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A New Conditional for Naive Truth Theory

Andrew Bacon

Abstract In this paper a logic suitable for reasoning disquotationally about
truth, TJKC, is presented and shown to have a standard model. This work
improves on Hartry Field’s recent results establishing consistency and !-
consistency of truth theories with strong conditional logics. A novel method
utilizing the Banach fixed point theorem for contracting functions on complete
metric spaces is invoked, and the resulting logic is shown to validate a number
of principles which existing revision theoretic methods have so far failed to
provide.

1 Introduction

An increasingly popular thesis has it that the claim that p and the claim that “p” is
true are equivalent and fully intersubstitutable with one another in contexts which do
not contain any intensional or hyperintensional connectives. Formally this is repre-
sented by the following intersubstitutivity rule for extensional contexts:

From ' infer '0 and vice versa, (1)

where '0 is any sentence obtained from ' by substituting some occurrences of  
for Tr.p q/. Here Tr is a formal truth predicate, and p q represents the numeral for
the Gödel number of  relative to some suitably chosen Gödel numbering. However,
due to the liar paradox, Curry’s paradox, and related antinomies, one cannot have this
rule without relinquishing some of the principles of classical logic. The remaining
question is then: which subclassical logics can consistently support (1) in its full
generality?

A now standard example of a logic in which the above rule can be consistently
maintained is the 3-valued logic based on the strong Kleene valuation, K3, and its
paraconsistent dual LP (see Kripke [11]). However, among recent defenders of the
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intersubstitutivity principle it is agreed that these logics are just too weak to sustain
any kind of substantial reasoning about truth. The former logic has no theorems,
although it has many rules, and the latter lacks important rules such as modus ponens.

For recent proponents of the intersubstitutivity principle, Kripke’s construction (in
its paracomplete or paraconsistent form) does not provide a sufficiently strong logic
to support an adequate naive truth theory based on the intersubstitutivity principle.
The subsequent proposals have employed instead the revision theoretic techniques
first outlined by Brady in [5]—and indeed there is a rich literature tied to this ap-
proach (see, e.g., Brady [5], [4], [6], Priest [12], Yablo [15], Field [7], and Beall
[2]).1 However, even the logics generated by the revision theoretic techniques lack a
number of natural logical principles. In this paper I present a different method for
generating logics supporting the intersubstitutivity principle which has an intuitive
geometrical interpretation in terms of the Banach fixed point theorem.

The particular conditional I study here strengthens, but is generally in the same
spirit, as the conditional proposed by Field in [7, pp. 272–74]. In particular, Field’s
conditional lacks a number of very natural principles:

1. ' ! . ! '/,
2. .' !  /! ..�! '/! .�!  //,
3. .' !  /! .. ! �/! .' ! �//,
4. ..' !  / ^ . ! �//! .' ! �/,
5. .' !  / ^ .' ! �/! .' !  ^ �/,
6. .' ! �/ ^ . ! �/! .' _  ! �/,
7. 8x.' !  /! .' ! 8x /,
8. 8x.' !  /! .9x' !  /.

However, if one examines the proofs of the liar, Curry, and related paradoxes, these
principles look to be innocent. Furthermore, many of these principles seem to be
required for an adequate account of quantification. For example, presumably the
principle “if all F ’s are G, then there’s a G if there’s an F ” seems to be an obvious
truism, whether or not F or G involve the truth predicate, although it is hard to
formalize it as a claim which is validated in Field’s model.2 Unlike the less obvious
truths of classical logic, such as the law of excluded middle, it is hard to fathom how
this principle could fail—if every F is G, then how could there be an F without
a G?

Failures of the principles “if everything is G then every F is G” and “if all F ’s
are G, then if all G’s are H , then all F ’s are H” seem equally unfathomable, but
in these cases as well it is hard to formalize these claims in in a way that validates
them in Field’s model. The most obvious way to formalize “every F is G” is as
8x.F x ! Gx/, and without the principles 1 and 3 above, these principles of quan-
tification fail.

Field also introduces a determinacy operator, which he defines: �' WD

' ^ .> ! '/. In order to get a natural logic for this operator, one might want
the principle �' ^� ! �.' ^  /. However, this principle fails in Field’s logic.
Since one might want, as Field does, to use this operator to state when something
is vague one might think this principle is vital: since the conjunction connective
is not vague, then if neither conjunct is vague, how could one be in a situation
where the conjunction is not determinate? Where could the vagueness of a complex
expression come from if not from one of its components? In a logic containing 5,
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however,�'^� ! �.'^ / becomes provable assuming a fairly uncontroversial
background logic.

I therefore think we have some good reasons to study logics with the above axioms
if we are to properly assess Field’s project. There is a further question of whether
these axioms are enough. For example, neither of the following principles are part of
the logic I describe:

9. .' ! . ! �//! . ! .' ! �//,
10. ..' ! ?/! ?/! '.

Principle 9 would allow us the following inference. From a is F , infer that if every
F is G, then a is G. One may want to postulate 9 in addition to the principles above.
The proposed logic does have another good feature: it validates the axiom

4. ..' !  / ^ . ! �//! .' ! �/.
We therefore may have the quantificational principle “if every F is G and every G
is H , every F is H .” However, it is known that 9 and 4 cannot be consistently
combined with principle 1 and the intersubstitutivity of provable equivalents (see
Brady [6, Section 6.2]). So it seems that we are forced to make a choice between 9
and 4 on logical grounds. Replacing 4 with 9 in the logic I propose results in the
positive fragment of a logic known as RWK. It is my view that RWK is also worth
investigating, although it is currently unknown whether it can !-consistently support
a naive truth predicate.

While we may not have as much intuitive reason to adopt 10, it is not obvious
that 10 would cause trouble (see Bacon [1]). So it seems at least worth investigating
whether 10 can be !-consistently added to the principles 1–8 with or without 9 or 4.3
Thus what follows is only a step in the right direction—without an explicit proof of
the !-inconsistency of the above principles, or, on the other hand, an argument that
the resulting truth theory has a standard model, we are still a long way from knowing
the truth of the matter.

Finally, there is a worry that no conditional can satisfy an adequate theory of
quantification.4 It is very natural to want a conditional, !, which can be used to
formalize “every F is G” as 8x.F x ! Gx/, and a connective, �, for formalizing
relative clauses, so that “x is an F who is G” is formalized as Fx �Gx. In order to
ensure the following inference:

Every man is such that everyone he admires is tall.
Therefore every man who admires himself is tall.

it seems that we would need the rule RQ1: ' ! . ! �/ ` .' �  /! �. Second,
in order to validate:

Every bachelor is a man.
Every bachelor is unmarried.
Therefore every bachelor is a man who is unmarried.

it is natural to want the rule RQ2: ' !  ; ' ! � ` ' ! . � �/. Yet in
combination with ' ! ', transitivity of! and modus ponens RQ1 and RQ2 lead
to triviality.5

In Section 2 I shall outline the logic, TJKC, and give a possible world semantics
and an equivalent algebraic semantics that it is sound with respect to. In Section 3
I prove a general fixed point theorem for a certain class of functions on the algebraic
semantics and show that it is an instance of the Banach fixed point theorem (see
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Section 4). In Section 5 a standard model is given for TJKC, and in Section 6 I carry
out a brief survey of ways to add an involutive negation operator to the logic.

2 Logic and Semantics

Let L be the first-order language of Peano arithmetic (consisting of the nonlogical
symbols 0;C;�;0 and function symbols, fe , for every other primitive recursive func-
tion e) with a truth predicate, Tr, whose primitive connectives are given by the set
¹?;!;_;^;8; 9º. In what follows I shall use the Greek letters '; , and � to rep-
resent formulas of L. I shall assume a bijective Gödel numbering p�q, and I shall use
the shorthand n to denote the term of L consisting of 0 succeeded by n “0” symbols.
The language L0 shall be exactly the same, except with two truth predicates, TrC and
Tr�.6

The logic TJKC is given by every instance of the following schemata:
1. ? ! ',
2. ' ! ',
3. ' ! . ! '/,
4. .' !  /! ..�! '/! .�!  //,
5. .' !  /! .. ! �/! .' ! �//,
6. ..' !  / ^ . ! �//! .' ! �/,
7. ' ! ' _  ,
8.  ! ' _  ,
9. ' ^  ! ',
10. ' ^  !  ,
11�. .' !  / ^ .' ! �/! .' !  ^ �/,
12�. .' ! �/ ^ . ! �/! .' _  ! �/,
13�. .' ^ . _ �//! .' ^  / _ .' ^ �/,
MP '; ' !  `  ,

^-intro '; ` ' ^  ,
M1 If �; ' ` �, and �; ` �, then �; ' _  ` �.

I have placed a star next to a principle to indicate that its converse is also to be
included (although they are already derivable.) The principles 2–5 are often denoted
I, K, B, and B0, respectively. Principle 6 appears to be quite distinctive to Routley
and Meyer’s [14] “dialectical logic” and appears to be related to, albeit weaker in
this context than, contraction.7 I shall refer to the logic as a whole as TJKC, since it
is obtained from the negation-free fragment of the relevant logic TJ by adding the K
axiom.8

TJKC can be extended to a quantificational logic by adding the axioms
1. 8x' ! 'Œt=x� provided t is substitutable for x,
2. 'Œt=x�! 9x' provided t is substitutable for x,
3�. 8x.' _  /! .' _ 8x / provided x is not free in ',
4�. .' ^ 9x /! 9x.' ^  / provided x is not free in ',
5�. 8x.' !  /! .' ! 8x / provided x is not free in ',
6�. 8x.' !  /! .9x' !  / provided x is not free in ',
7. t D t ,
8. s D t ` ' ! 'Œt=s�,

Gen If � ` ', then � ` 8x' provided x does not occur free in � .
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In the rest of this section I shall introduce a possible worlds semantics for a condi-
tional of this kind. The general form of this semantics has been successfully applied
to both intuitionistic and relevance logic. In both cases matters are simplified by in-
cluding an ordering � on the set of worlds; other than this fact, matters do not differ
much from standard modal logic according to which n-ary connectives are modeled
by an .nC 1/-ary accessibility relation (see Blackburn, de Rijke, and Venema [3]).

Definition 2.1 A frame for a language, L, is a quadruple hW;D;R;�i whereW
is a set, D is a set, R � W 3 is a ternary relation on W , and � is a partial order on
W such that whenever Rxyz, x � x0, y � y0, and z � z0, Rx0y0z0.

A model for L is a pair hF ; k � k�i where F is a frame. If v is an assignment, then
k�kv maps constant terms to members ofD, maps the variable x to v.x/, maps n-ary
function terms to n-ary functions on D, and maps n-ary relation terms to functions
Dn ! V , where V is the set of nonempty downwards closed subsets ofW . A set of
worlds, p, is downwards closed if and only if whenever x � y and y 2 p, x 2 p.
This last condition is called persistence; k � kv can be extended in the usual way to
complex terms.

Note that in the literature on relevance logic and the Kripke semantics for intuition-
istic logic the order � goes in the opposite direction from the way I have introduced
it here. I shall also assume thatW has a �-least element, ?W . I write vŒx�u to mean
that the assignments v and u agree everywhere except, possibly, at x. Throughout
the paper I will follow a convention of omitting reference to the variable assignment
when it is not playing a role. A model determines a relation, 
, between formulas
of L, variable assignments, and worlds as below:
� w; v 
 P t1; : : : ; P tn iff w 2 kP kv.kt1kv; : : : ; ktnkv/,
� w 
 ? iff w D ?W ,
� w 
 ' ^  iff w 
 ' and w 
  ,
� w 
 ' _  iff w 
 ' or w 
  ,
� w; v 
 8x' iff w; u 
  whenever uŒx�v,
� w; v 
 9x' iff w; u 
  for some uŒx�v,
� w 
 ' !  iff whenever Rwxy and x 
 ', y 
  .

The clauses for the extensional connectives and quantifiers should be fairly familiar.
The clause for the conditional is simply the generalization of the semantics for strict
implication, which can be seen as a special case of this semantics in which Rwxy
implies x D y.

Definition 2.2 A formula, ', is true in a model hW;D;R;�; k � k�i at an assign-
ment v if and only if for every w 2 W , w; v 
 '.

A set of formulas, � , entails a formula ' if and only if for every model M and
assignment v over M, if 
 is true in M at v for every 
 2 � , ' is true in M at v.

Various conditional logics can be obtained by placing various restrictions on the
kinds of frames we consider (see Restall [13] for a comprehensive survey). From
here on out I shall just be concerned with a particular frame which admits a model
of the full intersubstitutivity principle and the logic described above.

In what follows we shall be concerned exclusively with standard models of L.
hF ; k � ki is a standard model iff D WD N, and the arithmetical vocabularies receive
their standard arithmetical interpretation; that is, k � k maps hi; j i to i � j , and so
on for each primitive recursive function.
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We can then introduce the underlying set of worlds, W .

Definition 2.3 A function f W ! ! ¹0; 1º flatlines if and only if for some n 2 !,
f .m/ D 0 for each m > n.

We let W WD ¹f W ! ! 2 j f flatlinesº, and let f � g iff for each n 2 !;

f .n/ � g.n/. The lattice theoretic operations of meet and join, u;t, are defined as
usual: .f u g/.n/ D min.f .n/; g.n// and .f t g/.n/ D max.f .n/; g.n//.

Definition 2.4 The rank of an element f 2 W , r.f /, is the smallest n such that
f .m/ D 0 for all m � n.

Given this ranking function we define a ternary relation on W as follows.

Definition 2.5 The accessibility relation, R, is defined as follows: Rxyz if and
only if z � x� and z � y.

Here

x�.n/ WD

´
x.n/ if n < r.x/ � 1;
0 otherwise:

Note that r.z/ < r.x/ whenever z � x� and x 6D ?. Note also that wheneverRxyz,
x � x0, y � y0, and z � z0, Rx0y0z0. Therefore given a domain D, hW;D;R;�i
forms a frame by Definition 2.1.

Proposition 2.6 The axioms listed above are validated in any model based on the
frame hW;D;R;�i described.

Proof Verifying the validities is straightforward but somewhat tedious. We assume
the fact, proved in the next section, that if x 
 ' and y � x, y 
 '.

In order to see that ' ! . ! '/ holds, for example, suppose that Rxyz and
y 
 '. We want to verify that z 
 . ! '/. Suppose, therefore, that Rzuv and
u 
  . Note that since v � z�, z� � z, and z � y (by the definition of R), it
follows that v � y and so v 
 '.

The trickiest case is showing that the axiom B .' !  / ! ..� ! '/ !

.� !  // holds. It is sufficient to show that if 9u.Rxyu ^ Ruzw/, then
9u.Ryzu ^Rxuw/ (see Restall [13, Chapter 11.3]).

Suppose that Rxyu and Ruzw. So we have
1. u � x� and u � y,
2. w � u� and w � z.

Let

u0 D u� u z D n 7!

´
min.u.n/; z.n// if n < r.u/ � 1;
0 otherwise.

It is then easy to check that
a. u0 � y� and u0 � z,
b. w � x� and w � u0.

The Kripke semantics for L and L0 can be redescribed algebraically by assigning
formulas semantic values from a class of “propositions” (sets of worlds) and by de-
termining the value of a complex formula by certain operations on the values of its
parts. This presentation will be more convenient in the following sections.
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A proposition is a nonempty subset of W which is downwards closed. In other
words, p is a proposition just in case x 2 p whenever y 2 p and x � y.

Let V denote the set of propositions overW . We can define operations on propo-
sitions corresponding to logical operations:

? WD ¹?W º;

p ^ q WD p \ q;

p _ q WD p [ q;

p ! q WD ¹x j z 2 q whenever y 2 p and Rxyzº;^
X WD

\
p2X

p where X � V;_
X WD

[
p2X

p where X � V:

Proposition 2.7 Propositions are closed under the following operations.
� The union and the intersection of a set of propositions is a proposition.
� If p and q are propositions, then so is p ! q.
� ? D ¹?W º is a proposition.
� For any model, any assignment, v, and formula ' 2 L, the set ¹w j w;
v 
 'º is a proposition.

The most important case, that of the conditional, follows from the condition on R
and � stipulated in Definition 2.1. The persistence of k � k ensures that every atomic
formula corresponds to a proposition in V , and Proposition 2.7 ensures that applying
the logical operations always results in propositions. Thus for any formula, the set
¹x j x; v 
 'º is always a proposition.

3 A Fixed Point Theorem

Let us begin with some standard definitions.

Definition 3.1 A function from F W V ! V is monotonic iff F.p/ v F.q/

whenever p v q.
A function from F W V ! V is antimonotonic iff F.q/ v F.p/ whenever p v q.

Kripke’s seminal paper [11] is essentially an application of the Knaster–Tarski theo-
rem.

Theorem 3.2 Let V be a complete lattice. Then every monotonic function
F W V ! V has a fixed point.

Proof Let F 0.x/ D F.x/, F ˛C1.x/ D F.F ˛.x//, and F 
 .x/ D
F
˛ F

˛.x/ for
˛ < 
 whenever 
 is a limit ordinal.

Since V is a set and F is monotonic, F cannot grow forever so for some ˛,
F ˛C1.?/ D F ˛.?/ (and this is the least such fixed point).

I shall henceforth use the notation �xF.x/ WD
F
˛ F

˛.?/ for the least fixed point
of the monotonic function F . Kripke showed that, due to the monotonic nature of
the Kleene connectives, there is an interpretation of L n ¹!º based on the Kleene
valuation such that every formula ' formed from the connectives ¹:;^;_;?º (no
conditional), ', and Tr.p'q/ get the same value. For the liar sentence, �, this means
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that � has the same semantic value as :�; thus the negation operator has a fixed
point. Indeed, any definable operation whatsoever, '.p/, must have a fixed point if
we are to accommodate every possible sort of self-reference.

In order to validate the full intersubstitutivity principle in our model, we must
also take into account the conditional. However, it is easily seen that the conditional
defined in Section 2 is not monotonic, and is in fact antimonotonic, in its left ar-
gument. This prevents us from applying the Knaster–Tarski theorem. For example,
to find a value for the Curry sentence one must find a fixed point of the function
F.p/ WD p ! ?. However, there is no guarantee that F will have a fixed point
on the basis of the Knaster–Tarski theorem since F is antimonotonic. In order to
guarantee this, we need a more general fixed point theorem.

Let us begin with some definitions. Given a proposition, p, let
p�nWD ¹f 2 p j r.f / � nº. Since every element of p has finite rank we can
think of p�! as simply p.

Definition 3.3 Say that a function F W V ! V is accumulating iff F.p/�nC1D
F.q/�nC1 whenever p�nD q�n.
F is weakly accumulating iff F.p/�nD F.q/�n whenever p�nD q�n.

For monotonic functions F , we know that we have the following sequence of inclu-
sions ? � F.?/ � FF.?/ � FFF.?/ � � � � the limit of which is a fixed point of
F . This is not the case for accumulating functions. What we instead have is the fol-
lowing sequence of inclusions: ?�0� F.?/�1� FF.?/�2� FFF.?/�3� � � � .
It is instead the union of this sequence that provides us with our fixed point.

Theorem 3.4 Every accumulating function, F , on V has a fixed point.

Proof The fixed point will be the “limit” of a sequence of applications of F to
an initial proposition, say, P0. This is somewhat reminiscent of the Knaster–Tarski
theorem for monotonic functions:
� PnC1 WD F.Pn/,
� P! WD

S
n<! Pn�n.

We shall show that for any ordinal ! � ˇ > n, Pˇ�nD Pn�n. Since every proposi-
tion is a set of things with rank less than! it follows thatP! D P!�! D F.P!/�! D
F.P!/, that is, P! D F.P!/.

Base case: Clearly Pˇ�0D ¹?W º D P0�0.
Inductive step: Suppose that Pn�nD Pˇ �n whenever ! � ˇ > n. Then by

the fact that F is accumulating it follows that F.Pn/�nC1D F.Pˇ /�nC1, that is,
PnC1�nC1 D PˇC1�nC1 whenever ! > ˇ > n. So we have the required claim
PnC1�nC1 D Pˇ�nC1 for all the finite ordinals ˇ > nC 1. Note that if ˇ D !, then
P!�nC1 D

�S
k<! Pk

�
�nC1D

S
k<!.Pk�nC1/ D PnC1�nC1 by the above.

Theorem 3.5 Suppose that F.X; Y / W V 2 ! V is accumulating in its first ar-
gument and both monotonic and weakly accumulating in its second argument. Then
there is some Z 2 V with F.Z;Z/ D Z.

Proof We shall show that the function H.X/ D �Y:F.X; Y / is accumulating,
where �Y � F.X; Y / is the least fixed point of the monotonic function F.X; �/ de-
termined by the Knaster–Tarski fixed point theorem. Since H.X/ is a fixed point of
F.X; �/ it follows that F.X;H.X// D H.X/ for anyX . SinceH is accumulating, it



A New Conditional for Naive Truth Theory 95

will then follow by Theorem 3.4 that H has a fixed point, Z, such that H.Z/ D Z.
Thus Z D H.Z/ D F.Z;H.Z// D F.Z;Z/ as required.

Note that in general H.X/ WD
F
˛ F

˛.X; ¹?º/ where F ˛C1.X; Y / D

F.X; F ˛.X; Y // and F 
 .X; Y / D
F
˛<
 F

˛.X; Y /. Suppose that P�nD Q�n. We
shall show by induction that F ˇ .P; ¹?º/�nC1D F ˇ .Q; ¹?º/�nC1 for all ˇ, and
therefore thatH.P /�nC1D H.Q/�nC1.

Base case: Since F is accumulating in its first argument, F.P; ¹?º/�nC1D
F.Q; ¹?º/�nC1.

Successor case: Suppose F ˇ .P; ¹?º/�nC1D F ˇ .Q; ¹?º/�nC1. Then F.P;
F ˇ .P; ¹?º//�nC1D F.Q;F ˇ .Q; ¹?º/�nC1/ since F is weakly accumulating in
its right argument.

Limit case: Suppose F ˇ .P; ¹?º/�nC1D F ˇ .Q; ¹?º/�nC1 for ˇ < 
 .
Then

S
ˇ<
 F

ˇ .P; ¹?º/�nC1D
S
ˇ<
 F

ˇ .Q; ¹?º/�nC1 and thus
S
ˇ<
 F

ˇ .P;

¹?º/�nC1D
S
ˇ<
 F

ˇ .Q; ¹?º/�nC1.

In what follows we shall also want to consider the infinite product of V with itself,
V ! , as a space in its own right.

Definition 3.6 Let V ! WD ¹ Np j Np W ! ! V º. For Np; Nq 2 V ! , let Np � Nq iff
pi � qi for each i 2 !. The rank restriction operation, Np�nD Nq 2 V ! , can be
extended to V ! by letting qi D pi�n for each i .

Definition 3.7 Let ˛ be either a finite ordinal or !. We say a function
F W V ˛ ! V is accumulating (or, analogously, weakly accumulating) iff
F. Np/�nC1D F. Nq/�nC1 whenever pi�nD qi�n for each i 2 ˛.

The definitions of monotonicity and antimonotonicity generalize straightforwardly
to V ! under the above ordering. Similarly we have the following.

Definition 3.8 We say a function F W .V !/k ! V ! is accumulating (or, analo-
gously, weakly accumulating) iff F. Np0; : : : ; Npk/�nC1D F. Nq0; : : : ; Nqk/�nC1 when-
ever Npi�nD Nqi�n for each i � k.

Theorems 3.4 and 3.5 generalize to V ! .

Theorem 3.9 Every accumulating function F W V ! ! V ! has a fixed point.

Theorem 3.10 If F.X; Y / W V !�V ! ! V ! is accumulating in its first argument
and both monotonic and weakly accumulating in its second argument, then there is
some Z 2 V ! with F.Z;Z/ D Z.

The following allows us to construct accumulating functions from V ! ! V ! given
accumulating functions on V .

Proposition 3.11 Suppose that Gi W V ! ! V is an accumulating (weakly ac-
cumulating) function for each i 2 !. Then the function F W V ! ! V ! given by
F. Np/.i/ WD Gi . Np/ is accumulating (weakly accumulating).

4 A Geometrical Look at the Fixed Point Theorem

In this section we assimilate Theorem 3.4 to a more familiar fixed point theorem: the
Banach fixed point theorem for contracting functions on a complete metric space.
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Definition 4.1 Let hX; d i be a metric space. Then a sequence .xn/n2! in X is
Cauchy if and only if for every positive � 2 R, there is an N 2 ! such that for every
m; n > N , d.xn; xm/ < �.

A Cauchy sequence .xn/ has a limit if and only if there is some x 2 X such that
for every � 2 R there is some N 2 !, with d.x; xn/ < � for all n > N .

Finally, a metric space hX; d i is a complete metric space if and only if every
Cauchy sequence has a limit.

Note that V can be given the structure of a metric space if we set d.p; q/ D 2�n

where n D inf¹r.x/ j x 2 .p n q/ [ .q n p/º and d.p; q/ D 0 if p D q. Indeed,
under this metric, V is a complete metric space, where given a Cauchy sequence,
.pi /i2! , limi!1 pi WD ¹x j x is in cofinally many piº.

Definition 4.2 If hX; d i is a complete metric space, a function f W X ! X is
˛-contracting iff d.f .x/; f .y// � ˛ � d.x; y/ for every x; y 2 X .

For an n-ary function we say that f is ˛-contracting iff d.f .x1; : : : ; xn/;

f .y1; : : : ; yn// � ˛ �maxi d.xi ; yi / for xi ; yi 2 X .

Theorem 4.3 (Banach’s fixed point theorem) For each positive ˛ < 1, every
˛-contracting function on a complete metric space has a fixed point.

Corollary 4.4 Every accumulating function of V has a fixed point.

Proof It is easily verified that every accumulating function, F , is .1=2/-con-
tracting. It then follows from the Banach fixed point theorem that F has a fixed
point.

5 A Standard Model for TJKC

The purpose of this section is to obtain a standard model for the proposed naive truth
theory in the logic TJKC. In Section 2 we defined a standard model to be a model
in which the domain is N and the interpretation of the arithmetical vocabulary is
standard. In order to determine a model for L (and L0) all that is left is to provide an
interpretation for the truth predicate. We must specify a function, kTr k W N ! V .
Thus our model would be completed once one has provided a function Np W N! V ,
that is, Np 2 V ! .

Definition 5.1 Fix an assignment, v. Now given Np 2 V ! , define j'jv. Np/ (or
j'j. Np/ if no ambiguity is present) to be the set ¹w j w; v 
 ' relative to the
model Mº, where M is the standard model you would get by letting kTr k D Np.

Similarly, for a formula ' of L0 we can define a binary function j'j. Np; Nq/ whose
value is to be the set ¹w j w; v 
 ' relative to the model Mº, where M is the model
you would get by letting kTr� k D Np and kTr� k D Nq.

Thus for every formula ' 2 L, j'j W V ! ! V , and for ' 2 L0, j'j W V ! �
V ! ! V .

In order to ensure that every closed formula ' is fully intersubstitutable for Tr.p'q/
we must pick an interpretation, Np, such that for every closed ', j'j. Np/ D Np.p'q/. It
follows that for any world x 2 W , x 
 ' just in case x 
 Tr.p'q/.

In other words, we want to find a fixed point for the function F W V ! ! V !

given by F. Np/.p'q/ D j'jv. Np/ (v is some fixed assignment; it does not matter
which). We shall see that if the truth predicate only occurs positively in ', that
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is, embedded an even number of times within the left argument of a conditional,
then j'j is monotonic and weakly accumulative on V ! . So if we restricted F to its
arguments where Tr occurs positively it would have a fixed point by the Knaster–
Tarski theorem. On the other hand, if the truth predicate occurs only negatively in
', that is, appears in the scope of an odd number of conditionals in the antecedent
place, we can show that j'j is accumulative. Thus restricting F to these arguments,
F would have a fixed point by Theorem 3.4. However, the truth predicate can appear
both negatively and positively simultaneously in a formula, so these two options do
not exhaust all the possibilities. In order to obtain a fixed point we instead translate
every formula ' 2 L to a formula '0 2 L0 where every negative occurrence of Tr
in ' is replaced by the predicate Tr�, and every positive occurrence of Tr is replaced
by the predicate TrC. We then show instead that the function F 0 W V ! � V ! ! V !

given by F 0. Np; Nq/.p'0q/ D j'0j. Np; Nq/ is accumulative in its left argument and weakly
accumulative and monotonic in its right argument. F 0 thus has a fixed point, Np, with
F 0. Np; Np/ D Np by Theorem 3.5. From this it is easily seen that Np is also a fixed point
for F .

Definition 5.2 The set of atomic formulas involving the truth predicate which
occur positively and negatively in ', denoted Pos.'/ and Neg.'/, are defined as
follows:
� Pos.'/ D ¹'º and Neg.'/ D ; D Neg.?/ for each atomic sentence ' of the

form Tr.t/;
� Pos.' � / D Pos.'/[Pos. /, and Neg.' � / D Neg.'/[Neg. / where
� D ^;_;
� Pos.8x'/ D Pos.9x'/ D Pos.'/, Neg.8x'/ D Neg.9x'/ D Neg.'/;
� Pos.' !  / D Neg.'/ [ Pos. /, Neg.' !  / D Pos.'/ [ Neg. /.

Lemma 5.3 If p�nD p0�n and q�nC1D q0�nC1 , then .p ! q/�nC1D .p0 !

q0/�nC1.
Thus the function F W V 2 ! V mapping p and q to p ! q is weakly accumulat-

ing, is weakly accumulating in its right argument for a fixed p, and accumulating in
its left argument for a fixed q.

Proof Suppose, for contradiction, that p�n D p0�n, q�nC1 D q0�nC1 but
p ! q�nC1 6D p0 ! q0�nC1. Without loss of generality, let x be an element
in one of p ! q�nC1 np0 ! q0�nC1. r.x/ � nC 1. Thus we have the following.

1. For any y 2 p, if Rxyz, z 2 q.
2. There is some y0 2 p0 and some z0 with Rxy0z0 such that z0 … q0.

Let

u.n/ D

´
y0.n/ if n < r.x/ � 1;
0 otherwise:

It is easy to check that Rxy0z if and only if Rxuz for any z, so in particular, Rxuz0.
By construction u � y0, so u 2 p0. Also r.u/ < r.x/ � n C 1, so u 2 p0�n and
thus u 2 p�n since p�nD p0�n.

Now, since Rxuz0 and u 2 p, it follows by (1) that z0 2 q. However since
Rxuz0, r.z0/ < r.x/ � n C 1 and thus z0 2 q0 since q�nC1D q0�nC1. This is a
contradiction.
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Lemma 5.4 If Pos.'/ D ;, j'j. Np/ defines an accumulating antimonotonic func-
tion, and if Neg.'/ D ;, j'j. Np/ defines a weakly accumulative monotonic function.

Proof Both claims are proved simultaneously by induction. The tricky case is
in showing the claim for conditional formulas. Suppose that the claim holds for
formulas ' and  of complexity at most n.

Suppose Pos.' !  / D ;. Thus it follows that Neg.'/ D Pos. / D ;. We
need to show that j' !  j.p/ is antimonotonic and accumulating.
j' !  j.p/ is antimonotonic. Suppose Np � Nq. Since Neg.'/ D ;, then j'j.�/

is monotonic by inductive hypothesis, that is, j'j. Np/ � j'j. Nq/. Since Pos. / D ;,
then j j.�/ is antimonotonic by inductive hypothesis, that is, j j. Nq/ � j j. Np/. By
the properties of!, j'j. Nq/! j j. Nq/ � j'j. Np/! j j. Np/.
j' !  j. Np/ is accumulating. Suppose that Np�nD Nq�n. Since Neg.'/ D 0, then

j'j.�/ is weakly accumulative by inductive hypothesis, that is, j'j. Np/�nD j'j. Nq/�n.
Since Pos. / D ;, then j'j.�/ is accumulative by the inductive hypothesis, so
j j. Np/ �nC1D j j. Nq/ �nC1. Thus by Lemma 5.3, j' !  j. Np/�nC1D
j' !  j. Nq/�nC1.

Now suppose that Neg.' !  / D ;. Thus it follows that Pos.'/ D Neg. / D ;.
We need to show that j' !  j. Np/ is monotonic and weakly accumulating.
j' !  j. Np/ is monotonic. Suppose Np � Nq. By the inductive hypothesis j'j is

antimonotonic, so j'j. Nq/ � j'j. Np/. Similarly j j is monotonic, so j j. Np/ � j j. Nq/.
So j' !  j. Np/ � j' !  j. Nq/ as required.
j' !  j. Np/ is weakly accumulating. Suppose Np�nD Nq�n. Since Pos.'/ D ;,

j'j. Np/�nD j'j. Nq/�n since j'j is accumulating and thus weakly accumulating. Sim-
ilarly since Neg. / D ;, j j. Np/�nD j j. Nq/�n since j j is weakly accumulating
by the inductive hypothesis. In any case, j' !  j. Np/�nD j' !  j. Nq/�n since, by
Lemma 5.3,! as a binary function is weakly accumulating.

Theorem 5.5 TJKC C the intersubstitutivity rule has a standard model.

Proof Let v be some arbitrary assignment, and let F W V ! � V ! ! V ! be given
by F. Np; Nq/.p'q/ D j'jv. Np; Nq/. By Proposition 3.11 and Lemma 5.4, it follows
that F.�; Nq/ is accumulating for each Nq 2 V ! and F. Np; �/ is monotonic and weakly
accumulating for each Np 2 V ! . By Theorem 3.10 F. Np; Np/ D Np for some Np 2 V ! .

Our Kripke model is thus hhW;R;D;�i; k � ki where kTr k D Np, which ensures
that for closed formulas w 
 ' iff w 2 Np.p'q/ iff w 
 Tr.p'q/.

So TJKC supports a standard model. In particular, we know that all true arithmetical
identity statements hold in this model, so we know that true identities of the form
t D p'.t/q hold in this model and that the theory consisting of TJKC and all such
identities is closable under the !-rule. It should, of course, be stressed that not all of
true arithmetic need hold in such models—for example, due to the contracting nature
of the conditional, sentences like ..0 D 0! ?/! ?/ are not validated.

6 Adding an Involutive Negation Operator

In the preceding discussion we have ignored the issue of negation. The structure of
the consistency argument is clearer when negation is omitted, and a consideration of
negation is not needed for the analysis of Curry’s paradox and its relatives. How-
ever, one might justifiably wonder what happens when a negation operator is added,
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and doing so is crucial if we want to compare the current approach to other simi-
lar approaches, such as Field’s logic (see [7]). Since there are a number of choices
one could make about how to implement a negation operator I shall take a more
streamlined approach in this section where I concentrate more on possible avenues
for adding negation than fully fleshing out the details.

In the language discussed there is a natural candidate for a negation operation,
which can be defined as :' WD ' ! ?. However, while we can prove certain
desirable principles, such as the following de Morgan law .:' ^ : /$ :.' _  /
(see the principle 12 from Section 2) and ' !  ` : ! :', principles like
::p ! p and p ! ::p will not in general be valid.9

The situation is analogous in Field’s framework with negation defined from the
conditional, so Field introduces instead a primitive negation operator, :, which is not
defined in terms of the conditional. There are some natural-looking ways to extend
the above construction to deal with negation. In what follows I shall discuss one of
these.

To get the feel of the idea imagine that instead of adding a primitive negation
operator to L, we added a primitive falsity predicate, Fa.x/ (and, analogously, add
two predicates FaC and Fa� to L0), and then introduced the negation operator by
the following recursive definition:

:' 7! ? if ' is a true atomic arithmetical sentence;
:' 7! > if ' is a false atomic arithmetical sentence;

:Tr.n/ 7! Fa.n/;
:Fa.n/ 7! Tr.n/;
:.' ^  / 7! .:' _ : /;

:.' _  / 7! .:' ^ : /;

:8x' 7! 9x:';

:9x' 7! 8x:';

:.' !  / 7! ' ı : ;

:.' ı  / 7! .' ! : /:

Here I have mentioned a new connective, ı, which is intended to stand to the con-
ditional as conjunction does in the classical case. It can be added to our frame by
adding the following satisfaction clause:10

x 
 ' ı  iff for some y and z with x� � y and x � z; y 
 ' and z 
  :

It is thus clear that the defined negation operation is both involutive and satisfies the
de Morgan laws. In order to find a model for both a truth predicate and a falsity
predicate one needs a pair of interpretations h Np; Nqi 2 V � V which satisfy certain
conditions. (The condition in question is that pn; qn is a fixed point of a certain
binary function j'j.�; �/, whenever n D p'q.)

A more semantic way to view this idea would be to take our space of semantic
values to be pairs of propositions (i.e., pairs of downward closed sets) instead of
propositions as one’s basic semantic value. Given a set of pairs, U , serving as a
space of semantic values there are two orderings one could define on U , which I
shall call the information ordering and the logical ordering. Here I use the notation
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p D hpC; p�i for writing an element of U :

p �i q iff pC � qC and p� � q�;
p �l q iff pC � qC and q� � p�:

The top element in the logical ordering is thus h>;?i, whereas the most informative
element is h>;>i (assuming U contains these elements). Similarly, the least infor-
mative element is h?;?i, while the least element in the logical ordering is h?;>i
(again assuming that they are in U ). The algebra hU;�i ;�li is a bilattice in the
sense of Fitting [8].11

In order to define a logic one needs to decide which set of pairs, U , is to play
the role of semantic values, and one must decide on a set of designated values from
which a consequence relation can be defined.12 Here there are a number of options
depending on what you want to do. For now I shall merely list three:

i. Let U D ¹p 2 V � V j pC \ p� D ?º, and let the designated value be
h>;?i.

ii. Let U D V � V , and let the designated values be ¹p j p �l h>;>iº.
iii. Let U D ¹p 2 V � V j pC \ p� 6D >º, and let the designated values be
¹p j p >l h>;>iº.

I shall restrict attention to proposal (iii), and I shall henceforth use U to denote
¹p 2 V � V j pC \ p� < >º.

We may then extend the nonconditional operations to pairs as follows:

p ^ q D hpC \ qC; p� [ q�i;

p _ q D hpC [ qC; p� \ q�i;^
i2I

pi D
D\
i2I

pCi ;
[
i2I

p�i

E
;_

i2I

pi D
D[
i2I

pCi ;
\
i2I

p�i

E
;

:p D hp�; pCi:

If one defines p�n as hpC�n; p��ni, one can see that the nonconditional operations
are all weakly accumulating and monotonic in the information ordering. There is
a certain amount of choice as to how one defines the conditional. Here is a fairly
natural definition:

.p ! q/C D ¹x j z 2 qC whenever y 2 pC and Rxyzº;

.p ! q/� D ¹x j for some y 2 pC with z 2 q�; x� � y and x � zº D pC ı q�:

Note that this operation takes elements of U to elements of U .13 This operation
can be seen to be accumulating in its first argument, and weakly accumulating and
monotonic (in both orderings) in its second. Thus by an argument analogous to
that in Section 5 we can generate a standard model for the logic augmented by this
negation operation.14

Given the definition of validity according to (iii) one can ask: what additional
logical principles would we get? It is a routine matter to check that the principles
listed in Section 2 are validated. For principles specifically about negation we get
most of the axioms and rules that Field gets for his negation operation:
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1. ' ! ::',
2. ::' ! ',
3. :.' _  /! :' ^ : ,
4. :.' ^  /! :' _ : ,
5. :' _ : ! :.' ^  /,
6. :' ^ : ! :.' _  /,
7. 9x:' ! :8x',
8. :8x' ! 9x:',
9. 8x:' ! :9x',
10. :9x' ! 8x:',
11. ';: ` :.' !  /,
12. ';:' `  ,
13. ' $  ;:' $ : ` �$ �Œ'= �.

One notable absence is any form of contraposition. For example, we do not have the
principle

' !  ` : ! :':

Whether one can tinker with the definition of! to get contraposition without giving
up the other principles of TJKC bears further investigation. I shall only note that no
matter how one introduces a negation operator, we can always define a contraposable
conditional as

' )  WD .' !  / ^ .: ! :'/:

This conditional continues to satisfy the principles just listed above15 and satisfies
not just the contraposition rules, like the one listed above, but the contraposition
axioms.16

Although this is far from the final word on the matter, I think this is enough
to show that the prospects of adding an involutive negation operator to TJKC are
promising.

Notes

1. I refer the reader to the cited texts for further details on these techniques. These tech-
niques are also closely related to the construction behind the revision theory of truth (see
Gupta and Belnap [9], Herzberger [10]). The revision theory, however, does not validate
the intersubstitutivity rule. Furthermore, revision theorists take their model constructions
to not only provide a consistency proof of a particular theory of truth but to offer insight
into the diagnosis of the liar paradox; this approach should be sharply distinguished from
the approach here.

2. To do this one would presumably want to have the principle 8x.' !  / !

.9x' ! 9x /, which is not validated in Field’s construction, although it is provable
from the above axioms given uncontroversial principles about quantification. In Field’s
model, if 
 D Tr.p
q/ ! ? is the Curry sentence, then ..
 ! ?/ ^ .:
 ! ?// !
.
 _ :
 ! ?/ is an untrue instance of 6. Since universal and existential quantification
are treated analogously in Field’s model one can also construct failures of 8. (Similarly
5 and 7 fail—for example, ..> ! 
/ ^ .> ! :
// ! .> ! .
 ^ :
// is an untrue
instance of 5.)

3. Tore Fjetland Øgaard has since shown me that it is not possible to combine 10 with
principles 1, 4, and ? ! '.
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4. I am indebted to Cian Dorr here for a useful discussion of this fact.

5. Note that ' ! .' � '/ by RQ2 and ' ! '. Now consider the Curry sentence,

 $ .
 ! ?/. We have .
 � 
/ ! ? by RQ1 and 
 ! .
 � 
/, so by transitiv-
ity we have 
 ! ?, and thus 
 and finally ? by modus ponens.

6. The predicates TrC and Tr� are needed for a technical reason that will become apparent
later in the proof.

7. In [6] Brady mentions a result of Meyer and Slaney to the effect that in the presence of a
fusion connective ı, satisfying .' ı ! �/ a` .' ! . ! �//, principle 6 entails the
fusion form of contraction: ' ı  ! ' ı .' ı  /. It follows that a fusion connective of
this sort cannot be consistently added to a naive truth theory in TJKC (see [6, Sec-
tion 6.2] for the details).

8. The closest logic to TJKC which supports a naive true predicate is Brady’s TJdQ (see
[6]). However his consistency proof does not validate the principle K, and as far as I can
see, it is not possible to prove that K can be added to anything as strong as TJdQ using
Brady’s methods.

9. It should be noted that in both Field’s logic and mine, negation defined from the con-
ditional in this way would not even satisfy the rule version of negation elimination:
::' ` '. However in Field’s logic the rule of double negation introduction holds:
' ` ::'. (Thanks to Tore Fjetland Øgaard for pointing this out to me.)

10. It can be verified that this connective is accumulating and monotonic.

11. Bilattices are the natural general setting for transparent logics of truth generated using
Kripke-style least fixed point constructions.

12. One might also want to posit a set of antidesignated values, such that the argument must
not only preserve designated values from premise to conclusion but must also preserve
antidesignated values from conclusion to premise. This is a natural requirement if one
wants to ensure that the entailment relation is always contraposable.

13. Suppose, for contradiction, that .p ! q/C \ .p ! q/� D >. So pC ı q� D >, so
pC D >, and thus pC D q� D >. But since pC; .p ! q/C D > it follows that
qC D >. This contradicts the fact that q 2 U , since qC \ q� D >.

14. In this variant of the argument we separate occurrences of Tr in ' by a slightly different
rule: if whenever Tr occurs in ' it is in the scope of at least one antecedent argument
of a conditional, then j'j is accumulative. If Tr never occurs in antecedent place, then
j'j is monotonic in the information ordering. We can then translate each formula to an
appropriate L0 formula as before and apply the analogue of Theorem 3.5.

15. As well as many of the principles in Section 2.

16. Since writing this paper Tore Fjetland Øgaard has demonstrated to me in a personal
communication that one cannot add contraposition and :.> ! ?/ (which follows from
rule 11 above) to TJKC with a Curry sentence 
 $ .
 ! ?/.
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