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Belief Revision and Verisimilitude

MARK RYAN and PIERRE-YVES SCHOBBENS

Abstract The Egli-Milner power-ordering is used to define verisimilitude or-
derings on theories from preference orderings on models. The effects of the
definitions on constraints such as stopperedness and soundness are explored.
Orderings on theories are seen to contain more information than orderings on
models. Belief revision is defined in terms of both types of orderings, and con-
ditions are given which make the two notions coincide.

1 Introduction Belief revision and verisimilitude involve very similar notions. In
both cases we wish to select a theory according to some notion of ‘closeness’ to a
given theory. In the case of belief revision, we are given a sentence, and the selec-
tion is from all the theories that contain the sentence. In the case of verisimilitude,
the given theory represents the truth, and we are directly given the family of theories
from which to select. But the criterion is the same: we seek a theory in the family of
theories which is closest to the given theory.

From a technical perspective, however, the two topics have received different
treatments. Our aim in this paper is to formalize the intuitive relations between the
two topics by providing maps which define one concept in terms of the other. We will
also consider the topic of preference relations in our analysis. Preference relations
(cf. Shoham [17], Kraus, Lehman, and Magidor [5], and Makinson [8]) were defined
to give a semantics to default reasoning. Since the relationship between default rea-
soning and belief revision is so close (cf. Makison and Gärdenfors [10]), preference
relations are also relevant for belief revision.

The formal relationships we will describe are summarized in the following dia-
gram.
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The nodes show the three topics which we interrelate. The arrows represent the defi-
nitions used to translate between the concepts, and are labelled by the definition num-
ber in the paper. For example, Definition 2.4 shows how to define a belief revision
function from a preference relation.

The paper explores the properties of the translations. Firstly, we study how the
postulates typically imposed on the three concepts fare under the translation mecha-
nisms. Secondly, we examine under what conditions the above diagram commutes.
For example, suppose we obtain a belief revision function from a preference relation
by passing through a verisimilitude relation, using Definitions 3.3 and 3.7. Do we get
the same result if we proceed directly, using Definition 2.4?

We do not attempt a thorough review of any of the three relevant fields, such
reviews being readily available elsewhere (e.g., Gärdenfors [4], Fuhrmann and Mor-
reau [3] for belief revision, Brink [1], Kuipers [6] for verisimilitude, and [8] for pref-
erence relations). A brief introduction to verisimilitude is given in Section 3.

The paper is structured as follows. Section 2 discusses belief revision and pref-
erence relations. Section 3 introduces verisimilitude. Section 4 gives the results con-
cerning the interrelationships between the conditions which can be imposed on pref-
erence relations and verisimilitude relations. Section 5 discusses under which cir-
cumstances the diagram commutes by exploring the compositions of the definitions.
Finally, Section 6 draws conclusions.

Preliminaries We assume a language L which has the usual boolean connectives,
a class M of interpretations of the language, and a relation |= in M × L . We as-
sume that |= behaves classically with respect to the connectives. If A ⊆ L is a set
of sentences, Mod(A) = {m ∈ M | ∀ψ ∈ A m |= ψ}. If N ⊆ M , Th(N) = {ϕ ∈
L | ∀m ∈ N m |= ϕ}. For ϕ ∈ L or m ∈ M , we will write Mod(ϕ) and Th(m)

instead of Mod({ϕ}) and Th({m}). The set N ⊆ M of interpretations is closed if
Mod(Th(N)) = N. The set A ⊆ L of sentences is closed if Th(Mod(A)) = A. A
closed set of sentences is also called a theory. The set of theories over L is T . If
A ∈ T , Ctg(A) = {B ∈ T | A ⊆ B} (the theories containing A). A theory A is com-
plete if ϕ ∈ A or ¬ϕ ∈ A for each ϕ ∈ L ; it is consistent if ϕ �∈ A or ¬ϕ �∈ A for each
ϕ ∈ L . The set of complete and consistent theories is denoted C T .

We will need to make use of the fact that m ∈ Mod(Th(n)) iff Th(m) = Th(n) iff
n ∈ Mod(Th(m)). This is proved as follows. First assume m ∈ Mod(Th(n)); then, for
all ϕ ∈ L , n |= ϕ implies m |= ϕ, so Th(n) ⊆ Th(m). Now suppose n �|= ϕ; so n |= ¬ϕ,
so m |= ¬ϕ, so m �|= ϕ. Thus, Th(m) ⊆ Th(n). This is the only place in the paper at
which we appeal to the classical behaviour of |=. Now suppose Th(m) = Th(n); then
n |= ϕ implies m |= ϕ, so m ∈ Mod(Th(n)). The other half is proved similarly.

If ≤ is a relation on the set X and Y ⊆ X , then y ∈ Y is said to be ≤-minimal in
Y if ∀y′ ∈ Y (y′ ≤ y ⇒ y ≤ y′). We define Min≤(Y ) = {y ∈ Y | y is ≤-minimal in
Y}. We define ↓≤Y = {x ∈ X | ∃y ∈ Y x ≤ y}, and ↑≤Y = {x ∈ X | ∃y ∈ Y y ≤ x}.
As usual, x < y means x ≤ y and y �≤ x.

2 Belief revision via preference relations The classical preference relations ap-
proach to default reasoning works as follows. Suppose T is some default information
expressed as sentences of the language L . We assume some procedure for deriving
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from T a relation �T ⊆ M ×M which measures how nearly an interpretation m satis-
fies the default information. By convention, m �T n means that m satisfies the default
information as well as n does; we say m is preferred to n. There is a strong intuition
that such preference relations should be transitive, though this is not always assumed
in the literature. We will assume it. As to whether they are reflexive or not, this may
be taken as a matter of convention for one can always close under reflexivity or take
the strict (irreflexive) counterpart of a relation. We will assume reflexivity.

Definition 2.1 A preference relation � is a ternary relation � ⊆ M × T × M such
that, for all T ∈ T , the binary relation �T is reflexive and transitive.

There are several properties of preference relations which we will sometimes
need. Some, such as stopperedness, are well known in the literature. Others, like the
soundness property below, arise because we have made the parameter T explicit.

Definition 2.2 A preference relation �
1. is sound if for any satisfiable T , m is �T -minimal in M iff m |= T .
2. is stoppered if for all A ⊆ L and m ∈ Mod(A) there is n ∈ Min�T (Mod(A))

with n �T m.
3. is abstract if Th(m) = Th(n) implies m �T n and n �T m.
4. preserves closed sets if, for all T ⊆ L and closed N ⊆ M , the sets Min�T (N)

and ↓�T
N and ↑�T

N are closed.
5. is strongly abstract if for all N ⊆ M and m ∈ Mod(Th(N)) we have ∃n1, n2 ∈

N n1 �T m �T n2.

The intuition behind the soundness property is that nothing is “closer” to satisfy-
ing T than its models. Stopperedness is well known in the default reasoning literature
and tells us that we can find minimal models of any theory. Abstractness means that
the preference of an interpretation is determined only by the sentences that it satisfies.
The property of preservation of closed sets just tells us that certain useful operations
on closed sets of interpretations return closed sets. Strong abstractness says that the
preference order cannot make distinctions beyond the granularity of the logic. It rep-
resents an easy way to check whether the properties of abstractness and preservation
of closed sets are satisfied, as the following lemma shows.

Lemma 2.3 If � is strongly abstract, it is abstract and preserves closed sets.

Proof: Abstractness:

Th(m) = Th(n)⇒ m ∈ Mod(Th(n))

⇒ n �T m �T n (by strong abstractness).

Preservation of closed sets: Suppose T ⊆ L and N ⊆ M is closed. We prove that

1. Min�T (N) is closed. Suppose n ∈ Mod(Th(Min�T (N))); we will prove that
n ∈ Min�T (N). By strong abstractness, there are n1, n2 ∈ Min�T (N) such that
n1 �T n �T n2. Since n1 and n2 are both minimal and n1 �T n2, we also have
that n2 �T n1. But n1 �T n, so by transitivity n2 �T n, i.e., they are all equiv-
alent, so n ∈ Min�T (N).

2. ↓�T
N is closed. Suppose n ∈ Mod(Th(↓�T

(N))); we prove n ∈ ↓�T
(N). By

strong abstractness, there are n1, n2 ∈ ↓�T
(N) such that n1 �T n �T n2. Since
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n2 ∈ ↓�T
(N), we have n2 �T m for some m ∈ N; by transitivity, n �T m and

so n ∈ ↓�T
(N).

3. ↑�T
N is closed: similar.

In the standard account of preference relations, T is left implicit, and a fixed or-
dering � is assumed. This more general account presents T as a parameter. In other
work the authors and colleagues have described two preference structures; one based
on the notion of “natural consequence” (as in Ryan [12]) and one based on distances
between models (as in Ryan, Sernadas, and Sernadas [13]). In [15], Schobbens de-
fines a preference structure for predicate logic based on correspondences.

Given a preference relation, we may define an inference relation. Let A and T be
sets of sentences and ϕ a sentence in L . The inference relation |∼ ⊆ P (L ) × T × L
is defined as follows:

A |∼T ϕ :⇐⇒ Min�T (Mod(A)) ⊆ Mod(ϕ).

We will write ψ |∼T ϕ instead of {ψ} |∼T ϕ. The preference relations framework
has its origins in circumscription (cf. Lifschitz [7]). Extensive work relating proper-
ties of �T to properties of |∼T can be found in the accounts of Makinson [9], Kraus,
Lehmann, and Magidor [5], and Schlechta [14].

The connection established between default reasoning and belief revision re-
ported in [10] seems to be essentially the following. The statement that ψ |∼T ϕ cor-
responds to the statement that ϕ ∈ T ∗ ψ, i.e., that revising the information T with ψ

will result in a theory that includes ϕ. In [10], the authors show that the relationship
between the standard postulates for |∼ and for ∗ correspond very closely under this
translation. Thus, a preference relation can be used to define a belief revision opera-
tor.

Definition 2.4 (∗ in terms of �)

T ∗� ψ := Th(Min�T (Mod(ψ))).

This says that to revise T with ψ, we look at the models of ψ which are closest to T ;
then we take the theory of those models.

This definition is the first of the four definitions promised by the diagram in the
introduction. Notice the notation: we write ∗� for the belief revision function defined
in terms of the preference relation �.

3 Verisimilitude via power orderings The topic of verisimilitude concerns the
measurement of closeness of theories to the truth. The idea is to define a ternary re-
lation on theories:

A ≤T B if A is as close to T as B is.

Thus, the “truth” is represented as a theory. The actual truth is of course a complete
theory (that is, for all ϕ ∈ L , either ϕ ∈ T or ¬ϕ ∈ T), but many of the definitions
in the literature do not require this. Van Benthem’s [18] constitutes a very readable
survey of approaches as well as an analysis of the relations between verisimilitude
and conditionals. We will again assume reflexivity and transitivity.
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Definition 3.1 A verisimilitude relation ≤ is a ternary relation in T × T × T such
that, for all T ∈ T , the binary relation ≤T is reflexive and transitive.

The ternary relation allows us to select, from a given range of theories, one which
is closest to the truth in an obvious way: if the family {Ai | i ∈ I} of theories consists of
the candidates at hand, then a particular Ai is closest to the truth if it is ≤T -minimal in
{Ai | i ∈ I}, i.e., Ai ∈ Min≤T ({Ai | i ∈ I}). Of course there can be several incompatible
theories among the candidates, all minimally close.

3.1 History of verisimilitude The first formal definition of this relation is due to
Popper [11]: for theories A, B, and T , he defines that A ≤(P)

T B iff B ∩ T ⊆ A and
A − T ⊆ B. (The superscript (P) stands for Popper.) Since T contains only true
sentences, the first condition in the definition can be thought of as saying that A has
all the true sentences that B has. If T is indeed complete, then its complement consists
entirely of false sentences, in which case the second condition means that A has no
more false sentences in it than B has. If T is not complete then the second condition
is not so intuitive.

Another definition of the same relation, due to Miller and Kuipers, is A ≤(K)
T

B if Mod(B) ∩ Mod(T ) ⊆ Mod(A) and Mod(A) − Mod(T ) ⊆ Mod(B). We can
paraphrase the two conditions as: any model in B which might have been the true
situation must also be a model in A (so A does not lose any models); and any model
in A which could not have been the true situation must be a model in B (so A does
not introduce any bad models).

We have that
A ≤(P)

T B implies A ≤(K)
T B,

but the converse implication is false. It turns out that both Popper’s definition and
Miller and Kuiper’s both have undesirable consequences. The following observations
are due to Tichý and Miller:

Proposition 3.2

1. A <
(P)
T B implies A ⊆ T.

2. If T is complete and Mod(B) ∩ Mod(T ) = Mod(A) = ∅ then A ≤(K)
T B.

The first means that ≤(P) cannot strictly order “false” theories (that is, theories with
at least one false sentence in them). Since that was the whole purpose of the enter-
prise, it seems sufficient reason to reject ≤(P). The second item in the proposition
says that the contradictory theory A (with no models) is an improvement on any the-
ory B which shares no models with T . It is counterintuitive that the contradictory
theory should be an improvement on anything. A proof of the first item is given in
Schurz and Weingartner [16], p. 49; the second is trivial to demonstrate. It should be
noted that the second item is not seen as grounds for complete rejection of ≤(K); it is
still widely discussed.

A survey of approaches to verisimilitude can be found in [1].

3.2 Power-ordering approach to verisimilitude The power-ordering approach to
verisimilitude proceeds in the following way. We assume that L is propositional, and
that the truth is a single interpretation t in M , or equivalently, that it is the complete
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theory Th(t). By convention, we take t to be the interpretation in which every propo-
sition is assigned true (we just rename the propositions to arrange this). The set M
of interpretations has a natural order on it, given by m �t n iff for all propositions p,
n |= p implies m |= p; which says, of course, that m is as near to t as n is.

Thus, we have a natural order on interpretations which shows how they approx-
imate the truth. We want an order on theories. Since a theory T may be viewed as a
set of interpretations (namely Mod(T )), we may use a technique well known in com-
puter science called the power-ordering or Egli-Milner ordering; it tells us how to lift
a relation on points to sets of points. It says: if R is a relation on X then R+ is a rela-
tion on P (X ), defined by X R+Y iff ∀x ∈ X ∃y ∈ Y xRy ∧∀y ∈ Y ∃x ∈ X xRy. Thus,
Brink and Heidema define, for theories A, B,

A ≤t B ⇐⇒ ∀m ∈ Mod(A) ∃n ∈ Mod(B) m �t n ∧
∀n ∈ Mod(B) ∃m ∈ Mod(A) m �t n.

Further details and motivation are given in [2].
This approach is easily generalized. We need not assume that the “truth” is a

complete theory (thus represented by a single model t), nor the particular ordering
�t given above. Indeed, we can start with any preference relation � and compute a
corresponding verisimilitude relation:

Definition 3.3 (≤ in terms of �)

A ≤�
T B :⇐⇒ ∀m ∈ Mod(A) ∃n ∈ Mod(B) m �T n ∧

∀n ∈ Mod(B) ∃m ∈ Mod(A) m �T n.

The intuition behind this definition is the following. The theory A is as close to T as
B is if every model of A is as close to T as some model of B and also every model of
B is as far from T as some model of A. Thus, A is as close because it can match any
model of B with one of its models, and moreover, any of its models matches some B
model.

Conversely, starting with a verisimilitude relation (i.e., a ternary relation ≤ on
theories) we can derive a family of relations on M via the “singleton embedding” of
a relation in its power-relation.

Definition 3.4 (� in terms of ≤)

m �≤
T n :⇐⇒ Th(m) ≤T Th(n).

The intuition here is simple. Every interpretation m gives us a theory, namely Th(m).
If we’re able to compare theories for closeness to T , then that fact allows us to com-
pare interpretations too.

Proposition 3.5

1. If � is a preference relation, then ≤� is a verisimilitude relation.
2. If ≤ is a verisimilitude relation, then �≤ is a preference relation.

Proof: 1. We just check that the power-relation of a pre-order is again a pre-order,
a result known from the literature on power structures. Reflexivity is easy. For tran-
sitivity, suppose A ≤T B ≤T C; we will prove A ≤T C. Suppose m ∈ Mod(A); since
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A ≤T B there exists m′ ∈ Mod(B) with m′ �T m. Using this m′ and the fact that
B ≤T C, we find n ∈ Mod(C) with n �T m′. By transitivity of �, m �T n. The proof
of the other half is similar.

2. Reflexivity and transitivity of ≤T follow immediately from the reflexivity and
transitivity of �T .

3.3 Conditions on verisimilitude relations A great many conditions on verisimili-
tude relations have been studied; for example, see [18]. However, the conditions that
we will describe here seem to be yet more. The following conditions will be used in
the remainder of the paper.

Definition 3.6 A verisimilitude relation ≤
1. is sound if for any satisfiable theory T , the theory A is ≤T -minimal in T iff

T ⊆ A. This is the analogue of soundness for preference relations; it says the
best theories are those that include the truth (and possibly more).

2. is stoppered if for all A ⊆ L and B ∈ Ctg(A) there is a satisfiable C ∈
Min≤T (Ctg(A)) with C ≤T B; this is the natural analogue again.

3. respects complete theories if, for all A ∈ T and B ∈ C T , B ∈ Min≤T (Ctg(A)∩
C T ) implies B ∈ Min≤T (Ctg(A)). This means that a complete theory which
is minimal among the complete extensions of A is also minimal among all the
extensions.

4. is elaboration tolerant if, for A, B, C ∈ T , B ∈ Min≤T (Ctg(A)) and B ⊆ C
imply C ∈ Min≤T (Ctg(A)). It says that if B is closest to T among the theories
that contain A, then so is any elaboration of B.

5. satisfies split if

(a) A ≤T B and Mod(A) = ⋃
i∈I Mod(Ai) for some I implies that there is

a family {Bi}i∈I such that Mod(B) = ⋃
i∈I Mod(Bi) and Ai ≤T Bi. This

says that if A ≤ B and A can be split into components Ai, then B can be
similarly split and each of the component pairs are related by ≤T . Thus,
a verisimilitude relation can be “split” into components.

(b) A ≤T B and Mod(B) = ⋃
i∈I Mod(Bi) for some I implies that there is a

family {Ai}i∈I such that Mod(A) = ⋃
i∈I Mod(Ai) and Ai ≤T Bi. This is

similar to (a).

6. satisfies join if Mod(A) = ⋃
i∈I Mod(Ai) and Mod(B) = ⋃

i∈I Mod(Bi) and
Ai ≤T Bi for each i ∈ I, then A ≤T B. This is the converse of split; it takes the
components of a verisimilitude relation and “joins” them together.

7. is strongly abstract if for all sets of interpretations N ⊆ M and complete and
consistent theories A such that Mod(A) ⊆ Mod(Th(N)), there exists B1, B2,
complete, consistent, such that B1 ≤T A ≤T B2 and Mod(Bi) ⊆ N. This is a
“literal translation” of strong abstractness for �. It’s a rather technical condi-
tion which we will need only once.

The analogues of the properties of preference relations are natural desiderata for
verisimilitude. Note that there is no analogue of abstractness; every verisimilitude re-
lation trivially has the property that Mod(A) = Mod(B) implies A ≤T B and B ≤T A.
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The other conditions given above may seem less natural, but it will be seen that they
arise naturally from seeing verisimilitude in terms of the power-ordering construc-
tion.

3.4 Belief revision from verisimilitude We have so far defined a belief revision op-
erator in terms of a preference relation (slightly generalizing the standard way; Def-
inition 2.4), and we have shown how to define verisimilitude in terms of preference
and vice versa (Definitions 3.3 and 3.4). We now complete the diagram in the intro-
duction by giving a definition of belief revision in terms of verisimilitude.

To revise T with ψ, we look at the theories which contain ψ and pick among
those the ones which are closest to T .

Definition 3.7 (∗ in terms of ≤)

T ∗≤ ψ :=
⋂

(Min≤T (Ctg(ψ)))

Remark 3.8 The similarity in structure between Definitions 2.4 and 3.7 may be
seen by the following:

• T ∗� ψ = {ϕ ∈ L | Min�T (Mod(ψ)) ⊆ Mod(ϕ)};
• T ∗≤ ψ = {ϕ ∈ L | Min≤T (Ctg(ψ)) ⊆ Ctg(ϕ)}.
We now have the following definitions to enable us to inter-define preference

relations, verisimilitude relations and belief revision operators.

∗

�
�

�
�

�
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The remainder of the paper will explore properties of these definitions. First, in
the next section, we examine the relations between the constraints given for prefer-
ence relations and verisimilitude relations. We answer such questions as: what con-
ditions must be imposed on ≤ in order to guarantee that �≤ is stoppered? Then, in
the following section, we explore the round trips: what happens if we begin with a
preference relation, convert it into a verisimilitude relation, and then back again into
a preference relation? How do the two preference relations relate? The same ques-
tion can be asked about the other way around, starting with a verisimilitude relation
and doing a round trip via a preference relation. We also examine under what circum-
stances the two ways of defining belief revision coincide, i.e., when ∗≤ = ∗�.

4 Interrelating the conditions In this section we examine how the conditions
given for preference relations and verisimilitude relations translate using the defini-
tions of �≤ and ≤�.

We start with a lemma about Definition 3.3 which will be used often in this and
the next section. It says that, in the power-ordering approach to verisimilitude, the
theories closest to T selected from the family of theories containing B are precisely
those whose models are closest to being models of B.
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Lemma 4.1 If � is stoppered and preserves closed sets, then

B ∈ Min≤�
T
(Ctg(A)) ⇐⇒ Mod(B) ⊆ Min�T (Mod(A)).

In other words, the best theories are those with the best models, “best” being relative
to a given constraint.

Proof: Let ≤ be ≤�.
⇒ Suppose Mod(B) �⊆ Min�T (Mod(A)). Then either Mod(B) �⊆ Mod(A), i.e.,
B �∈ Ctg(A), and we are home; or B ∈ Ctg(A) and ∃n ∈ Mod(B)− Min�T (Mod(A)).
In that case we will prove that Th(↓�T

Mod(B)∩Min�T (Mod(A))) <T B, thus prov-
ing that B �∈ Min≤T (Ctg(A)).

1. We show ≤T . If m ∈ Mod(Th(↓�T
Mod(B) ∩ Min�T (Mod(A)))) then, since

the sets ↓�T
Mod(B) and Min�T (Mod(A)) and hence their intersection are all

closed, m ∈ ↓�T
Mod(B). Therefore, ∃n ∈ Mod(B) m �T n as required. On

the other hand, if n ∈ Mod(B) then n |= A, so by stopperedness we can find m ∈
Min�T (Mod(A)) with m �T n; and moreover, m ∈ ↓�T

Mod(B) as required.
2. We show �≥T . It is sufficient to show that there is some n |= B such that, for all

m |= Th(↓�T
Mod(B) ∩ Min�T (Mod(A))), n ��T m. Take any n ∈ Mod(B) −

Min�T (Mod(A)).

⇐ Suppose B �∈ Min≤T (Ctg(A)). Then either B �∈ Ctg(A), so Mod(B) �⊆ Mod(A),
or Mod(B) ⊆ Mod(A) and C <T B for some C ∈ Ctg(A). In the former case we are
home. In the latter, we must find n ∈ Mod(B) − Min�T (Mod(A)). We have

1. ∀c |= C ∃b |= B c �T b;
2. ∀b |= B ∃c |= C c �T b; and
3. ∃c |= C ∀b |= B b ��T c ∨ ∃b |= B ∀c |= C b ��T c.

If we have the first disjunct of 3, take this c. By 1, find b; c �T b, so by 3 again
c �T b and so b �∈ Min�T (Mod(A)). If we had the second disjunct of 3, take this b.
Take c from line 2. Again, c �T b. Therefore, b �∈ Min�T (Mod(A)), so Mod(B) �⊆
Min�T (Mod(A)).

Now we give our main result for this section, relating the properties of � and ≤.

Proposition 4.2

1. If � preserves closed sets, then ≤� satisfies split.
2. ≤� satisfies join.
3. If � is abstract, then ≤� respects complete theories.
4. If � is sound, stoppered and preserves closed sets then ≤� is sound.
5. If � is stoppered, then ≤� is stoppered and elaboration-tolerant.
6. If � is strongly abstract, then so is ≤�.
7. If ≤ is sound and respects complete theories, then �≤ is sound.
8. If ≤ is stoppered, elaboration tolerant, and satisfies split, then �≤ is stoppered.
9. �≤ is abstract.

10. If ≤ is strongly abstract, then so is �≤.
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Proof:

1. If A ≤T B and Mod(A) = ⋃
i∈I Mod(Ai) then define Bi = Th(↑�T

Mod(Ai) ∩
Mod(B)). First we show Mod(B) = ⋃

i∈I Mod(Bi), i.e.,

Mod(B) =
⋃

i∈I

Mod(Th(↑�T
Mod(Ai) ∩ Mod(B))).

⊆: If b |= B then there exists a |= A with a �T b. Let i be such that a ∈
Mod(Ai). Then b ∈ ↑�T

Mod(Ai) ∩ Mod(B), so b ∈ Mod(Th(↑�T
Mod(Ai) ∩

Mod(B))) for that i.

⊇: For any i we have that ↑�T
Mod(Ai)∩ Mod(B) ⊆ Mod(B), and therefore

Mod(Th(↑�T
Mod(Ai) ∩ Mod(B))) ⊆ Mod(Th(Mod(B))) = Mod(B), prov-

ing the result.

Next we prove that Ai ≤T Bi. Suppose a ∈ Mod(Ai); then a ∈ Mod(A), so
pick b ∈ Mod(B) such that a �T b. Then b ∈ ↑�T

Mod(Ai) ∩ Mod(B). On
the other hand, suppose b ∈ Mod(Bi); then since Mod(Ai) and Mod(B) are
closed and � preserves closed sets, ↑�T

Mod(Ai) ∩ Mod(B) is closed. Hence,
b ∈ ↑�T

Mod(Ai) ∩ Mod(B), so take a ∈ Mod(Ai) such that a �T b.

2. Suppose Mod(A) = ⋃
i∈I Mod(Ai) and Mod(B) = ⋃

i∈I Mod(Bi) and Ai ≤T

Bi for each i ∈ I. We want to prove that A ≤T B. Suppose a ∈ Mod(A); then
a ∈ Mod(Ai) for some i, and since Ai ≤T Bi there is a b ∈ Mod(Bi) ⊆ Mod(B)

with a �T b. Similarly, given b ∈ Mod(B) we can find a ∈ Mod(A) with a �T

b.

3. Suppose A ∈ T and B ∈ C T , B ∈ Min≤�
T
(Ctg(A) ∩ C T ). We will show B ∈

Min≤�
T
(Ctg(A)). Suppose not. Clearly, B ∈ Ctg(A); suppose C <�

T B. Our
reasoning now is similar to the proof of Lemma 4.1; we have

(a) ∀c |= C ∃b |= B c �T b;

(b) ∀b |= B ∃c |= C c �T b; and

(c) ∃c |= C ∀b |= B b ��T c ∨ ∃b |= B ∀c |= C b ��T c.

From these facts we find c �T b for some b |= B, c |= C, and hence, employing
abstractness, Th(c) <�

T Th(b). Since B is complete, B = Th(b) and therefore,
B �∈ Min≤�

T
(Ctg(A) ∩ C T ), a contradiction.

4. � sound ⇔ Mod(T ) = Min�T (M )

⇒ ∀A (Mod(A) ⊆ Mod(T ) ⇔ Mod(A) ⊆ Min�T (M ))

⇔ ∀A (A ∈ Ctg(T ) ⇔ A ∈ Min≤�
T
(Ctg(∅)))

⇔ Ctg(T ) = Min≤�
T
(T )

⇔ ≤� sound.

In going from the second line to the third, we use Lemma 4.1.

5. ≤� is stoppered: Suppose B ∈ Ctg(A). We want a C ∈ Min≤�
T
(Ctg(A)) with

C ≤�
T B. Put C = Th(↓�T

Mod(B) ∩ Min�T (Mod(A))). C is satisfiable be-
cause ↓�T

Mod(B) ∩ Min�T (Mod(A)) �= ∅. The fact that C ≤�
T B follows

easily; to prove C ∈ Min≤�
T
(Ctg(A)), use Lemma 4.1.
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≤� elaboration-tolerant: Suppose A, B, C theories with B ∈ Min≤�
T
(Ctg(A))

and B ⊆ C. We want to prove C ∈ Min≤�
T
(Ctg(A)).

B ∈ Min≤�
T
(Ctg(A)) ∧ B ⊆ C

⇔ Mod(B) ⊆ Min�T (Mod(A)) ∧ Mod(C) ⊆ Mod(B) (Lemma 4.1)

⇒ Mod(C) ⊆ Min�T (Mod(A))

⇔ C ∈ Min≤�
T
(Ctg(A)) (Lemma 4.1).

6. Suppose N and A are given as in the definition of strong abstractness for ≤.
Pick m ∈ Mod(A). Using the fact that � is strongly abstract, pick n1, n2 with
n1 �T m �T n2 and n1, n2 ∈ N. Then Th(n1) ≤�

T A ≤�
T Th(n2), since Th(m) =

A. Since � is abstract, Mod(Th(ni)) ⊆ N.

7. T ⊆ B ⇔ B ∈ Min≤T (T ) ≤ sound
⇒ (T ⊆ Th(m) ⇔ Th(m) ∈ Min≤T (T )) in particular
⇒ (T ⊆ Th(m) ⇔ Th(m) ∈ Min≤T (C T )) respects complete theories
⇒ (m ∈ Mod(T ) ⇔ m ∈ Min�≤ (M )) def. of �≤

8. Let A be a set of sentences such that m |= A. We require that n �≤
T m with

n ∈ Min�≤
T
(Mod(A)). Th(m) ∈ Ctg(A), so since ≤ is stoppered we can find a

satisfiable B ∈ Min≤T (Ctg(A)) with B ≤ Th(m). Pick any n |= B. By elabo-
ration tolerance, Th(n) ∈ Min≤T (Ctg(A)). Moreover, since Mod(Th(n)) ⊆
Mod(B) we have Mod(B) = Mod(Th(n)) ∪ Mod(B). Using this fact and
B ≤T Th(m), split Mod(Th(m)) into two subsets, Mod(A1) and Mod(A2)

with Th(n) ≤T A1. But A1 is either Th(m) or L , since Th(m) is complete.
The latter situation is impossible because of the case I = ∅ of split, and so
we have Th(n) ≤T Th(m), i.e., n �≤

T m. A similar argument shows that n ∈
Min�≤

T
(Mod(A)).

9. Suppose m, n ∈ M such that Th(m) = Th(n). Then Th(m) ≤T Th(n) (reflex-
ivity), so m �≤

T n.

10. If m ∈ Mod(Th(N)), then Mod(Th(m)) ⊆ Mod(Th(N)). Pick B1, B2 by
strong abstractness of ≤. Pick n1, n2 in Mod(B1), Mod(B2) respectively. Then
ni ∈ N and Th(ni) = Bi, each i, so n1 �≤

T m �≤
T n2.

5 Composing the definitions In this section we look at whether the diagram given
in the introduction commutes. First we consider a round trip: suppose we begin with
a preference relation, calculate the verisimilitude relation according to Definition 3.3,
and return to a preference relation via Definition 3.4. Intuitively we expect to arrive
back at the same preference relation, since the verisimilitude relation contains much
more structure than a preference relation. A verisimilitude relation contains infor-
mation about partial, incomplete situations whereas a preference relation just orders
(total) models. Going from � to ≤ freely generates a particular “canonical” ordering
of theories, which from the point of view of � contains a lot of redundancy. Going
the other way forgets this extra structure.

Indeed, it is sufficient to impose the relatively benign condition of abstractness
on � in order to guarantee that the round trip preserves the preference relation.
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Proposition 5.1 If � is abstract, �≤� = �.

Proof:
m �≤�

T n ⇔ Th(m) ≤�
T Th(n)

⇔ ∀m′ |= Th(m) ∃n′ |= Th(n) m′ �T n′ ∧
∀n′ |= Th(n) ∃m′ |= Th(m) m′ �T n′.

From the Introduction, m′ |= Th(m) implies Th(m′) = Th(m), which, since � is ab-
stract, means that m′ �T n′ iff m �T n′. By a similar argument, this reduces to m �T n,
and the result is proved.

The other round-trip is less well behaved. If we go from a verisimilitude relation
to a preference relation and then back again, there is no guarantee that we will recover
the original verisimilitude relation. The intuitive reason has already been stated: the
verisimilitude relation contains a lot of structure, which is jettisoned by Definition 3.4
and then a canonical version of which is freely generated by Definition 3.3. However,
we should expect that the round-trip will preserve the relation for complete theories.

Proposition 5.2 If A, B are complete and consistent theories and ≤ is abstract,
A ≤�≤

T B iff A ≤T B.

Proof: Since ≤ is abstract, so is �≤. Since A is complete and consistent, it is equal
to Th(m) for some m (indeed, any m ∈ Mod(A)). Similarly, B = Th(n) for some n.

A ≤�≤
T B ⇔ ∀m′ |= Th(m) ∃n′ |= Th(n) m′ �≤

T n′

∧ ∀n′ |= Th(n) ∃m′ |= Th(m) m′ �≤
T n′

⇔ m �≤
T n

⇔ Th(m) ≤T Th(n)

⇔ A ≤T B

The reasoning from the second formulation to the third uses the fact that �≤ is abstract
in a similar way to the proof of the previous proposition.

We may formulate some conditions on ≤ which will guarantee that the round-
trip via a preference will return exactly the same verisimilitude relation. These condi-
tions are rather strong, forcing ≤ to order incomplete situations in a way compatible
with the way it orders complete ones. This is the role of the conditions split and join
in the following proposition. The requirement of strong abstractness is there for the
technical reason that it guarantees that certain sets are closed.

Proposition 5.3 If ≤ is strongly abstract and satisfies split and join, then ≤�≤ = ≤.

Proof: Note that �≤ is strongly abstract (Proposition 4.2.6) and therefore it is ab-
stract and preserves closed sets (Lemma 2.3). We want to show A ≤T B iff: ∀a ∈
Mod(A) ∃b ∈ Mod(B) Th(a) ≤T Th(b) and ∀b ∈ Mod(B) ∃a ∈ Mod(A) Th(a) ≤T

Th(b).

⇐: Let I be the disjoint union of Mod(A) and Mod(B). If i is some a in Mod(A),
let Ai = Th(a) and Bi = Th(b) where b is the b which comes from a using the RHS.
Similarly, if i is some b in Mod(B), let Bi = Th(b) and Ai = Th(a) where a is the a
which comes from b using the RHS. Then Mod(A) = ⋃

i∈I Mod(Ai) and Mod(B) =⋃
i∈I Mod(Bi) and Ai ≤T Bi, so by join A ≤T B.
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⇒: We have A ≤T B, and want to show the RHS. For the first part of the RHS: we
suppose a ∈ Mod(A), and want to find b ∈ Mod(B) with Th(a) ≤T Th(b).

Consider Mod(B) = ⋃
n∈Mod(B){n}; by split, find the family {An | n ∈ Mod(B)}

which covers A, i.e., Mod(A) = ⋃
n∈Mod(B) Mod(An). Since a ∈ Mod(A), pick b

such that a ∈ Mod(Ab). By the use of split we have Ab ≤T Th(b).
Now use split again, this time writing Mod(Ab) = ⋃

m∈Mod(Ab){m}, to find
the family {Bm} such that Mod(Th(b)) = ⋃

m∈Mod(Ab) Mod(Bm) and for each m ∈
Mod(Ab), we have Th(m) ≤T Bm. In particular, Th(a) ≤T Ba. But each such Bm is
equal either to Th(b) or to L , since Mod(Bm) is a subset of the models of Th(b) all
of which are satisfaction-equivalent. Thus, either Th(a) ≤T Th(b) or Th(a) ≤T L .
The latter case is ruled out by the special case I = ∅ of split, so we are left with
Th(a) ≤T Th(b).

The second part of the RHS is similar.

Finally, we ask: when do ∗≤ and ∗� coincide? This is the other aspect of the
question of whether the diagram commutes.

Proposition 5.4 If � is stoppered and preserves closed sets then ∗� = ∗≤�
.

Proof: We show that Min�T (Mod(ψ)) ⊆ Mod(ϕ) iff Min≤T (Ctg(ψ)) ⊆ Ctg(ϕ).
⇒: Suppose C ∈ Min≤T (Ctg(ψ)). We need to prove C ∈ Ctg(ϕ). By Lemma 4.1,
Mod(C) ⊆ Min�T (Mod(ψ)), so Mod(C) ⊆ Mod(ϕ), so C ∈ Ctg(ϕ).

⇐: Suppose N ⊆ Min�T (Mod(ψ)). We need to prove N ⊆ Mod(ϕ). Let B =
Th(N). Then, since Min�T (Mod(ψ)) is closed, Mod(B) ⊆ Min�T (Mod(ψ)), so
by Lemma 4.1, B ∈ Min≤T (Ctg(A)). Therefore B ∈ Ctg(ϕ), so N = Mod(B) ⊆
Mod(ϕ).

The conditions required for this proposition are relatively weak, as one might expect,
in view of the fact that verisimilitude relations potentially contain more information
than preference relations, but those verisimilitude relations which are generated from
a preference relation do not contain any surprises. The conditions required in the
next proposition are stronger, because we have to constrain the verisimilitude rela-
tion more.

Proposition 5.5 If ≤ respects complete theories and is elaboration-tolerant then
∗≤ = ∗�≤

.

Proof: It is sufficient to prove Min≤T (ψ) ⊆ Ctg(ϕ) iff Min≤T (Ctg(ψ) ∩ C T ) ⊆
Ctg(ϕ) ∩ C T .

⇒: This follows easily from the fact that ≤ respects complete theories.

⇐: Suppose C ∈ Min≤T (Ctg(ψ)). We want to prove that Mod(C) ⊆ Mod(B).
Take m |= C. By the fact that ≤ is elaboration-tolerant, Th(m) ∈ Min≤T (Ctg(A));
so Th(m) ∈ Ctg(B), i.e., m |= B.

6 Conclusions and outlook We have given an intuitive definition of belief revi-
sion in terms of verisimilitude and shown close connections between the preferential
models approach to belief revision and the power-ordering approach to verisimili-
tude. The connection may be succinctly summarized as follows.
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Preference relations order models according to how close they are to some given
theory, whereas verisimilitude relations order theories according to the same crite-
rion. We have shown how to extract a verisimilitude relation from a preference rela-
tion and vice-versa, and we have shown sufficient conditions to prove that the notions
are inter-definable. In general, verisimilitude relations contain more information than
preference relations because they say how to order partial theories as well as total
models. Moving from a verisimilitude relation to a preference relation discards this
extra information, whereas moving in the opposite direction freely generates a canon-
ical version of it.

Further work will complete the triangle of Section 1 by finding definitions of a
preference relation and verisimilitude relation in terms of an arbitrary belief revision
operator. Of course, a definition of � in terms of ∗ already exists in the literature,
by going via the non-monotonic inference operator |∼ and using the representation
theorems of [5] and others. Therefore, we can also construct ≤ by applying Defini-
tion 3.3; but more likely, there is a more interesting way of constructing ≤ directly
from ∗ which exploits the extra freedom of a verisimilitude relation.
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