
Notre Dame Journal of Formal Logic
Volume 53, Number 4, 2012

Minimally Congruential Contexts: Observations and
Questions on Embedding E in K

Lloyd Humberstone

Abstract Recently, an improvement in respect of simplicity was found by
Rohan French over extant translations faithfully embedding the smallest con-
gruential modal logic (E) in the smallest normal modal logic (K). After some
preliminaries, we explore the possibility of further simplifying the translation,
with various negative findings (but no positive solution). This line of inquiry
leads, via a consideration of one candidate simpler translation whose status was
left open earlier, to isolating the concept of a minimally congruential context.
This amounts, roughly speaking, to a context exhibiting no logical properties
beyond those following from its being congruential (i.e., from its yielding prov-
ably equivalent results when provably equivalent formulas are inserted into the
context). On investigation, it turns out that a context inducing a translation
embedding E faithfully in K need not be minimally congruential in K. Several
related minimality conditions are noted in passing, some of them of consider-
able interest in their own right (in particular, minimal normality). The paper
is exploratory, raising more questions than it settles; it ends with a list of open
problems.

1 Background and Terminology

In nomenclature and terminology derived from Chellas [2] and Segerberg [14], E,
EM, and K (or more explicitly EMCN) are respectively the smallest congruential,
monotone, and normal monomodal logics; the terminology here (congruential, etc.)
is also spelled out at the end of this section. We are concerned here with faithful
embeddings of one modal logic S1 (the source of the embedding), in another, S2

(the target), via a translation, � , mapping formulas to formulas and satisfying the
condition that for all formulas A,

A 2 S1 if and only if �.A/ 2 S2: (1.1)
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The adjective faithful alludes to the “if ” direction of (1.1); from now on, we take
this as understood whenever embeddings are under discussion and make it explicit
only for occasional emphasis. In future, rather than writing such things as A 2 S1

we write `S1
A and describe A in this case as S1-provable. More specifically, we

consider only such � as satisfy the further conditions

(i) that � maps each propositional variable or sentence letter1 to itself and
(ii) that for every primitive Boolean connective # of arity k the requirement that

�.#.A1; : : : ; Ak// D #.�.A1/; : : : ; �.Ak// for all formulas A1; : : : ; Ak , and
that for some formula C.p/ in which at most the propositional variable p
occurs, �.�A/ D C.�.A//, the latter being the result of substituting �.A/
uniformly for p in C.p/.2 In this case we call � the translation induced by the
context C.p/.

Gasquet and Herzig [6] (developing ideas from their earlier work in [5]) note
that a � along these lines, with C.p/ D Þ�p, the latter abbreviating the formula
:�:�p, embedsEM in K, correcting—without actually mentioning—an erroneous
claim in Brown [1] to the effect that this translation embedded E in K. (Because
only faithful translational embeddings are at issue and E ¨ EM, these claims are
not consistent. The error in [1] is noted in French [3]. In [4, Theorem 6.1.15],
French shows that the translation induced by the context C.p/ D Xp embeds EM
in K, where X is any “mixed” affirmative modality: that is, X D O1O2 � � �Ok with
each Oi being � or Þ, and each of �, Þ, appearing at least once in the sequence
O1O2 � � �Ok .) This leaves open the question of whether a translation of the present
kind can be found which embedsE in K. In [6], Gasquet and Herzig prove that there is
a simple embedding of E into the smallest normal trimodal logic—variously known
as K3, K3, among other things—namely, by setting

�.�A/ D Þ1

�
�2�.A/ ^�3:�.A/

�
;

and they remark that we change the target of the embedding from trimodal K to
bimodal K by putting �1 for the occurrence of �3 here.3 The question of whether
we can improve this and embed E in monomodal K itself was answered affirmatively
in French [3], where � is defined for�-formulas by

�.�A/ D Þ
�
Þ.��.A/ ^��Þ>/ ^Þ.Þ.�:�.A/ ^�Þ>/ ^ÞÞ�?/

�
:

French writes�0A for the formulaÞ.Þ.�A^��Þ>/^Þ.Þ.�:A^�Þ>/^
ÞÞ�?//; thus the current translation � is that induced by the context C.p/ D �0p.
Evidently this � produces formulas of considerable complexity, and although, as
French notes, it is simpler than other candidates in—or derivable on the basis of—
the published literature, one wonders if something still simpler may be possible. Two
measures are of interest in connection with the extent to which a translation modally
complicates what it translates: themodal degree ofA, by which is meant the maximal
depth of embedding of� in A, and the modal complexity of A, meaning the number
of occurrences of � in A (taking Þ as :�:). Abbreviating these to md.A/ and
mc.A/, respectively, we have the following table relating md.A) and md.�.A// for
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French’s � (called ��0 in [3]):
md.A/ md

�
�.A/

�
0 0
1 5
2 9
3 13
4 17
:::

:::

The early discontinuity in the right-hand column—a jump of 5 rather than the even-
tually steady increase of 4 in the modal degree of the translation—is occasioned by
the fact that at this stage the modal degree of the “marker” subformulas involving
Þ> and �?4 is not yet swamped by the recursive effect of � . A similar table for
mc.A/ cannot be provided since mc.�.A// is not fixed, given mc.A/; for example,
�p ^�q and��p are both of modal complexity 2, while their � -translations have
complexity 28 and 42, respectively. But we can register the complicating effect of
� in this respect by comparing the result of adding an initial � to the formula to be
translated, and note that if mc.�.A// D n, then mc.�.�A// D 2nC 14.5

In Section 2, we will explore some possibilities for simplifying the translation
in these (md and mc) respects (especially the latter, by getting rid of the “marker”
formulas), while retaining the status of the simplified version as an embedding of
E in K. French’s own translation itself represents a simplification (as the title of [3]
suggests) of another translation embedding E in K that he derives in [3, Section 2]
by combining a translation from Gasquet and Herzig which embeds E in the smallest
normal bimodal logic—that induced by the context Þ1.�1p ^ �2:p/

6—with a
translation embedding normal bimodal logics into monomodal K. This goes back to
work by S. K. Thomason via Kracht and Wolter [10] and other papers by the latter
authors listed in the bibliography of [3] (to which we may add the further reference:
Kracht [9, Section 4]). The upshot is a translation which maps �p to a formula of
modal complexity 17 and modal degree 5 (see the end of [3, Section 2]).7

We close this section with the promised terminological explanations. First we re-
view some established terminology, itself most conveniently expounded with the aid
of an abbreviative device that reduces the clutter of Boolean connectives somewhat:
we write A1; : : : ; Am `S B1; : : : ; Bn to indicate the provability in S of the impli-
cation with the conjunction of the Ai as antecedent and the disjunction of the Bj ,
identifying that conjunction with > when m D 0 (which then amounts to the prov-
ability of the disjunction of the Bj ) and identifying that disjunction with ? when
n D 0. We further abbreviate “A `S B and B `S A” to A a`S B . Given the
restriction to translations � satisfying the conditions set down above, since the only
point at which � differs from the identity map is on formulas of the form �A, the
condition (1.1) above as to what it takes for such a translation to embed S1 (faithfully)
in S2 can be formulated equivalently in the following terms:

A1; : : : ; Am `S1
B1; : : : ; Bn , �.A1/; : : : ; �.Am/ `S2

�.B1/; : : : ; �.Bn/: (1.2)

The (standard) terminology of the opening paragraph above can now be explained
as follows. A 1-ary context C D C.p/—not necessarily simple (in the sense of
note 2)—is congruential in S if A a`S B implies C.A/ a`S C.B/ (for all A;B),8
ismonotone in S ifA `S B impliesC.A/ `S C.B/ (for allA;B), and is normal in S
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if A1; : : : ; Am `S B implies C.A1/; : : : ; C.Am/ `S C.B/ (for all A1; : : : ; Am; B).
The a 1-ary connective # is congruential, monotone, or normal, respectively, in S
if the context C.p/ D #p is congruential, monotone, or normal in S, and if S
is a monomodal logic, then S is congruential, monotone, or normal, respectively,
according as � is congruential, monotone, or normal in S. In Section 3 we will
introduce the idea of a context’s being “minimally” congruential (monotone, normal)
in S; this elaboration of the terminology is not needed for the discussion in Section 2,
which, however, ends with an example motivating its introduction in Section 3 (see
Example 3.5 there).

2 Gasquet–Herzig Translations

Inspired by [6], but concentrating on the monomodal case, let us define a translation
� to be a Gasquet–Herzig translation if there are affirmative modalities X , Y for
which � is the translation induced by the context C.p/ D Þ.Xp ^ Y:p/. Since
C.p/ uniquely determines (and is determined by) � , we will say that C.p/ succeeds
in embedding (or fails to embed) E in K, if � embeds (or does not embed) E faithfully
in K. We sometimes just say that C.p/, or � , succeeds or fails, omitting the explicit
reference to E and K.

Note that since� andÞ have the same logical properties in E—namely, precisely
such properties as follow from congruentiality—Þ.Xp ^ Y:p/ succeeds just in the
case of the dual formula �.eXp _ eY:p/, in which eX is the dual of the modality X
(i.e., the result of replacing all Þ’s with �’s in X , and vice versa) and likewise with
Y , eY . But we continue to work with Gasquet–Herzig formulas of the original form,
as they are more perspicuously connected with the transformation of neighborhood
models into Kripke models underlying the other embeddings mentioned in Section 1
(see [1], [3], [6]). A few words are in order on the general shape of such formulas.
We can think of the Y:p conjunct as intended to prevent the context C.p/ from
being monotone, needed because � is not monotone in E, and the first “positive”
conjunct Xp as needed because we do not want C.p/ to be antitone either.9 The
outer Þ is needed because in its absence we have the conjunction of a monotone
and an antitone context, all of which enjoy the following convexity property in K,
expressed using “rule notation,” which means that S has the property that whenever
what is above the horizontal line holds for `D`S, then so does what is below the
line; the context C.p/ is replaced here byOp, thinking ofO as a primitive or derived
1-ary connective

A ` B B ` C

OA;OC ` OB
:

Now � does not satisfy this condition in E, as one sees from, for example, the fact
that �.p ^ .q ^ r//;�r °E �.q ^ r/. (Note incidentally that the disjunction of a
monotone with an antitone operator yields the dual “coconvexity” rule

A ` B B ` C

OB ` OA;OC
;

which is equally unwanted for� as O , when ` is taken as `E.)
With these motivating generalities out of the way we proceed to consider some

specific Gasquet–Herzig formulas Þ.Xp ^ Y:p/ which may, because of more or
less obviously infelicitous choices of X and Y , still turn out to fail to embed E in K.
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A simple example of failure along these lines is mentioned in [3]: Þ.�p ^�:p/,
concerning which French remarks that it fails to embed E in K because the trans-
lation of �p $ �:p is now K-provable, although that formula itself is not E-
provable (not even being K-provable). This candidate C.p/ is even in worse shape;
in fact, C.p/ is “essentially nullary” in the sense that for all A, B , C.A/ is K-
provably equivalent to C.B/ (each being equivalent to Þ�?). (Many a respectable
modal notion, represented by a 1-ary operator O , does enjoy the behavior in ques-
tion here,Op $ O:p provable in K, without being essentially nullary: contingency
and noncontingency being prominent examples, taking Op in the former case to be
Þp ^ Þ:p, and its negation in the latter.) But the problem with Þ.�p ^ �:p/
highlighted by French’s discussion is more general, since it obviously arises for any
Gasquet–Herzig formulaÞ.Xp^Y:p/ in whichX D Y . No such formula can suc-
ceed in embedding E in K, for the reason given by French. Similarly, we may add,
there is no successful Gasquet–Herzig formula Þ.Xp ^ Y:p/ in which Y D eX ,
since faithfulness here would require `E :�p, as `K :Þ.Xp ^ Y:p/ in this case.
Aside from the generalization already mentioned of the failingÞ.�p^�:p/, with
� replaced by an arbitrary modality, we can generalize in a different direction, show-
ing that for a successful Gasquet–Herzig formula Þ.Xp ^ Y:p/, neither X nor Y
can be just plain�. (Thus, in particular, a “minimal mutilation,”Þ.�p ^��:p/,
of French’s example,Þ.�p ^�:p/, is also seen to fail.)

In the proof of Proposition 2.1 and elsewhere below, we make use of the following
convention. When a particular translation � is under discussion, we write A 7! B

to mean that �.A/ D B , or even that �.A/ D B 0, for some B 0 truth-functionally
equivalent to B (e.g., having > in place of :?).

Proposition 2.1

(i) For no Y doesÞ.�p ^ Y:p/ succeed in embedding E in K.
(ii) For no X doesÞ.Xp ^�:p/ succeed in embedding E in K.

Proof We do the proof for (i), the case of (ii) being essentially similar. Suppose
that Þ.�p ^ Y:p/ is successful (in embedding E in K). Three subcases arise ac-
cording as the leftmost modal operator in Y is � or Þ or nonexistent (because Y is
the null modality). Take the first possibility first. Write Y as �Y0 for the current
case. Note that

�> 7! Þ.�>^�Y0?/ while �? 7! Þ.�?^�Y0>/:

Noting that the target formulas here are K-equivalent, respectively, to
Þ�Y0? and Þ�?;

we see that the second provably implies the first in K. Since this is not so for the
corresponding source formulas �? and �>, the formula Þ.�p ^ Y:p/ fails to
embed E in K when Y has the form �Y0. We turn to the second case, in which Y
has the form ÞY0. Note that here we have �? 7! Þ.�? ^ ÞY0>/. As with any
formula of the form�? ^ ÞA, the negation of�? ^ ÞY0>, and therefore also the
negation of the result of prefixing aÞ to it, is K-provable. But°E :�?, so again the
translation fails. Finally, if Y is the null modality, we have �> 7! �> ^ ?, giving
something whose negation is K-provable, conflicting with the fact that °E :�>.

The particular proof given here yields the following generalization.
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Corollary 2.2

(i) For no Y does Þ.�Þnp ^ Y:p/ succeed in embedding E in K, for any
n � 0.

(ii) For no X does Þ.Xp ^ �Þn :p/ succeed in embedding E in K, for any
n � 0.

Proof Again we work part (i). With the new translation, for arbitrary n, we have,
for Y with initial�:

�> 7! Þ.�Þn
>^�Y0?/ and �? 7! Þ.�Þn

?^�Y0>/:

Since �Þn? is K-equivalent to �?, the second target formula simplifies again to
Þ�?. This time the first target formula does not permit a similar simplification,
but since Þ�? K-implies Þ.�A ^ �B/, for any A and B it still implies the first
target formula, so the translation fails since �? does not E-imply �>. For the case
of Y D ÞY0, we have �? 7! Þ.�Þn? ^ ÞY0>/, and the already-noted K-
equivalence of �Þn? with �? returns us to the corresponding point in the second
case treated in the proof of Proposition 2.1. Finally, there is also the case of Y as the
null modality, which again is treated along the lines of the corresponding case at the
end of that proof.

Let us now calculate the minimal lengths for X , Y in a successful Gasquet–Herzig
formula Þ.Xp ^ Y:p/. Neither of these can be zero, since substituting ? for p
when X is the null modality, and substituting > for p when Y is null (as at the end
of the proof of Proposition 2.1), gives us a K-refutable formula, whereas the formulas
whose translations these would be (resp.,�? and�>) are not E-refutable. Nor can
either X or Y be of length 1, since Proposition 2.1 rules out the possibility that X or
Y is�, and we can exclude the possibility that either of them isÞ by the substitutions
already cited. More explicitly, if we suppose that X D Þ, then substituting ? for
p makes the translation of �?, namely, Þ.Þ? ^ Y:?/, K-refutable because of
the first inner conjunct, while if we suppose that Y D Þ, then substituting > for p
makes the translation of �> be Þ.Þ> ^Þ?/, which is K-refutable because of the
second inner conjunct. Thus the lengths of X and Y must be at least 2. Can they
both be precisely 2?

Of the four affirmative modalities of length 2, namely, ÞÞ, �Þ, Þ�, and ��,
we can rule out the first as an option for eitherX or Y because the argument just given
against taking either X or Y as Þ works equally well against ÞÞ.10 And neither X
nor Y can be �Þ, by Corollary 2.2. Nor can X and Y be the same, so this leaves
only two possible cases:

(1) X isÞ� and Y is��, and
(2) X is�� and Y isÞ�.
But a consideration of pure formulas again rules out each of these possibilities.

On option (1) we have

�> 7! Þ.Þ�>^��?/ while �? 7! Þ.Þ�?^��>/;

and the target formulas here simplify in K, respectively, to

Þ.Þ>^��?/ and ÞÞ�?:

But the first of these provably implies the second in K, so we have an unwanted
formula showing up in the target of the embedding, namely, the translation of the
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E-unprovable �> ! �?. Similar reasoning in the case of option (2) shows that
here we have the equally unwanted converse of that implication with a K-provable
translation. Summarizing these findings, we have the following proposition.

Proposition 2.3 For a Gasquet–Herzig formula Þ.Xp ^ Y:p/ to succeed in
embedding E in K the length of each of X , Y must be at least 2, and the length of at
least one of them must be at least 3.

Thus the simplest possible successful Gasquet–Herzig formula, compatibly with
what has been shown thus far, will be one in which one of X , Y is of length 2
and the other of length 3. A candidate is presented in Example 2.5, whose success or
failure for inducing a translation embedding E in K is unclear, though it will figure
again in the discussion in Section 3. First we begin here with a very similar—but
more evidently unsuccessful—example, minimally satisfying the length constraints
of Proposition 2.3 (as well as Corollary 2.2).

Example 2.4 Consider the Gasquet–Herzig formula with X D Þ�, Y D Þ��.
For the induced translation we have

�> 7! Þ.Þ�>^Þ��?/ and �? 7! Þ.Þ�?^Þ��>/;
with the target formulas simplifying to ÞÞ��? and ÞÞ�?, respectively. Since
the second of these provably implies the first in K, we get the translation of the E-
unprovable�? ! �> provable in K, and the translation fails.

The next example is of a slight variation on that just given; as already mentioned,
its status as inducing a successful Gasquet–Herzig translation is not known (to the
author). It will reappear in a related setting in Example 3.5.

Example 2.5 If we tweak the Gasquet–Herzig formula of Example 2.4 by re-
taining X as Þ� but changing the central � of its Y to Þ, so that the new
Y is ÞÞ�, we obtain a context inducing a translation � for which �.�A/ is
Þ.Þ��.A/ ^ ÞÞ�:�.A//. If this translation does indeed embed E in K, then
it can be regarded as simplifying that of [3] by discarding the >- and ?-involving
“marker” subformulas. It results in a steady increase in modal degree of 4 (the
entries for the right-hand column of an md-table like that given for French’s trans-
lation in Section 1 running: 0; 4; 8; 12; : : :), and for modal complexity we have
mc.�.A// D 2nC 6, where mc.A/ D n.

3 Minimal Congruentiality and Related Concepts

Each of the conditions of congruentiality, monotony, and normality from the end
of Section 1, and many other conditions in the same vein, says that certain basic
logical relations—this terminology to be clarified in the following paragraph—hold
among formulas �Di whenever certain (not necessarily basic) logical relations
hold among Di . In the case of the monotone condition, for instance, what is
required for this to be satisfied by the context C.p/ in S is that whenever the
binary relation “S-provably implies” holds between A and B , this same relation
holds between C.A/ and C.B/, while the antitone condition (see note 9) says
instead that the converse of this relation holds these formulas. Sticking with
this example to illustrate the minimality theme, but specializing C.p/ to �p for
convenience, we are interested in spelling out the idea that for any k the only
conditions under which a k-ary logical relation holds �-formulas �D1; : : : ;�Dk
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(in S) are those consequential on �’s being monotone; that is, for any m; n, for
which k D m C n and ¹D1; : : : ;Dkº D ¹A1; : : : ; Am; B1; : : : ; Bnº, whenever
�A1; : : : ;�Am `S �B1; : : : ;�Bn, we have Ai ` Bj for some i; j . So the
only logical relations holding among �-formulas are those which do so by virtue
of the monotone condition. This we will express by saying that � is “minimally
monotone” in S, in the precise definition of this and kindred notions below. Note,
apropos of the phrase “consequential on �’s being monotone” just used, that we
cannot simply look at the monotone condition and reverse it by saying that when-
ever �A1; : : : ;�Am `S �B1; : : : ;�Bn, we have m D n D 1 and A1 `S B1,
since any `S can be weakened by the addition of arbitrary formulas, including
arbitrary �-formulas, on the left and right. Similarly, in the case of something like
the convexity condition from Section 1, we cannot simply say, for the associated
minimality condition, that whenever �A1; : : : ;�Am `S �B1; : : : ;�Bn, we have
m D 2, n D 1 (so we are dealing with A1; A2 `S B), and either A1 `S B and
B `S A2, or else A2 `S B and B `S A1. Rather, we must say that whenever
�A1; : : : ;�Am `S �B1; : : : ;�Bn, there are Ai , Aj , and Bk for which Ai `S Bk

and Bk `S Aj .
Here, adapting Lemmon [11, pp. 69–71], we think of a particular n-ary logical

relation as given by a set of `-statements involving n schematic letters for formulas;
for example, the binary relation of (logical) equivalence is represented by the set
¹D1 ` D2ID2 ` D1º, the binary relation of subcontrariety by ¹¿ ` D1;D2º, the
ternary relation of generalized equivalence (see McKee [13]) by

¹D1;D2 ` D3ID2;D3 ` D2ID2;D3 ` D1º;

and so on, where semicolons separate `-statements, to avoid confusion with the
statement-internal use of commas to separate formulas.11 When only one such
schematic `-statement is involved, we speak of a basic logical relation. (Thus if
we identify the relation with the `-statement rather than the latter’s unit set, logical
relations in general are sets of basic logical relations.)12 In this terminology we
can be more precise about the minimality conditions: the rule-like conditions of
congruentiality, monotony, and normality, all say that a certain basic logical relation
holds among�-formulas whenever a set of basic logical relations holds among their
immediate subformulas (to get “basic” to apply in the case of congruentiality, see
note 8). The associated minimality conditions require that it is only when such a set
of logical relations holds (among the subformulas) that the basic logical relation in
question holds (among the�-formulas).

These considerations lead, in particular, to the following minimality conditions
associated with congruentiality, monotony, and normality for a context C , as defined
at the end of Section 1 (relative to S):
C.A1/; : : : ; C.Am/ `S C.B1/; : : : ; C.Bn/ implies Ai a`S Bj for some i; j

(1 � i � m, 1 � j � n) (for congruentiality);
C.A1/; : : : ; C.Am/ `S C.B1/; : : : ; C.Bn/ implies Ai `S Bj for some i; j

(1 � i � m, 1 � j � n) (for monotony);
C.A1/; : : : ; C.Am/ `S C.B1/; : : : ; C.Bn/ implies A1; : : : ; Am `S Bj for some

j (1 � j � n) (for normality).
A context C is minimally congruential (minimally monotone, minimally normal)

in S if C is congruential (resp., monotone, normal) in S and also satisfies the as-
sociated minimality condition listed above. When the context C.p/ is �p, we say
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that � is minimally congruential, and so on, in S, and likewise with other primitive
or derived 1-ary connectives. Note that in the case of normal S we may equiva-
lently just impose the m D 1 cases of the minimality condition, since we can put
�.A1 ^ � � � ^Am/ (D �> for m D 0/ in place of�A1 ^ � � � ^�Am. As equivalent
characterizations we have the following:
� is
(i) minimally congruential in S,
(ii) minimally monotone in S,
(iii) minimally normal in S,

respectively, according as for all A1; : : : ; Am, B1; : : : ; Bn, we have
(i) �A1; : : : ;�Am `S �B1; : : : ;�Bn if and only if Ai a`S Bj for some i; j

(1 � i � m, 1 � j � n);13
(ii) �A1; : : : ;�Am `S �B1; : : : ;�Bn if and only if Ai `S Bj for some i; j

(1 � i � m, 1 � j � n);
(iii) �A1; : : : ;�Am `S �B1; : : : ;�Bn if and only if A1; : : : ; Am `S Bj for

some j (1 � j � n).
In all cases, we allow m and n to take on the value zero. Although for strategic

purposes our main concern is with minimal congruentiality, minimal normality is of
considerable interest in its own right, and we include some remarks on the subject
here. Note that the minimality condition associated with normality—the “only if ”
direction of (c) here—could equivalently be written as follows, using the notation
�� for ¹�AjA 2 �º (in accordance with which convention,�� D ¿ when � D ¿,
and similarly with �, these corresponding to the m; n D 0 cases above):

If�� `S ��; then for some B 2 �, we have � `S B: (3.1)

If� is assumed normal in S, then, as noted above (in terms of insisting thatm D 1),
we can formulate this with � a singleton:

If�A `S ��; then for some B 2 �, we have A `S B: (3.2)

A Þ-formulation is also available for the minimality condition associated with nor-
mality (for S presumed normal):

If ÞA1; : : : ;ÞAm `S ÞB; then for some Ai , we have Ai `S B: (3.3)

Similarly, the minimality condition for congruentiality (with � taken as primitive
and assumed congruential) can be given an obviousÞ-formulation:

If ÞA1; : : : ;ÞAm `S ÞB1; : : : ;ÞBn; then Ai a`S Bj for some i; j: (3.4)

The minimality condition for normality is described in Humberstone and
Williamson [7, p. 40], though not in those terms but rather as a generalized
cancellation rule (where cancellation takes us from�A a` �B to A a` B14) since
it subsumes the “rule of disjunction” (the n-ary such rule, for each n 2 !); we might
equally describe it as a conditional version of the rule of disjunction in view of the
formulations (3.1) and (3.2), the conditional element coming in with what is on the
left of the `. For bibliographical and other information on the rule of disjunction, as
well as for related conditions, consult Williamson [15].

Note that the “for some B 2 �” part of (3.1) means that for � to be minimally
normal in S—or indeed to be minimally congruential or minimally monotone in
S—we can never have � empty when �� `S ��: no set of �-formulas can be
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S-inconsistent. (This is a respect in which the minimality condition associated with
normality goes beyond the combination of the rule of cancellation and the rule of
disjunction.) Thus in no extension of KD is � minimally normal (since we have
�A;�:A `KD ¿). Nor can � be minimally normal in any consistent extension of
what in the nomenclature of Chellas [2] is called KDc—axiomatically, the normal
extension of K by ÞA ! �A—since if S extends KDc , then `S �p;�:p, so by
the “rule of disjunction” (m D 0, n � 1) aspects of minimal normality we should
have to have either `S p or `S :p, and S is then inconsistent. Further, from this we
see that � is not minimally normal in any consistent S-extension of K4, since from
the fact that �p `S ��p the “rule of cancellation” aspect of minimal normality
(see note 14), this would give p `S �p, and S accordingly extends KDc .

The following is implicit in the discussion of [7, p. 40]; the proofs of (i) and the
“if ” half of (ii) are simple, so we show just the “only if ” half of (ii). We denote
by R.w/ the set ¹z 2 W j wRzº (understood relative to a model hW;R; V i with
w 2 W ).

Theorem 3.1

(i) � is minimally normal in K.
(ii) Let S be any consistent normal modal logic with MS D hWS; RS; VSi as its

canonical model. Then� is minimally normal in S if and only if MS satisfies
the condition that for all finite Y � WS there exists x 2 WS with RS.x/ D Y .

Proof For the “only if ” half of (ii), suppose that � is minimally normal in (con-
sistent normal) S. Given finite Y � WS we get the promised x as any maximally
S-consistent superset of°

ÞB
ˇ̌̌
B 2

[
Y
±
[

°
�:A

ˇ̌̌
A …

[
Y
±
:

The first term of this union gives Y � R.x/ and would do so even in the case of Y
infinite, while the second term givesR.x/ � Y , and here the fact that Y is finite is es-
sential: for Y D ¹y1; : : : ; ynº (with yi ¤ yj when i ¤ j ), we show that R.x/ � Y
contrapositively, by showing that if y … Y , then not Rxy. Suppose accordingly that
y … Y , which means that y ¤ y1 and . . . and y ¤ yn. Thus we may choose formulas
D1; : : : ;Dn such that D1 … y1, D1 2 y, D2 … y2, D2 2 y; : : : ;Dn … yn, Dn 2 y.
SoD1 ^ � � � ^Dn 2 y whileD1 ^ � � � ^Dn …

S
Y . That puts�:.D1 ^ � � � ^Dn/

into x, showing that not Rxy (sinceD1 ^ � � � ^Dn 2 y).
So it remains only to check that this set (the above union) is itself S-consistent. If

it is not, we have

�:A1; : : : ;�:Am `S �:B1; : : : ;�:Bn

for some A1; : : : ; Am; B1; : : : ; Bn. By the minimality condition (for normality), for
some j (1 � j � n), :A1; : : : ;:Am `S :Bj . Since Bj belongs to some y 2 Y ,
we are in trouble, as each of :A1; : : : ;:Am is in every element of Y , and therefore
in y, placing :Bj in y too.

Here we see the semantic aspects of some syntactically formulated observations
above, such as that to the effect that � is not minimally normal in any extension
of KD or, alternatively put, that no set of �-formulas is S-inconsistent when � is
minimally normal in S. In Theorem 3.1(ii) this emerges in the fact that for such S, as
¿ is a finite set, we need x 2 WS with RS.x/ D ¿. Cancellation is another special
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case, in which the relevant finite sets are the unit sets of the points in the model, this
being the predecessor condition of [7, p. 37]. There is an interesting contrast with
the case of the (also subsumed) rule of disjunction, touched on at [7, p. 40], where it
is remarked that satisfying this rule, that is, the n-ary rule of disjunction for all n, is
necessary and sufficient for the canonical frame to satisfy: for all finite Y � WS there
exists x 2 WS with RS.x/ � Y . (Here � replaces D in the above condition.) The
“finite” can be dropped in the rule of disjunction case, exploiting the finitary nature
of the property of being an S-inconsistent set, and any (even uncountable) Y � WS
has a common RS-predecessor. But in the present case, with an x 2 WS such that
RS.x/ D Y for any given finite Y , the reference to finiteness remains essential.
Without it we have a condition that, by Cantor’s theorem, no frame could satisfy,
since it would require there to be at least as many points in the frame as there are
subsets, any distinct Y and Y 0 giving distinct x and x0 with R.x/ D Y , R.x0/ D Y 0.
For the same reason, no frame hW;Ri withW finite can satisfy the condition that for
every (of necessity, finite) Y � W , we have x 2 W with R.x/ D Y .

The condition that every finite subset (of the universe of the canonical frame for
S) has to have an “exact” common predecessor throws some light on the difficulty of
finding a normal modal logic properly extending K in which� is minimally normal,
because it is difficult—and may turn out to be impossible—to force the canonical
frame for a proper consistent extension of K to satisfy this condition, which is in
tension with many (and perhaps all) similarly canonically “enforceable” conditions.
To give just one example: we considered 4 above syntactically, with its making for a
failure of cancellation (and hence minimal normality) for 4; from a semantic point of
view, as soon as we have RSyz with y ¤ z, the existence of x with RS.x/ D ¹yº is
inconsistent with transitivity, since we cannot have RSxz. Similarly the observation,
made above, that � is minimally normal in no extension S of KD reflects the fact
that ¿, being a finite subset, demands an x 2 WS with RS.x/ D ¿.

The role, specifically, of the canonical frame for S is worth emphasizing here. It
is not sufficient for �’s being minimally normal in (a normal modal logic) S that S
should be determined by some frame satisfying the “exact predecessor for finite sets”
condition.

Example 3.2 A simple counterexample arises with the frame FHF D hWHF; RHFi

withWHF the set of all hereditarily finite pure sets andRHFxy just in case y 2 x. The
exact common predecessor condition is satisfied, since for any y1; : : : ; yn 2 WHF we
have x 2 WHF with x standing in the relation RHF to precisely y1; : : : ; yn, by taking
x as ¹y1; : : : ; ynº itself (RHF.x/ D x, for all x 2 WHF). Since there is only one
x 2 WHF with RHF.x/ D ¿ (namely, x D ¿), where SHF is the logic determined by
FHF, we have `SHF �.�? ! p/;�.�? ! :p/. But since °SHF �? ! p and
°SHF �? ! :p,� is not minimally normal in SHF.15

Example 3.2 concerns the “rule of disjunction” aspect of minimal normality, so pre-
sumably the point about the significance of the canonical frame is known for this
case. For example, S4.3 is determined by the frame consisting of the rational num-
bers with their standard�-ordering, a frame satisfying the condition that for all finite
subsets Y there exists x withR.x/ � Y , while this logic conspicuously lacks the dis-
junction property; consider its most common presentation as an axiomatic extension
of S4. But in Example 3.2 we wanted to illustrate the point specifically with the
“exact” version of the condition (R.x/ D Y rather than R.x/ � Y ) tailored to the
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full strength of minimal normality. Since the disjunctive axiom just alluded to is
a binary disjunction, we could make this point specifically with the n-ary rule of
disjunction and the condition that every n points have a common predecessor, spe-
cialized to the case of n D 1. For n D 1, however (the “rule of denecessitation”),
the contrast we have been emphasizing between an arbitrary characteristic frame and
the canonical frame lapses: it is easy to see that the logic determined by a converse
serial frame has the rule of denecessitation. Similarly, in the conditional form of this
rule—cancellation à la note 14—if S is determined by a frame in which every point
has a predecessor of which it is the unique successor, then S enjoys cancellation.

Since the main issue raised by embedding E in K arises over minimal congruen-
tiality, from this point on minimal normality is mentioned only in connection with
that condition (and minimal monotony). Proposition 3.1(i) above gives that part of
the following observation pertaining to minimal normality; the other parts follow
from the (soundness and) completeness of E and EM with respect to the neigh-
borhood semantics and the “locale” semantics of Jennings and Schotch [8] (or see
Chellas [2, Exercises 7.9 (p. 211), 7.24 (p. 219), 9.27 (p. 256)]), where the locale
terminology is not used.

Proposition 3.3 In the logics E, EM, and K, � is minimally congruential, mini-
mally monotone, and minimally normal, respectively.

The author’s original plan of attack on the problem of further simplifying French’s
translation from [3] and, more specifically, replacing it with the translation in-
duced by the Gasquet–Herzig context from Example 2.5, had been to show
that the latter context was minimally congruential in K and conclude that for
�0A D Þ.Þ�A ^ ÞÞ�:A/, the (Boolean connectives plus) �0-fragment of K
was precisely E (with � written as �0), giving us the promised faithful embedding.
But this also required something that goes beyond what Proposition 3.3 says about
E, namely, that what it says about E applies to no proper consistent extension of
E: E is the only consistent congruential monomodal logic (whether we write the
non-Boolean primitive as � or as �0) in which � is minimally congruential. Here
we leave this as simply part of a conjecture which raises similar questions about
the minimality conditions associated with monotony and normality, though in the
digression below, which can be skipped without loss of continuity, we establish a
weaker result bearing on the congruentiality case.

Conjecture Among consistent (mono)modal logics, the only congruential logic
in which � is minimally congruential is E; the only monotone logic in which � is
minimally monotone is EM; and the only normal modal logic in which � is mini-
mally normal is K.

Digression A modal logic S will be said to satisfy the modal separation condition
just in the case for all (finite) sets of formulas � , �, ‚, †, in which the formulas in
� [� are�-free; we have

�;�‚ `S �;�† implies that either � `S � or�‚ `S �†:
The name for this condition is adapted from talk of the condition of “separation of
variables” (e.g., in Maksimova [12]), which requires that � `S � or ‚ `S † on the
hypothesis that, while �;‚ `S �;†, there are no propositional variables common
to the formulas in � [� and the formulas in ‚ [†. Being modally separated, that
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is, satisfying the modal separation condition, is equivalent—though we do not show
this here—to being what Zolin [18, Section 5], calls a “modalized” logic.

Proposition 3.4 If S is a consistent modally separated modal logic in which � is
minimally congruential, then S D E.

Proof Assume the antecedents here. We get E � S immediately from the assump-
tion of congruentiality. For the converse inclusion suppose, for a contradiction, that
`S A while°E A, and, without loss of generality, that A is a formula for which there
is no formula of lower modal degree witnessing the failure of the inclusion S � E
(i.e., for any formula A0 for which `S A0 and °E A0, the modal degree of A0 is
greater than or equal to that of A). Write A in conjunctive normal form (CNF) with
�-formulas that are not proper subformulas of other �-subformulas of A treated as
atoms. A conjunct of this CNF formula looks like this:
:B1 _ � � � _ :Bk _ :�C1 _ � � � _ :�C` _D1 _ � � � _Dm _�E1 _ � � � _�En;

in which the Bi and the Dj can be taken to be propositional variables. One such
conjunct must be S-provable without being E-provable, or else A could not have this
status. For such a conjunct, A*, say, we then have

B1; : : : ; Bk ;�C1; : : : ;�C` `S D1; : : : ;Dm;�E1; : : : ;�En:

By the hypothesis that S satisfies the modal separation condition, we have either
(a) � `S † or
(b) �� `S �‚,

where � D ¹B1; : : : ; Bkº, � D ¹C1; : : : ; C`º, † D ¹D1; : : : ;Dmº, and ‚ D ¹E1;

: : : ; Enº. Now alternative (a) does not obtain, since this would contradict the consis-
tency of S (given that A* is not E-provable), so we are left with alternative (b), and
we have �� `S �‚, while �� °E �‚ (since otherwise we should have `E A*).
Accordingly by the minimality condition associated with congruentiality, we have
Ci a`S Ej for some Ci 2 �, Ej 2 ‚, and again this does not hold for `E in place
of `S, as this would imply that �� `E �‚. So either Ci °E Ej or Ej °E Ci

(or both). We work the former case (the latter running identically), having now a for-
mula Ci ! Ej which, like the original A*, is S-provable but not E-provable. Since
Ci ! Ej is S-provable but not E-provable, and also of lower modal degree than
A, this contradicts the choice of A as a witness of lowest degree to the noninclusion
S ª E.

Thus E is the unique consistent modal logic in which � is minimally congruential
and which is modally separated, since we already know from Proposition 3.3 that �
is minimally congruential in E, and it is not hard to see that E is modally separated.
End of Digression

Even if the above conjecture had been affirmatively settled insofar as it bears on
the case of E (and without the modal separation restriction in Proposition 3.4), an-
other serious obstacle barred the path of the original plan sketched above. The con-
text supplied by Example 2.5 turns out not to be minimally congruential in K after
all, as we now illustrate.

Example 3.5 We repeat here the context in question, with gaps marking the place
of the context variable (the p of C.p/): Þ.Þ� ^ ÞÞ�: ). Now observe that
filling the blanks with �?, >, and ? reveals the ternary logical relation ¹D1 ` D2;
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D3º to hold in K among the resulting three formulas in the order just given, displayed
here with the blank-fillers underlined (as a visual aid), signaling a failure of this
context to satisfy the minimality condition associated with congruentiality, because
�? is K-equivalent neither to > nor to ?:

Þ.Þ��? ^ ÞÞ�:�? / `K Þ.Þ�> ^ ÞÞ�:> /; (3.5)Þ.Þ�? ^ ÞÞ�:? /:
We have (3.5) because, removing outerÞ’s, dropping the underlining, and rewriting
:> and :? as ? and >, respectively:

Þ��?^ÞÞ�:�? `K Þ�>^ÞÞ�?;Þ�?^ÞÞ�>: (3.6)
To see that (3.6) is satisfied, note thatÞ��? `K Þ�> and (rewritingÞÞ�:�?
asÞÞ�Þ>)ÞÞ�Þ>`KÞÞ�>, so it remains to note thatÞ��? `K ÞÞ�?,
Þ�?, or, removing initial Þs, that ��? `K Þ�?;�? (which follows by substi-
tution of �? for p and ? for q from the fact that �p `K Þp;�q). Thus, with �0

as above—that is, �0A D Þ.Þ�A ^ ÞÞ�:A/—we have �0�? `K �0>;�0?

without �? a`K > or �? a`K ?, showing �0 not to be minimally congruential
in K.

The failure of the context from Example 2.5 to be minimally congruential in K does
not show that the translation it induces fails to embed E in K: the translation would
replace every � in a formula with the �0 of Example 3.5, whereas crucially in that
example, we have an unreplaced � in one of the formulas involved, namely, �0�?.
Thus the above counterexample makes use of a formula which lies outside of the im-
age of the translation in question. In fact, French’s own context �0p (not the current
�0p) from the end of Section 1, which we recall induces a translation embedding E
in K, is itself not minimally congruential in K, as we now illustrate.

Example 3.6 Recall that French’s �0 applies to a formula to yield the result of
filling the blanks below with that formula:

ÞŒÞ.� ^��Þ>/ ^Þ.Þ.�: ^�ŠÞ>/ ^ÞÞ�?/�:
Thus, filling the blanks with > and � Þ > gives (3.7) and (3.8), respectively, in
which :> and :�Þ> have been rewritten as? andÞ�?, but other simplifications
have not been made (so that, for instance, (3.7) includes a redundant �> conjunct
in one subformula, and in (3.8) we have a conjunctive subformula with two identical
conjuncts):

ÞŒÞ.�>^��Þ>/ ^Þ.Þ.�?^�Þ>/ ^ÞÞ�?/�; (3.7)
ÞŒÞ.��Þ>^��Þ>/ ^Þ.Þ.�ÞÞ�?^�Þ>/ ^ÞÞ�?/�: (3.8)

(Here we refrain from following the lead of Example 3.5 and removing the outer
Þs, in order to reduce the number of different formulas in play.) Making the sim-
plifications alluded to, and some others, we see that (3.7) and (3.8) are respectively
K-equivalent to (3.9) and (3.10):

ÞŒÞ��Þ>^Þ.Þ�?^ÞÞ�?�; (3.9)
ÞŒÞ��Þ>^Þ.Þ�ÞÞ�?^ÞÞ�?/�: (3.10)

With this processing, we see that (3.9) `K (3.10), and (3.7) `K (3.8). That is,
�0> `K �0�Þ>, even though we do not have > a`K �Þ> (since °K �Þ>),
revealing�0 not to be minimally congruential in K.
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At the risk of laboring the obvious, we spell out the point illustrated by Examples
3.5 and 3.6 in general terms. Let � be the translation induced by French’s context
(�0p for short), and suppose that the formulas D1; : : : ;Dm; E1; : : : ; En are all in
the range of � (i.e., each is �.A/ for some formula A). Then if we have (3.11),

�0D1; : : : ;�0Dm `K �0E1; : : : ;�0En; (3.11)
then we must have Di a`K Ej for some i; j , because (3.11) is (3.12), for some
A1; : : : ; Am; B1; : : : ; Bn:

�0�.A1/; : : : ;�0�.Am/ `K �0�.B1/; : : : ;�0�.Bn/; (3.12)
and so

�.�A1/; : : : ; �.�Am/ `K �.�B1/; : : : ; �.�Bn/; (3.13)
which, given that � embeds E faithfully in K, is equivalent to

�A1; : : : ;�Am `E �B1; : : : ;�Bn: (3.14)
And so Ai a`E Bj for some i; j , by the minimal congruentiality of E (see Proposi-
tion 3.3), and hence �.Ai / a`K �.Bj /, that is, Di a`K Ej , as promised. But this
promise does not amount to the claim that �0 is minimally congruential in K, since
that would be a matter of (3.11)’s implying Di a`K Ej for some i; j , without the
further qualification that the variousDi and Ej were of the form �.Ai /, �.Bj /.

We conclude with some open questions.
� What is the status of the conjecture above—and, in particular, are there con-
sistent congruential (resp., normal) proper extensions of E (resp., K) in which
� is minimally congruential (resp., minimally normal)?
� Does the translation induced by the context C.p/ D Þ.Þ�p ^ÞÞ�:p/
(from Example 2.5), embed E faithfully in K, notwithstanding the failure of
the original plan to establish this by showing this context to be minimally
congruential in K?
� Is there in fact any context at all which is minimally congruential in K?

Though not of comparable general significance, an incidental question was also
raised by Example 3.2 as to how to axiomatize the logic determined by the frame
FHF—or, for that matter, the logic determined by the variant frame with urelements
(mentioned in n. 15), should that logic turn out to be distinct from K. A further
incidental question arising from our earlier discussion is whether French’s original
translation (see note 5) faithfully embeds E in K.

Notes

1. We take these propositional variables as p1; : : : ; pn; : : : and abbreviate p1 and p2 to
p and q. In addition, we assume that some functionally complete set of Boolean con-
nectives are available, which for convenience (so that we can have formulas constructed
without the aid of propositional variables) includes nullary > and ?. The sole non-
Boolean primitive is the 1-ary �. As usual, a modal logic in this language is a set of
formulas containing all truth-functional tautologies and closed under modus ponens and
uniform substitution (of formulas for propositional variables).

2. In general, for a 1-ary context C.p/ we do not require that no variables other than p
occur in C , so those contexts at issue in the above definition might more explicitly be
called simple 1-ary contexts. The insistence on simple contexts in the conditions on
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� means that C.p/ is a candidate definiens for an S1-style � operator within S2, and
indeed the translations of current concern are often called definitional translations (see,
e.g., Wójcicki [17, p. 70]). More explicitly one might say, �-definitional translations.
Of course, if one does wish to use the chosen context to define a box operator within a
language already containing one, some renotation will be called for, as with the example
following shortly below, introducing�0 alongside�.

3. The proof that the trimodal translation embeds E into K appears as [6, Theorem 21]; the
bimodal simplification is from [6, Remark 22, p. 307]. Some of the results of [6] cited
here also appeared in Kracht and Wolter [10].

4. The role of these formulas is best grasped by inspection of French [3, Figure 1, p. 426].
As a referee for the present journal observed, French’s comment in the closing sentence
of [3, p. 428], that his “translation maps formulas of modal degree n to modal formulas
of degree 5n,” is not correct.

5. In the originally submitted paper, French had the translation as

�.�A/ D Þ
�
Þ.��.A/ ^��Þ>/ ^Þ.Þ�:�.A/ ^ÞÞ�?/

�
;

but there was a problem (noted by a referee for the journal in which [3] appeared) with
the proof that this embedded E in K—not that any concrete counterexample had emerged
to show that it did not. The modal degree data for this translation are as for the original
� , while for the increase in the modal complexity on prefixing a�, the “14” in the earlier
description is replaced by “12.”

6. This formula interchanges the inner �1 and �2 in the bimodal variant of their trimodal
prototype, mentioned above, which is actually cited by Gasquet and Herzig in Remark
22 of [6].

7. Where � is the translation derived from Thomason’s reduction of bimodal to monomodal
formulas given on [3, p. 424], mc.�.�A//, for A with mc.A/ D n, is 2n C 16,
while md.�.A// is 0, 6, respectively, for A with md.A/ D 0; 1, for A of modal degree
2; 3; 4; : : : ;md.�.A// D 10; 14; 18; : : : ; so eventually the modal degree of the transla-
tion rises by 4 (per unit increase in the modal degree of the formula translated), just as
with French’s own translation. Thus the degree of the simplification achieved is over-
stated in French’s remark (see [3, p. 428]) that “our translation maps formulas of modal
degree n to formulas of modal degree 5n, while the translation derived from the Thoma-
son translation maps such a formula to one of modal degree 7n.” (The n 7! 5n error was
already mentioned in note 4 above.)

8. We could equally well say, for congruentiality, that A a`S B implies C.A/ `S C.B/

(for all A;B).

9. C.p/’s being antitone in S means that A `S B always implies C.B/ `S C.A/.

10. Indeed, one sees here that, regardless of length, for no successfulÞ.Xp ^ Y:p/ can X
or Y consist entirely of occurrences ofÞ.

11. So these semicolons are not needed when the relation is spelled out explicitly: thus S-
equivalence is the relation ¹hD1;D2i j D1 `S D2 andD2 `S D1º, and so on.
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12. In a more generous spirit, one might regard these—basic or otherwise—as strong or
“positive” logical relations and make room also for “weak” (or “negative,” since we
use negated `-statements) logical relations such as consistency and independence, as
well as mixed cases such as—shall we say?—strict subcontrariety: ¹¿ ` D1;D2I

D1;D2 ° ¿º; again, a basic/nonbasic distinction could be introduced for these. What
matters to the present discussion is only the strong (basic and other) logical relations,
however.

13. Compare the condition which differs from this in having Ai D Bj for some i; j after
the “if and only if,” which is easily seen to be satisfied when S is the smallest modal
logic (see note 1). We might call � “minimally modal” in this case. A variation on this
theme appears in Williamson [16, Proposition 3, p. 32] for the (still not congruential)
extension of this choice of S by all instances of the T-schema �A ! A. (Because
of this, Williamson has to give a weakened version of �’s being modal in the logic
concerned, with the added restrictions that A1; : : : ; Am; B1; : : : ; Bn are�-free and that
¹A1; : : : ; Amº is truth-functionally consistent.)

14. Or equivalently, when only normal modal logics are under consideration, from
�A ` �B to A ` B , or indeed again, from ÞA ` ÞB to A ` B (see Humber-
stone and Williamson [7]).

15. The frame FHF was mentioned more tentatively in the originally submitted version
of this paper, at which stage the author was unsure as to whether it validated any
nontheorems of K. A referee pointed out that for any k and `, the frame validated
Þk.�? ^ p/ ! �`.�? ! p/, none of which are K-provable when k; ` � 1; here
we have made use of the k D ` D 1 case. It would be interesting to know if, instead of
FHF as described here, we dropped the restriction to pure sets and allowed denumerably
many urelements, the universe of the frame comprising them, and all hereditarily finite
sets based on them (with y accessible to x, again, iff y 2 x), would the frame validate
any nontheorems of K? And, if so, might the logic determined by it even turn out to be
a proper extension of K in which � remained minimally normal? (Not according to the
conjecture after Proposition 3.3 below, to the effect that in no normal proper extension
of K is� minimally normal.)
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