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Depth of Boolean Algebras

Shimon Garti and Saharon Shelah

Abstract Suppose D is an ultrafilter on κ and λκ
= λ. We prove that if Bi is

a Boolean algebra for every i < κ and λ bounds the depth of every Bi , then the
depth of the ultraproduct of the Bi ’s mod D is bounded by λ+. We also show
that for singular cardinals with small cofinality, there is no gap at all. This gives
a partial answer to a previous problem raised by Monk.

1 Introduction

Let B be a Boolean Algebra. We define the Depth of it as the supremum of the
cardinalities of well-ordered subsets in B. Now suppose that 〈Bi : i < κ〉 is a
sequence of Boolean algebras, and D is an ultrafilter on κ . Define the ultraproduct
algebra B as

∏
i<κ

Bi/D. The question (raised also for other cardinal invariants by

Monk in [5]) is about the relationship between Depth(B) and
∏

i<κ Depth(Bi )/D.
Let us try to draw the picture:
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〈Bi : i < κ〉, D

Depth(B)

B =
∏
i<κ

Bi/D 〈Depth(Bi ) : i < κ〉

∏
i<κ

DepthBi/D

As we can see from the picture, given a sequence of Boolean algebras (of length κ)
and an ultrafilter on κ , we have two alternate ways to produce a cardinal value. The
left course creates, first, a new Boolean algebra, namely, the ultraproduct algebra B.
Then we compute the depth of it. In the second way, we first get rid of the algebraic
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structure, producing a sequence of cardinals (namely, 〈Depth(Bi ) : i < κ〉). Then
we compute the cardinality of its Cartesian product divided by D.

Shelah proved in [9], Section 5, under the assumption V = L, that if κ =

cf(κ) < λ and λ = λκ (so κ < cf(λ)), then one can build a sequence of
Boolean algebras 〈Bi : i < κ〉 such that Depth(Bi ) ≤ λ for every i < κ , and
Depth(B) > |

∏
i<κ Depth(Bi )/D| for every uniform ultrafilter D. This result is

based on the square principle, introduced and proved in L by Jensen.
A natural question is how far can this gap reach. We prove (in Section 2) that if

V = L then the gap is at most one cardinal. Summarizing, in L, for every regular
cardinal and for every singular cardinal with high cofinality, we can create a gap
(having the square for every infinite cardinal in L), but it is limited to one cardinal.

The assumption V = L is just to make sure that every ultrafilter is regular, so
the results in Section 2 apply also outside L. On the other hand, if V is far from L
we get a different picture. By [10] (see conclusion 2.2 there, page 94), under some
reasonable assumptions, there is no gap at all above a compact cardinal.

We can ask further what happens if cf(λ) < λ, and κ ≥ cf(λ). We prove here
that if λ is singular with small cofinality (i.e., the cases which are not covered in
the previous paragraph), then |

∏
i<κ Depth(Bi )/D| ≥ Depth(B). It is interesting

to know (see [4], Section 2) that a similar result holds above a compact cardinal
for singular cardinals with countable cofinality. We suspect that it holds (for such
cardinals) in ZFC.

The proof of these results is based on an improvement to the main theorem in [3].
It says that under some assumptions we can dominate the gap between Depth(B) and
|
∏

i<κ Depth(Bi )/D|. In this paper we use weaker assumptions. We give here the
full proof, so the paper is self-contained. We intend to shed light on the other side of
the coin (i.e., under large cardinal assumptions) in a subsequent paper.

2 The Main Theorem

Definition 2.1 (Depth) Let B be a Boolean Algebra.

Depth(B) := sup{θ : ∃b̄ = (bγ : γ < θ), increasing sequence in B}.

Remark 2.2 Clearly, we can use decreasing instead of increasing in the definition
of Depth. We prefer the increasing version, since it is coherent with the terminology
of [6].

Discussion 2.3 Depth(B) is always a cardinal, but it does not have to be a regular
cardinal. It is achieved in the case of a successor cardinal (i.e., Depth(B) = λ+

for some infinite cardinal λ), and in the case of a singular cardinal with countable
cofinality (i.e., Depth(B) = λ > cf(λ) = ℵ0). In all other cases, one can create an
example of a Boolean Algebra B, whose Depth is not attained. A detailed survey of
these facts appears in [6].

We use also an important variant of the Depth.

Definition 2.4 (Depth+) Let B be a Boolean Algebra.

Depth+(B) := sup{θ+
: ∃b̄ = (bγ : γ < θ), increasing sequence in B}.

Discussion 2.5 Assume λ is a limit cardinal. The question of achieving the Depth
(for a Boolean Algebra B such that Depth(B) = λ) demonstrates the difference
between Depth and Depth+. If cf(λ) is uncountable, we can imagine two situations.
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In the first one the Depth is achieved, and in that case we have Depth+(B) = λ+. In
the second, the Depth is not achieved. Consequently, Depth+(B) = λ. Notice that
Depth(B) = λ in both cases, so Depth+ is more delicate and using it (as a scaffold)
helps us to prove our results.

Throughout the paper, we use the following notation.

Notation 2.6

(a) κ, λ are infinite cardinals.
(b) D is a uniform ultrafilter on κ .
(c) Bi is a Boolean Algebra, for any i < κ .
(d) B =

∏
i<κ

Bi/D.

(e) For κ = cf(κ) < λ, Sλ
κ = {α < λ : cf(α) = κ}.

We state our main result.

Theorem 2.7 Assume
(a) λ ≥ cf(λ) > κ ,
(b) λ = λκ ,
(c) Depth+(Bi ) ≤ λ, for every i < κ .

Then Depth+(B) ≤ λ+.

Proof Assume toward a contradiction that 〈aα : α < λ+
〉 is an increasing sequence

in B. Let us write aα as 〈aα
i : i < κ〉/D for every α < λ+. We shall apply Claim 2.8,

so λ, κ, D are given and we define Ri for every i < κ as the set {(α, β) : α < β < λ+

and aα
i < aβ

i }. As α < β ⇒ aα <D aβ ⇒ {i < κ : Bi |H aα
i < aβ

i } ∈ D, all the
assumptions of Claim 2.8 hold; hence the conclusion also holds. So there are i∗ < κ
and Z ⊆ λ+ of order type λ as there.

Now, if α < β are from Z we have ι ∈ (α, β) which satisfies αRi∗ ι and ιRi∗β. It
means that aα

i∗ <Bi∗
aι

i∗ <Bi∗
aβ

i∗ . By the transitivity of <Bi∗
(see Corollary 2.9), we

have aα
i∗ <Bi∗

aβ
i∗ for every α < β from Z . Since |Z | = λ, we have an increasing

sequence of length λ in Bi∗ , so Depth+(Bi∗) ≥ λ+, contradicting the assumptions of
the theorem. �

Claim 2.8 Assume
(a) λ = λκ ,
(b) D is an ultrafilter on κ ,
(c) Ri ⊆ {(α, β) : α < β < λ+

} is a two place relation on λ+ for every i < κ ,
(d) α < β ⇒ {i < κ : (α, β) ∈ Ri } ∈ D.

Then there exists i∗ < κ and Z ⊆ λ+ of order type λ such that for every α < β from
Z, for some ι ∈ (α, β), we have (α, ι), (ι, β) ∈ Ri∗ .

Proof Let M̄ = 〈Mα : α < λ+
〉 be a continuous and increasing sequence of ele-

mentary submodels of (H(χ), ∈) for sufficiently large χ , with the following proper-
ties for every α < λ+:

(a) ‖Mα‖ = λ,
(b) λ + 1 ⊆ Mα ,
(c) 〈Mβ : β ≤ α〉 ∈ Mα+1,
(d) [Mα+1]

κ
⊆ Mα+1.
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For every α < β < λ+, define

Aα,β = {i < κ : αRiβ}.

By the assumption, Aα,β ∈ D for all α < β < λ+. Define

C := {γ < λ+
: γ = Mγ ∩ λ+

} and S := C ∩ Sλ+

cf(λ).

Since C is a club subset of λ+, S is a stationary subset of λ+. Choose δ∗ as the λth
member of S. For every α < δ∗, let Aα denote the set Aα,δ∗ .

Let u ⊆ δ∗, |u| ≤ κ . Notice that u ∈ Mδ∗ , by the assumptions on M̄ . Define

Su = {β < λ+
: β > sup(u), cf(β) = cf(λ), and (∀α ∈ u)(Aα,β = Aα)}.

Notice that Su 6= ∅ as δ∗
∈ Su ; hence if u ⊆ δ∗ and |u| ≤ κ then Su ∩ δ∗

6= ∅. Let
〈δε : ε < λ〉 be the increasing enumeration of C ∩ S ∩ δ∗. Define, for every ε < λ,
the following family:

Aε = {Su ∩ δε+1 \ δε : u ∈ [δε+1]
≤κ

}.

The crucial point is that Aε is not empty for each ε. We shall prove this in
Lemma 2.10 below. Observe also that Aε is downward κ+-directed since if
uα ∈ [δε+1]

≤κ for each α < κ then⋂
{Suα ∩ [δε, δε+1) : α < κ} = S⋃

α<κ uα
∩ [δε, δε+1) ∈ Aε .

So we have a family of nonempty sets, which is downward κ+-directed. Hence, there
is a κ+-complete filter Eε on [δε, δε+1), with Aε ⊆ Eε , for every ε < λ.

Define, for any i < κ and ε < λ, the sets Wε,i ⊆ [δε, δε+1) and Bε ⊆ κ by

Wε,i := {β : δε ≤ β < δε+1 and i ∈ Aβ,δε+1},

Bε := {i < κ : Wε,i ∈ E+
ε }.

Finally, set

Wε = [δε, δε+1) \

⋃
i∈κ\Bε

Wε,i .

Notice that Wε ∈ Eε , as it results out of throwing κ-many small sets from [δε, δε+1),
and Eε is κ+-complete, so clearly Wε 6= ∅. We shall prove below that Bε ∈ D for
every ε < λ. Clearly, this implies Bε ∩ Aδε+1 ∈ D as well.

Choose β = βε ∈ Wε . If i ∈ Aβ,δε+1 , then Wε,i ∈ E+
ε , so Aβ,δε+1 ⊆ Bε (by the

definition of Bε). But, Aβ,δε+1 ∈ D, so Bε ∈ D. For every ε < λ, Aδε+1 (which
equals to Aδε+1,δ∗ ) belongs to D, so Bε ∩ Aδε+1 ∈ D.

Choose iε ∈ Bε ∩ Aδε+1 , for every ε < λ. We choose, in this process, λ iε-s
from κ , so as cf(δ∗) = cf(λ) > κ , there is an ordinal i∗ ∈ κ such that the set
Y = {ε < λ : ε is an even ordinal, and iε = i∗} has cardinality λ.

The last step will be as follows. Define Z = {δε+1 : ε ∈ Y }. Clearly,
Z ∈ [δ∗

]
λ

⊆ [λ+
]
λ. We will show that for α < β from Z we can find ι ∈ (α, β) so

that (αRi∗ ι) and (ιRi∗β). The idea is that if α < β and α, β ∈ Z , then i∗ ∈ Aα,β .
So why does a suitable ι exist? Recall that α = δε+1 and β = δζ+1, for some

ε < ζ < λ (that’s the form of the members of Z ). Define

U1 := S{δε+1} ∩ [δζ , δζ+1).
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Observe that U1 ∈ Aζ and Aζ ⊆ Eζ ; hence U1 ∈ Eζ . Observe also that αRi∗ ι for
any ι ∈ U1. Now define

U2 := {γ : δζ ≤ γ < δζ+1, i∗ ∈ Aγ,δζ+1}.

Notice that U2 ∈ E+

ζ , since U2 ≡ Wζ,i∗ and i∗ = iζ ∈ Bζ . It follows that ιRi∗β for
every ι ∈ U2. So U1 ∩ U2 6= ∅, and we can choose ι ∈ U1 ∩ U2.

Now the following statements hold:
(a) αRi∗ ι

[Why? Well, ι ∈ U1, so Aδε+1,ι = Aδε+1 . But, i∗ ∈ Bε ∩ Aδε+1 ⊆ Aδε+1 , so
i∗ ∈ Aδε+1,ι , which means that δε+1 Ri∗ ι].

(b) ιRi∗β
[Why? Well, ι ∈ U2, so i∗ ∈ Aι,δζ+1 , which means that ιRi∗δζ+1].

So, we are done. �

Corollary 2.9 Suppose each Ri in the above claim is transitive. Then (α, β) ∈ Ri∗
as well.

Lemma 2.10 Let Aε = {Su ∩ δε+1 \ δε : u ∈ [δε+1]
≤κ

}.
(a) Aε is not empty, for every ε < λ.
(b) Moreover, u ∈ [δε+1]

≤κ
⇒ Su ∩ δε+1 \ δε is unbounded in δε+1.

Proof Clearly, (b) implies (a). Let us prove part (b). First we observe that if
u ∈ [δε+1]

≤κ then sup(u) < δε+1 (since δε+1 ∈ S ⊆ Sλ+

cf(λ), and κ < cf(λ)). Second,
Mδε+1 =

⋃
{Mα : α < δε+1} (since δε+1 is a limit ordinal and M̄ is continuous).

Consequently, there exists α < δε+1 so that u ⊆ Mα . Choose such α, and observe
that u ∈ Mα+1 (again, this follows from the properties of M̄). We derive Su ∈ Mα+1
as well (since it is definable from parameters in Mα+1). By the definition of Su ,
δ∗

∈ Su . We conclude

Mα+1 ∩ λ+
⊆ Mδε+1 ∩ λ+

= δε+1 < δ∗
∈ Su .

We can infer that sup(Su) = λ+, so Mδε+1 |H Su ⊆ λ+, unbounded in λ+. Since
Mδε+1 ∩ λ+

= δε+1 and by virtue of elementarity, Su ∩ δε+1 is unbounded in δε+1.
Recall that δε < δε+1, so Su ∩ δε+1 \ δε is also unbounded, and we are done. �

Corollary 2.11 (GCH) Assume
(a) κ < µ,
(b) Depth(Bi ) ≤ µ, for every i < κ .

Then Depth(B) ≤ µ+.

Proof For every successor cardinal µ+, and every κ < µ, we have (under the GCH)
(µ+)κ = µ+. By assumption (b), we know that Depth+(Bi ) ≤ µ+ for every i < κ .
Now apply Theorem 2.7 (upon noticing that µ+ here is standing for λ there), and
conclude that Depth+(B) ≤ µ+2, so Depth(B) ≤ µ+ as required. �

Remark 2.12 Notice that the corollary holds even if almost every Bi has µ as
its Depth. Recall that for a sequence of cardinals λ̄ = 〈λi : i < κ〉 and an ul-
trafilter D on κ we define µ = limD(λ̄) when µ is the unique cardinal such that
{i < κ : β < λi ≤ µ} ∈ D for every β < µ. Hence we may replace assumption (b)
in Corollary 2.11 by the weaker assumption that µ = limD(〈Depth(Bi ) : i < κ〉).
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This assumption becomes important if we try to phrase an equality (not just ≤), as
in the theorem of the next section.

3 Depth in L

Monk’s problem No. 12 from [6] is whether there exists a ZFC example of
Depth(

∏
i<κ Bi/D) > |

∏
i<κ Depth(Bi )/D|. We shall work in L, showing that

V = L rules out a ZFC example in the case of singular cardinals with countable
cofinality. Essentially, we do not use the fundamental structure of L but rather the
fact that every ultrafilter is regular in L. We start with a short discussion on regular
ultrafilters. A good source for the subject is [1], Section 4.3. Recall the following
definition.

Definition 3.1 (Regular ultrafilters) Let D be an ultrafilter on an infinite cardinal
κ , and θ ≤ κ .

(a) D is θ -regular if there exists E ⊆ D, |E | = θ , so that

α < κ ⇒ |{e ∈ E : α ∈ e}| < ℵ0,

(b) D is called regular when D is κ-regular.

Remark 3.2 (Measurability and ℵ0-regular ultrafilters) An ultrafilter D on κ is ℵ0-
regular if and only if D is ℵ1-incomplete (The proof appears, for instance, in [1],
Proposition 4.3.4, page 249). If κ is below the first measurable cardinal, then every
nonprincipal ultrafilter on κ is ℵ1-incomplete, hence ℵ0-regular.

The following is a fundamental result of Donder from [2].

Theorem 3.3 (Regular ultrafilters in the constructible universe) Assume V = L.
Let D be a nonprincipal ultrafilter on an infinite cardinal κ . Then D is regular.

It is proved (see [1], Proposition 4.3.5, page 249) that for every infinite cardinal κ
there exists a regular ultrafilter D over κ . Having a regular ultrafilter D, one can
estimate the cardinality of an ultraproduct divided by D. A proof of the following
claim can be found in [1], Proposition 4.3.7, page 250.

Claim 3.4 Suppose D is a regular ultrafilter on κ . Then |
∏

i<κ λ/D| = λκ .

By [9], Section 5, if λ is regular and κ < λ, or even λ > cf(λ) > κ , we can build in L
an example for Depth(B) > |

∏
i<κ Depth(Bi )/D|, but the discrepancy is just one

cardinal as shown in Corollary 2.11. We can ask what happens if λ is singular with
small cofinality. The theorem below says that equality holds. The theorem answers
problem No. 12 from [6], for the case of singular cardinals with countable cofinality
(since then cf(λ) ≤ κ for every infinite cardinal κ).

Theorem 3.5 Assume
(a) λ > κ ≥ cf(λ),
(b) Depth(Bi ) ≤ λ, for every i < κ ,
(c) λ = limD(〈Depth(Bi ) : i < κ〉).

Then
(ℵ) V = L implies Depth(B) = |

∏
i<κ Depth(Bi )/D|;

(i) instead of V = L it suffices that D is a κ-regular ultrafilter, and λκ
= λ+.
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Proof (ℵ) First we claim that |
∏

i<κ Depth(Bi )/D| = λ+. It follows from the
fact that in L we know that D is regular (by Theorem 3.3 of Donder, taken from [2]),
so (using assumption (c), and Claim 3.4),∣∣∏

i<κ

Depth(Bi )/D
∣∣ = λκ

= λ+

(recall that cf(λ) ≤ κ).
Now Depth(B) ≥ |

∏
i<κ Depth(Bi )/D| = λ+, by Theorem 4.14 from [6] (since

L |H GCH). On the other hand, Corollary 2.11 makes sure that Depth(B) ≤ λ+ (by
(b) of the present theorem). So |

∏
i<κ Depth(Bi )/D| = λ+

= Depth(B), and we
are done.

(i) Notice that in the proof of (ℵ) we use just the regularity of D (and κ-regularity
suffices), and the assumption that λκ

= λ. �

We know that if κ is less than the first measurable cardinal, then every uniform
ultrafilter on κ is ℵ0-regular, as noted in Remark 3.2. It gives us the result of Theo-
rem 3.5 for singular cardinals with countable cofinality, if V = L or a similar weaker
assumption.

On the other hand, we have good evidence that something similar holds for sin-
gular cardinals with countable cofinality above a compact cardinal (as shown in [4],
Theorem 2.5 there). Moreover, if cf(λ) = ℵ0 then κ ≥ cf(λ) for every infinite car-
dinal κ . It means that it is consistent with ZFC not to have a counterexample in this
case. So the following conjecture does make sense.

Conjecture 3.6 (ZFC) Assume
(a) ℵ0 = cf(λ) < λ,
(b) κ < λ, and 2κ < λ,
(c) Depth(Bi ) ≤ λ, for every i < κ ,
(d) λ = limD(〈Depth(Bi ) : i < κ〉),
(e) D is not ℵ1-complete.

Then Depth(B) ≤ |
∏

i<κ Depth(Bi )/D|.

Notice that by [7] we know that this question is independent when 2ℵ0 > λ, as fol-
lows from Theorem 3.2 there. More independent results (under some pcf assump-
tions) can be derived from [8], Section 3.
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