/: This is clear.

.3/) .1/: Take any Q of PA degree such that P � Q. Now Q �T A because
otherwise Q ˚ A � ;0, but this is impossible because P �T Q ˚ A and P 6�T ;

0.
Hence P � A. But now we have that ;0 is c.e. in A and also that ;0 computes a
DNR function relative toA. Hence by relativizing Arslanov’s completeness criterion
we have A0 �T ;

0.

Observe that in the proof of .3/) .1/, showing P � A only used the facts that
P 6�T ;

0 and P �T A. Hence we get the following corollary.
Corollary 2.3 If P is a set of PA degree and A is a c.e. set such that P �T A and
P 6�T ;

0, then P � A.
We also obtain the strengthening of the Kučera-Slaman result mentioned above.
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Corollary 2.4 If A is a nonlow c.e. set, then A˚ P �T ;
0 for all P �T ;

0 of PA
degree.

Notes

1. For a comprehensive presentation of the theory of Martin-Löf randomness, see the
monographs by Downey and Hirschfeldt [3] and Nies [9].

2. We mean here, of course, that A is computably enumerable viewed as a subset of N, by
identifying a subset of N with the real given by its characteristic sequence.

3. After the authors announced the result presented in Corollary 2.1, proofs not involving
measure-theoretic arguments have been found independently by A. Kučera and J. Miller.
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