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Remarks on Structure Theorems for
w1-Saturated Models

TAPANI HYTTINEN

Abstract We give a characterization for those stable theories whose
saturated models have a “Shelah-style” structure theorem. We use this charac-
terization to prove that if a theory is countable, stable, and 1-based without dop
or didip, then itsw;-saturated models have a structure theorem. Prior to us, this
is proved in a paper of Hart, Pillay, and Starchenko (in which they also count
the number of models, which we do not do here). Some other remarks are also
included.

In this paper we will assume thatis a complete countable stable theory. In order
to simplify the notation we use the monster molel and by a model we mean an
elementary submodel &f. So if A C B are models ther\ < B.

Wewrite 4, B, and so on fotw;-saturated (elementary sub-) modelsNbfand
A, B, and so on for subsets d. By a, b, and so on we mean finite sequences of
elements oM.

Wewrite w1-prime for F -prime and4[ A] for w;-prime model oves1 U A. By
Al s Cwe meart(A, CU B) does not fork oveB, by A>g C we meanA dominates
C overB, and byt(a, A) - Bwe meart(a, A) is orthogonal toB.

Let P be a tree without branches of lengthw. Then byt~ we mean the imme-
diate predecessor off t € P is not the root.

Definition 1 (Shelah[fl]) We say that(P, f, g) is a decomposition ofl if the fol-
lowing hold.

1. Pis atree without branches of lengthw, f: (P—{r}) > A andg: P —
P(A4), wherer € P is the root ofP and P(A4) is the power set ofl;

2. g(r) is anwi-prime model (ovew);

if tis not the root andi™ =t thent(f(u), g(t)) 4 g(t™);

4. forallt € P, {f(u)] u~ =t} is a maximal independent sequence oyéj of
elements of? satisfying B);

w
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5. ift=u", theng(u) = gO[ f (W]

In order to simplify the notation, we writg for f (t), and.4; for g(t) and say thad is
w1-prime over a decompositiars, f, g) (of someB) if A is wi-prime ovel J{ 4|t €
P}.
The following basic property of a decomposition is frequently used in this paper
(for proof, see the proof of XVII 1.6 Claim 2 in Baldwifif and add an easy induc-
tion). If S+ @ is a downward closed subset Bft ¢ Pandt=S={t' € P| t’ >
t& Vt<p<t, pgS}, thenU{Ay|t et S} |4 U{As| se S).
Definition 2
1. We say thal has the structure property (SP) if the following holds: ForAll
if (P, f, g) is adecomposion ofl andB C A4 is w,-prime over(P, f, g) then
B=A.
2. We say thal has the weak structure property (WSP) if the following holds: For
all 4, if (P, f, g) is a decomposion aofl then4 is w,-prime over(P, f, g).
3. We say that(a, 4), 4 w;-saturated, is a c-type if for adb,-saturatedB C 4
the following holds: ift(a, A4) # B then there id ¢ B such thab | 3 4 and
arg b.
4. We say thaT has the compulsion property (CP) if for al}-saturated C B,
A +# B, there isa € B— A4 such that(a, 4) is a c-type.
5. We say thall has the strong compulsion property (sCP) if every nonalgebraic
type over anw;-saturated model is a c-type.

Clearly SP implies wSP, and sCP implies CP. We will show in fact that all these are
equivalent, assuming has ndop and ndidip.

Lemma3 wSPimpliessCP

Proof: Let A4 bew;-saturated, we show thtta, A4) is a c-type. LetB C 4 bew;-
saturated ant(a, A4) 4 B. Without loss of generality we may assume tiais w1-
prime. Byt(a, 4) # ‘B, we getb such thab |3z 4 andb | 5 a.

We can choose a decompositioR, f, g) for 4 so thatg(r) = B, wherer is the
root of P. Let C = A[a] and choose a decompositigR’, ', g') for C extending
(P, f, g). Clearly if there ig € P" — P such that™ =r, we have proved the lemma.
So for a contradiction, we assume that fortadl P’ — P, t~ #r.

1. If P = P, then{4|t € P}>g C, which impliesb | g C, acontradiction.
2. AssumeP’ #£ P.

Claim: t(U{&|te P'— P}, 4) 4 B.

Proof of Claim:  We show that for allP* asP’ abovet(U{4| t € P* — P}, 4) - B.
Clearly it is enough to prove this for dif* such that P* — P| is finite. We prove this
by induction omn = |P* — PJ.

n=1: Let P* — P = {to}. Becausd (A, A;) B, U{A| t € P} > A and
iz W“a U{A4| t € P} we get the claim immediately.

Nn=m+1 LetP*=PU({ty,...,tntandP~ = PU{tg, ..., tn_1}. Wemay
assume, is a leaf of P*. Letd be such thad |z 4. It is enough to showd | 4
Ui<n/q-ti-
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ChooseD so that4 € D and?D is w,-prime overJ{ A;| t € P~}. By induction
assumptiord | 4 U{4;|t € P~ — P} and because | 3 A we getd | 3 U{Z|te P~}
Sod | 3 D. Because(A,,, A4-) 4 B, U{A&|te P7} > A D and 4, A U{|te
P~} we gett(4,, D) 4 B. Sod |y A, which impliesd | 4 Ui.n4;. Hence the
Claim.

By the claimb | g U{4;| t € P}, and because/{%|te P}>g Cwegeth |3 C, a
contradiction. This completes the proof of the lemma.

We say thatT has didip if there ared;, i < w, w;-saturated and nonalgebragice
S(4,,) such that

1. foralli < j<w, 4 C A4,
2. 4, is wi-prime overJ; ., 4,
3. foralli < w, p- 4.

If T does not have didip we say it has ndidip. We wpte? B for p almost orhogonal
to B.

Lemma4 If T hasdidip, thenthereare 4, i < w, w;-saturated such that

1 forali<j<w 4 CA,

2. 4, iswy-primeover Ui, 4,

3. 4, isnot FS -minimal over Ui,4 (see[H]).
Proof: This goes essentially as Lemma X 2.2in[4]. |%ti < w,andp € 4, be as
in the definition of didip. We show thdE) above holds. By4], Theorem IV 4.21, it
is enough to show that iA,, there is an infinite indiscernible sequence aver, 4;.

For this it is enough to show that for all countaldecC 4, p [ (AU J;_, A) is
satisfied in4,,. Without loss of generality we may assume that,

(o) pdoes not fork oveA and A amodel,
(B) foralli <w, AN 4; is a model,
(y) foralli <w, Alana A
Then
*) prA+ANA,
foralli < w. Letae 4, satisfyp | A. Itisenough to show that | o Ui, 4. If not,

choosé < w andc € 4 such that } 5 c. By (y) abovec | ang A, Which contradicts
(*) above.

Definition 5 Let (P, f, g) be a decomposition ofl. We say that(4 )i iS a gen-
erating sequence, if there is an enumeratioRoP = {tj| i < «}, such thatiift; < t;
theni < j and the following hold.

1. Foralli < a, 4 C 4;

2. Ay = Ay, (to must be the root oP);

3. /qH-l = /ql[/q{.]v

4. ifi < «islimitthen4; is wi-prime overUj<i Aj.
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Lemma6 Let (P, f, g) beadecomposition of 4, ()i, a generating sequence,
i* <aand P« = {tj| i <i*}. Assumety,...,t,_1 € P« aredistinct and am, m < n,
are finite sequences from [ J{A:| t € t;]Pi*}, where tr}Pi* ={tePlt>th &Vinh <

p<t, pgP:}. Thenforallm<n,
() ama, AU Jlad k<n, k#mj.

Proof: We prove this by induction ofi.

i* = 1: Trivial.

i* = j+ 1: Lett, andam, m < n, be a in the claim. For a contradiction assume
(*) is not true.

Claim: am |z, AjUA; UJlal k < n, k#m}.
Proof of Claim:  Without loss of generality we may assume tipat < n are such
thattp = tj andt, = tj. There are three cases.

m# p,r: By the induction assumption for all sequeneesom 4, am | 4,,
AjuauJfal k < n, k#m}. Soam | 4, AjU A&, UU{akl k < n, k#mj}.

m = p: By the induction assumption for all sequeneeom 4, an U & U
ala, AjUUlal k<n, k#mr}. SoanUa U4, g, AjU ULl k< n, k#
m, r} which impliesam | 4, ua, Aj U U{ak| k < n, k# m,r}. Becausedm | 4, a
we get the claim.

m = r: Essentially symmetric with the case= p.

By the claim there are finitee 4,1 — (4; U A4;) and countabl€ C A4; U 4; such
that,

1. t(c,C) Ft(c, A; Uﬂtj),
2. (@m)m<n Ac C.
Let P' = {t € Pj41] 3m < n, t < ty}. Choose countabl® < | J;.p A so that,
a. forallm<n, Dy, = DN 4, is a model,
b. forallm<n, am |p,, CUDUJ{akl k < m}.
The existence of sucb follows from the claim and the finite character of forking.
Finaly we choosey, € 4, so that for allm < n,
i' t(all"nv Dtm) = t(am, Dtm)!
ii. am b, CUDUU{a k< m.
Suchay, exists becaus€ U D U | J{a,| k < m} is countable and it there is an

uncountableD;, -independent set of sequen@gssatisfying (i) above.
Then by induction on &< m < nwe can see that

t((@)k<m, CU D) = t((&)k<m, CU D).

Especiallyt((ay,)m<n, C) = t((@m)m<n, C) which contradicts (1) and (2) above.
i* is limit: Let tn andam, m < n, be & in the claim and?/. = | J;_;« 4. Then
by induction assumption and finite character of forking fomal n

am ba, AU Jlad k< n, k#m.

So we can prove the claim as in the successor case. This completes the proof of the
lemma.
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In the proof of Lemma 8 the following deduction is frequently needed. So although
trivial we state it as lemma.

Lemma7 AssumeAd C BC C arew;-saturatedandaand b aresuchthata | C,
b |4 Bandargb. Thenthereisc suchthat t(c, B) =t(b, B),c |4 C andawcC.

Proof: Just choose so thatt(c, BUa) = t(b, BUa) andc | gy, C.

Lemma8 Assume T hasndopand ndidip. Then CPimplies SP.

Proof: Let A bew;-saturated andP, f, g) a deccomposition ofd. Let (4 )i, be
any generating sequence andfet {tj| i < «} be the enumeration d? given by the
definition of generating sequence.

Clam: A4,=A4.

Proof of Claim:  Assume not. Forathe 4 — 4, leti, be the least ordinal such that
t(a, Ay) A A,. Choosea € 4 — A4, so that,

I. for somel < « eithert(a, 4) is a c-type an | 4 A, ort(a, 4,) is a c-type
anda ¢,q‘| 4, and
ii. among thesa, i = i, is the least.

By CP such ama exists.

There are two cases: assume first that for sbmex t(a, 4;) is a c-type and
ala, A,. Lett <t be the least such that(a, 4, ) A 4. Sincet(a, 4 ) is a c-type
chooséb so that

1. blg A, and
2. a>g(| b.

Then ift™ exists, by (2x(b, 4, ) 4 A and ® by (1),t(b, 4) 4 4-.

By Lemma 7 we may chooseg € 4 — 4, so thatb’ | 4 4, andt(b’, 4)) =
t(b, 4;), which contradicts Definitiof.[4]

So we may assume thiak « is such that(a, 4,) is a c-type ané | 4, 4,. Let
b’ be the element given ya, 4,) being a c-typeb’ | 4 4 andar4 b’. By CP we
may chooséd” so thatb’ >4 b” andt(b”, 4) is a c-type. By using Lemma 7 twice
we findb € 4 — 4, such thab | 5 A4, andt(b, ) is a c-type.

1. i is not a limit withcf (i) = w. This is because otherwise by ndidifb, 4,) A
A, for somej < i and sat(b, 4,) # A;, which contradicts the choice af

2. iis notalimit withcf (i) > w. We e this as above, us€T) < w; instead of
ndidip.

3. iis nota successor. Assume itiisz j + 1. Thenf; is w;-prime overd; U 4,
and by Lemma 67 ¢,th__ A, By the choice of, t(b, 4) 4 4;. So by ndop
t(b, 4) A A;. Becausé(b, 4) is a c-type we choosg so thatc’ Wl(j A and
beg c. By Lemma 7 we can find € 4 — A4, such that(c, 4) = t(c, 4)
andc | 4 A,. If tj is not the root, then by the choice aft(c, 4,) 4 A4; and
sinceﬁltjf c A4, c Whj A, and 7 is wp-saturated, we getc, 4, ) - /‘thjf. But
this contradicts DefinitiofLEZ]

By (1), (2), and (3)j = 0, which, together with the fact thata, 4,) is a c-type and
Lemma 7, contradicts Definitidil4] Hence the Claim.
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Let B C A4 be w;-prime over J{A| t € P}. Wewant to show thaB = 4. For this
we choose a generating sequende) ., sothat4; € Bfor alli < «. By the claim
aboveA, = 4 and soB = A. This completes the proof of the lemma.

Corollary 9 Assume T hasndopand ndidip. Then SP, wSP, CPand sCPare equiv-
alent.

We want to point out that this is not a main gap fof-saturated models. For main
gap we should prove a proper honstructure theorem for theories without CP.

Notice that, instead of choosingn the proof of Lemma 8 the way we did, the
author could not choodee P so thatt(a, B) # 4, because he does not know how
to prove the existence of sutfirom ndop and ndidip alone. (Of course, SP implies
the existence of such) This is also the reason why the author thinks that it is not
completely trivial that wSP implies SP (under ndop and ndidip).

Lemmal0 (i) If T hasdopthenit doesnot have SP. (ii) If T hasdidip then it does
not have SP.

Proof: Since these are similar, we prove only (i).
For a contradiction we assuriehas SP. Letv,-saturatedd;, i < 4, and nonal-
gebraicp € S(43) be as in the definition of dop, i.e.,

. Ag € AN A, A1 |2, Ao,

ii. Az wi-prime overd, U 4,

iii. pd4 forie{l,?2}.
Without loss of generality we may assuridg is w;-prime overd. Let arealizep
andB = A4z[a]. Let (Py, f1,01) and(P,, f;, g2) be decompositions ofl; and 4,
respectively. We may assunf? N P> = {r}, wherer is the root of bothP; and P,
andgy (r) = da(r) = Ap.
Claim: P;U P, is a decomposition ofls.

Proof of Claim: By (i) above,P; U P, satisfies (1) —(3) and (5) in the definition of
decomposition. In order to show (4) it is enough to prove thats w1-prime over
PLU Ps.

Let 4 be w1-prime overP; U P,. ThenP, U P, is a decompaosition ofi. By
(i) and (ii) above we may assume thds C 4. On the other hand we can choose
A’ C A3 which isw1-prime overP, U P,. By SPA’ = 4. Hence the Claim.

Nowt(a, A43) - g, (t) forallt € P, andt(a, A3) 4 go(t) for all t € P,, which implies
that P, U P, is a decomposition oB, acontradiction with SP.

Lemmall If T®is1-based then T® hassCP

Proof: The following property of 1-based theories is used in this prooM,

A lac(Anacd(B) B

for all A andB (see Bouscaren and Hrushov4Rj)[

LetB C 4 bew;-saturated models anth, A4) 4 B. Choose sothat | ¢ 4 and
C4qa. LetC = B[c]andD = A[a]. Becausd isone-basedar{ ;a,CND Z B.
Chooseb € (CND) — B. Thenar4 band becausexg b, b | 3 4.
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Corollary 12 ([B]) Assume T® is 1-based. Then T® has SPiff it has ndopand
ndidip.
Proof: <«: Lemma 11 and Corollary 9.

=: Lemma 10.

Notice that in Hart, Pillay, and Starchenkg fhe structure theorem is stronger than
the one needed for SP. Shelll proved SP for countable superstable theories with-
out dop by using regular types more or less the way we use c-types. We notice the
following.

Lemmal3 |Iffor all w,-saturated models 4 C B, 4 + B, thereisa € B — A4 such
that t(a, A) hasweight one, then T has CP.

Proof: Itis enough to show that under the assumptions of the lemma every weight
one type oveiws-saturated model is a c-type. So assubhe A4 arew;-saturated,
the weight oft(a, 4) is one, and(a, A4) A B. Chooseb so thatb | 3 A andb } 4 a.
Choose = (¢))i«q, @ < w, amaximal independent sequence oBsuch that for all
i < « the weight oft(ci, B) is one and f 5 ¢;. The assumption of the lemma implies
thate > 0. Choosa = (d;);, SO thatt(d ~ b, B) = t(T ~ b, B) andd | g, 4.

BecauseB is w1-saturatedd is a maximal independent sequence aflesuch
that for alli < « the weight oft(d;, B) isone ant {3 di. Soa { 4 d. Choosej < «
least suchthad § 4 (dj)i<j. Let AC A be a countable model so theait) daA. Let
(&)i<j be chosen fronfl so thatt((g)i<j, A) = t((di)i<j, A). Finaly letb be such
thatt(b ~ (&)i<j ~a, A) =t(d; —~ (d)i<j —~ a, A) andb ‘LAuaU(Q)kj .

Thenb | o A and sot(b, A) = t(dj, ), especiallyb | 3 A and the weight of
t(b, A) is one. Alsoa } 4 b which impliesar 4 b.

If in Lemma 13 we replace “weight one” by “regular,” then the lemma is already
proved in [f]. That proof would also work in this case, but we gave a bit different
proof for a change.

There are examples (unpublished as far as the author knows) which show that
the assumption of Lemma 13 need not hold for theories having SP. Nevertheless we
prove the following lemma which may in some cases be helpful for proving CP.

Lemmal4 Assume A C ‘B are w;-saturated models such that B £ A4 and for all
b e B— A4 theweight of t(b, A4) isnot one. Thenfor all b € B — A4 therearea count-
ablemodel AC 4 and g € B, i < w, such that (g )i, isindependent over A, for
ali<w,bfaa andb | A. Especially then the weight of t(b, A) isinfinite.

Proof: Soletb € B— 4. By induction onn <  we choose countable modelg <
A,a' e B,i <n+1landc" € B— 4 such that,

I. a',i < n+ 1together withc" is independent oveh;

i. bfa, ctandb f, aforalli <n+1;
ii. foralln<n,tb~aj~...~al, A)=tlb~aJ ~...~al, Ay;and
iv. bla, Aandforalln <n’, Ay C Ay.

Clearly if we can do this we have proved the lemma.

n = 0: Because the weight dfb, 4) is > 2 and 4 is w;-saturated, we can
choose countable modéh € A such thab | 5, A andt(b, Ag) has pre-weight 2.
Then alsaa] andc? can be found easily.
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n > 0: Assume we have found these elementsifo¥Ve show how to choose
them forn + 1.

Letg=b ~c" ~aj ~... ~a). If there isd such thatc" f, d, d |auc
ag —~ ... ~apandb | A, d we let D be countable such thatc D, A,UD s a
model andD | a,ud 9. Then we choos®’ C A4 such thatt(D’, Ay) = t(D, An).
Thent(b ~ D', Ay) =t(b ~ D, Ay). Finally we choose™ anda",i < n+1, so that
tc" ~af ~...~al' ~ D, Ajub) =t(c" ~aj ~... ~al ~ D, A,Ub). Now
c"la,8)~...~aqandd | pucn @) ~... ~apandsa ~c" |5, 8] ~ ... ~aj.
This implies easily tha&, i < n+ 1 together withc" is independent oveA, U d.
Becausey | a,ud D itis easy to see that (i) — (iv) remain true if we replatgwith
An U D everywhere. And so the same is true @, b, ¢ anda", i < n+ 1.

Becausea (T) < w1 we can repeat this at most countably many times; limits are
no problem because of the finite character of forking. So we carAind,, anda",
i < n+1, such that (i) - (iv) remain true anddfis such that™ ¢, d andag' ~

.. ~ay L aucn dthenb A d.

We want to chooseA,;; so that in addition to the above,c™, Ay, 1) has pre-

weight> 2. There are two cases.

Casel: c" Aa A We let Aqyg = An. Then t(c", Any1) has pre-weight 2 be-
cause there il C 4 such thatc” /., d and on the other hand" }, ., band
bla,d

Case2: c"|a A:Because(c", A) has weight- 2there is countabl® such that
A,U Dis amodelc™ | o, D andt(c", AjU D) has pre-weight- 2. We chooseD
so that

n

n
D\LAEUC’” b/‘\ao N el

Dinb~c"~al ~. . ~a

Because™ ~ ag' ~ ... ~ ap'is finite andt(c", A) is stationary we can find such
D from 4.

Let A1 = AU D. Clearly (i) — (iv) are true for these elements and", An ;1)
has pre-weight 2. We leta]"* = a" fori < n+ 1. Letdbe suchthad 4, , c"and
d | a,uen @t~ ... ~aptt. We want to show thab 4 » , d. For a contradiction
assume not. Then theredsC A1 — A}, such that™ 4a d ~d'. Butthenb | A

d ~d,and
(*) d~d \LA&UC’” a8+1 ST an”+l,

(€"~aftt ~ ... ~alt! | o Apprandsoaft ~ ... ~altt | o uen AnsiUC,
which implies (*)), a contradiction.

So we can choose™™* anda]}'] so that

/n n+1.
c )‘{AnJrl c !
/n n+1.
c ’zAnJrl an+1’
n+1 n+1.
" A, @ty and

R

1 n+1 n+1 1
Cn+ Aanil‘l’ArH—lUC/n bAaO—i_ A/-\aﬂ"' .
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Thenb g, ¢ b,  altlandc™™ ~alts |, ajtt ~ ... ~a]™, which
implies thatc! together witha"**, i < n+ 2, is independent ovehy 1.

The especially part follows now immediately from the following easy remark: if
gis a nonforking extension gd then the weight ofj is not smaller than the pre-weight

of p.
Wefinish this paper by giving another definition of c-types.

Definition 15 t(a, C) is an f-type if the following holds: ifB C C andt(a, C) A B
then there arel, 4’, C’, @ andc such that,

1. A=C[a], A = C'[a];

2. there is an automorphisrhthat takesq to 4’, C to C’, f(a) = a and fixes
B U c pointwise;

3. C yg C, A’ lc C;

4. clc A

5.cl24,clqg A.

Lemmal6 Ift(a, C)isac-typethenitisan f-type.

Proof: Let B C C be such that(a, C) A B. Becausd(a, C) is a c-type there is
¢’ such that’ | 3 C andar¢ ¢'. We choosed = C[a] andc € A4 so thatt(c, C) =
t(c’, C). We choosew;-saturated model§’ € 4’ so thatt(4’, BUc) =t(4, BUc)
andA’ | g c A. Then itis easy to see that these are as wanted.

Lemmal? InM®,ift(a, C)isanf-typethenitisa c-type.

Proof: LetB C C be such that(a, C) # B. ChooseA, 4’, C’,a andc as in the
definition of f-type. Because { .~ A there aral € A4 andg(X, y) so thatp(d, c) forks
over C. We chooseyr (X, y) ande € 4 so thaty(x, e) definesp(A4, ¢). As in the
definition of canonical base we choose equivalence reldias follows: E(v, w)
iff VX(¥ (X, v) < ¥ (X, w)). Letb=e/E & B. Let f be the automorphism given by
(2) in the definition of f-type. Leb’ = f(e)/E.

Because of (5) in the definition of f-typb=b’. Soa~, band becausa’ > b,
by the second part of (3) in the definition of f-typeg, -~ C and so by the first part of

(3),blgC.

By using Lemma 17 we can give another proof for Lemma 11.(1le¢w; -saturated.

It is enough to show that(a, C) is an f-type. So letB C C be w;-saturated and

t(a, C) A B. Chooseb so thatb |z C andb { - a. Let4 = C[a]. We choose setq;,

I < w, sothatdy = A4 and stg4;, BUb) = stp(A, BUb) and4; | gup U{Aj] | < i}.

Then this sequence is indiscernible but not free d8eChoosec from U{4;| 1 <

j <w}sothatc {- A. Ifwe letA" = 4; then these are as in the definition of f-type;
(5) follows from the following characterization of 1-based theories: the average type
of the sequence is based on any member of the sequence.

Conjecture 18 If T® isa complete countable stable theory then it has CP.
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