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Remarks on Structure Theorems for
ω1-Saturated Models

TAPANI HYTTINEN

Abstract We give a characterization for those stable theories whoseω1-
saturated models have a “Shelah-style” structure theorem. We use this charac-
terization to prove that if a theory is countable, stable, and 1-based without dop
or didip, then itsω1-saturated models have a structure theorem. Prior to us, this
is proved in a paper of Hart, Pillay, and Starchenko (in which they also count
the number of models, which we do not do here). Some other remarks are also
included.

In this paper we will assume thatT is a complete countable stable theory. In order
to simplify the notation we use the monster modelM, and by a model we mean an
elementary submodel ofM. So if A ⊆ B are models thenA ≺ B.

Wewrite A , B, and so on forω1-saturated (elementary sub-) models (ofM) and
A, B, and so on for subsets ofM. By a, b, and so on we mean finite sequences of
elements ofM.

Wewriteω1-prime forFs
ω1

-prime andA [ A] for ω1-prime model overA ∪ A. By
A ↓B C we meant(A, C ∪ B) does not fork overB, by A �B C we meanA dominates
C over B, and byt(a, A) � B we meant(a, A) is orthogonal toB.

Let P be a tree without branches of length> ω. Then byt− we mean the imme-
diate predecessor oft if t ∈ P is not the root.

Definition 1 (Shelah [4]) We say that(P, f, g) is a decomposition ofA if the fol-
lowing hold.

1. P is a tree without branches of length> ω, f : (P − {r}) → A andg : P →
P(A ), wherer ∈ P is the root ofP andP(A ) is the power set ofA ;

2. g(r) is anω1-prime model (over∅);
3. if t is not the root andu− = t thent( f (u), g(t)) � g(t−);
4. for all t ∈ P, { f (u)| u− = t} is a maximal independent sequence overg(t) of

elements ofA satisfying (3);
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5. if t = u−, theng(u) = g(t)[ f (u)].

In order to simplify the notation, we writeat for f (t), andAt for g(t) and say thatA is
ω1-prime over a decomposition(S, f, g) (of someB) if A isω1-prime over

⋃{At| t ∈
P}.

The following basic property of a decomposition is frequently used in this paper
(for proof, see the proof of XVII 1.6 Claim 2 in Baldwin [1] and add an easy induc-
tion). If S 	= ∅ is a downward closed subset ofP, t ∈ P and t−S = {t′ ∈ P| t′ >

t & ∀ t < p ≤ t′, p 	∈ S}, then∪{At′ | t′ ∈ t−S} ↓At ∪{As| s ∈ S}.
Definition 2

1. We say thatT has the structure property (SP) if the following holds: For allA ,
if (P, f, g) is a decomposion ofA andB ⊆ A is ω1-prime over(P, f, g) then
B = A .

2. We say thatT has the weak structure property (wSP) if the following holds: For
all A , if (P, f, g) is a decomposion ofA thenA is ω1-prime over(P, f, g).

3. We say thatt(a, A ), A ω1-saturated, is a c-type if for allω1-saturatedB ⊆ A
the following holds: ift(a, A ) 	� B then there isb 	∈ B such thatb ↓B A and
a �A b.

4. We say thatT has the compulsion property (CP) if for allω1-saturatedA ⊆ B,
A 	= B, there isa ∈ B − A such thatt(a, A ) is a c-type.

5. We say thatT has the strong compulsion property (sCP) if every nonalgebraic
type over anω1-saturated model is a c-type.

Clearly SP implies wSP, and sCP implies CP. We will show in fact that all these are
equivalent, assumingT has ndop and ndidip.

Lemma 3 wSPimplies sCP.

Proof: Let A beω1-saturated, we show thatt(a, A ) is a c-type. LetB ⊆ A beω1-
saturated andt(a, A ) 	� B. Without loss of generality we may assume thatB is ω1-
prime. Byt(a, A ) 	� B, we getb such thatb ↓B A andb 	 ↓A a.

Wecan choose a decomposition(P, f, g) for A so thatg(r) = B, wherer is the
root of P. Let C = A [a] and choose a decomposition(P′, f ′, g′) for C extending
(P, f, g). Clearly if there ist ∈ P′ − P such thatt− = r, wehave proved the lemma.
So for a contradiction, we assume that for allt ∈ P′ − P, t− 	= r.

1. If P′ = P, then{At| t ∈ P} �B C , which impliesb ↓B C , acontradiction.
2. AssumeP′ 	= P.

Claim: t(∪{At| t ∈ P′ − P}, A ) � B.

Proof of Claim: Weshow that for allP∗ asP′ abovet(∪{At| t ∈ P∗ − P}, A ) � B.
Clearly it is enough to prove this for allP∗ such that|P∗ − P| is finite. We prove this
by induction onn = |P∗ − P|.

n = 1: Let P∗ − P = {t0}. Becauset(At0, At−0 ) � B, ∪{At| t ∈ P} �At−0
A and

At0 ↓At−0
∪{At| t ∈ P} we get the claim immediately.

n = m + 1: Let P∗ = P ∪ {t0, . . . , tm} and P− = P ∪ {t0, . . . , tm−1}. We may
assumetm is a leaf of P∗. Let d be such thatd ↓B A . It is enough to showd ↓A
∪i<nAti .
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ChooseD so thatA ⊆ D andD is ω1-prime over∪{At| t ∈ P−}. By induction
assumptiond ↓A ∪{At| t ∈ P− − P} and becaused ↓B A we getd ↓B ∪{At| t ∈ P−}.
Sod ↓B D . Becauset(Atm , At−m ) � B, ∪{At| t ∈ P−} �At−m D andAtm ↓At−m ∪{At| t ∈
P−} we gett(Atm ,D ) � B. Sod ↓D Atm which impliesd ↓A ∪i<nAti . Hence the
Claim.

By the claimb ↓B ∪{At| t ∈ P′}, and because∪{At| t ∈ P′} �B C we getb ↓B C , a
contradiction. This completes the proof of the lemma.

We say thatT has didip if there areAi, i ≤ ω, ω1-saturated and nonalgebraicp ∈
S(Aω) such that

1. for all i < j ≤ ω, Ai ⊆ A j,

2. Aω is ω1-prime over∪i<ωAi,

3. for all i < ω, p � Ai.

If T does not have didip we say it has ndidip. We writep �a B for p almost orhogonal
to B.

Lemma 4 If T has didip, then there are Ai, i ≤ ω, ω1-saturated such that

1. for all i < j ≤ ω, Ai ⊆ A j,

2. Aω is ω1-prime over ∪i<ωAi,

3. Aω is not Fs
ω1

-minimal over ∪i<ωAi (see [4]).

Proof: This goes essentially as Lemma X 2.2 in [4]. LetAi, i ≤ ω, andp ∈ Aω be as
in the definition of didip. We show that (3) above holds. By [4], Theorem IV 4.21, it
is enough to show that inAω there is an infinite indiscernible sequence over∪i<ωAi.
For this it is enough to show that for all countableA ⊆ Aω, p � (A ∪ ⋃

i<ω Ai) is
satisfied inAω. Without loss of generality we may assume that,

(α) p does not fork overA and A amodel,

(β) for all i ≤ ω, A ∩ Ai is a model,

(γ) for all i ≤ ω, A ↓A∩Ai Ai.

Then
(*) p � A �a A ∩ Ai,

for all i < ω. Let a ∈ Aω satisfyp � A. It isenough to show thata ↓A ∪i<ωAi. If not,
choosei < ω andc ∈ Ai such thata 	 ↓A c. By (γ) abovec ↓A∩Ai A, which contradicts
(*) above.

Definition 5 Let (P, f, g) be a decomposition ofA . Wesay that(Ai)i≤α is a gen-
erating sequence, if there is an enumeration ofP, P = {ti| i < α}, such that ifti < t j

theni < j and the following hold.

1. For alli < α, Ai ⊆ A ;

2. A0 = At0 (t0 must be the root ofP);

3. Ai+1 = Ai[Ati ];

4. if i ≤ α is limit thenAi is ω1-prime over
⋃

j<i A j.
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Lemma 6 Let (P, f, g) be a decomposition of A , (Ai)i≤α a generating sequence,
i∗ < α and Pi∗ = {ti| i < i∗}. Assume t0, . . . , tn−1 ∈ Pi∗ are distinct and am, m < n,
are finite sequences from

⋃{At| t ∈ t−Pi∗
m }, where t−Pi∗

m = {t ∈ P| t > tm & ∀ tm <

p ≤ t, p 	∈ Pi∗}. Then for all m < n,

(∗) am ↓Atm
Ai∗ ∪

⋃
{ak| k < n, k 	= m}.

Proof: Weprove this by induction oni∗.
i∗ = 1: Trivial.
i∗ = j + 1: Let tm andam, m < n, be as in the claim. For a contradiction assume

(*) is not true.

Claim: am ↓Atm
A j ∪ At j ∪

⋃{ak| k < n, k 	= m}.
Proof of Claim: Without loss of generality we may assume thatp, r < n are such
that t p = t j andtr = t−j . There are three cases.

m 	= p, r: By the induction assumption for all sequencesa from At j , am ↓Atm

A j ∪ a ∪ ⋃{ak| k < n, k 	= m}. Soam ↓Atm
A j ∪ At j ∪

⋃{ak| k < n, k 	= m}.
m = p: By the induction assumption for all sequencesa from At j , am ∪ ar ∪

a ↓Atr
A j ∪

⋃{ak| k < n, k 	= m, r}. Soam ∪ ar ∪ At j ↓Atr
A j ∪

⋃{ak| k < n, k 	=
m, r} which impliesam ↓Atm ∪ar A j ∪ ⋃{ak| k < n, k 	= m, r}. Becauseam ↓Atm

ar

we get the claim.
m = r: Essentially symmetric with the casem = p.

By the claim there are finitec ∈ A j+1 − (A j ∪ At j ) and countableC ⊆ A j ∪ At j such
that,

1. t(c, C) � t(c, A j ∪ At j ),
2. (am)m<n 	 ↓C c.

Let P′ = {t ∈ Pj+1| ∃m < n, t ≤ tm}. Choose countableD ⊆ ⋃
t∈P′ At so that,

a. for allm < n, Dtm = D ∩ Atm is a model,
b. for all m < n, am ↓Dtm

C ∪ D ∪ ⋃{ak| k < m}.
The existence of suchD follows from the claim and the finite character of forking.
Finaly we choosea′

m ∈ Atm so that for allm < n,

i. t(a′
m, Dtm ) = t(am, Dtm ),

ii. a′
m ↓Dtm

C ∪ D ∪ ⋃{a′
k| k < m}.

Sucha′
m exists becauseC ∪ D ∪ ⋃{a′

k| k < m} is countable and inAtm there is an
uncountableDtm-independent set of sequencesa′

m satisfying (i) above.
Then by induction on 0< m ≤ n we can see that

t((a′
k)k<m, C ∪ D) = t((ak)k<m, C ∪ D).

Especiallyt((a′
m)m<n, C) = t((am)m<n, C) which contradicts (1) and (2) above.

i∗ is limit: Let tm andam, m < n, be as in the claim andA ′
i∗ = ⋃

i<i∗ Ai. Then
by induction assumption and finite character of forking for allm < n

am ↓Atm
A ′

i∗ ∪
⋃

{ak| k < n, k 	= m}.
So we can prove the claim as in the successor case. This completes the proof of the
lemma.
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In the proof of Lemma 8 the following deduction is frequently needed. So although
trivial we state it as lemma.

Lemma 7 Assume A ⊆ B ⊆ C are ω1-saturated and a and b are such that a ↓B C ,
b ↓A B and a �B b. Then there is c such that t(c,B ) = t(b,B ), c ↓A C and a �C c.

Proof: Just choosec so thatt(c,B ∪ a) = t(b,B ∪ a) andc ↓B∪a C .

Lemma 8 Assume T has ndopand ndidip. Then CP implies SP.

Proof: Let A beω1-saturated and(P, f, g) a decomposition ofA . Let (Ai)i≤α be
any generating sequence and letP = {ti| i < α} be the enumeration ofP given by the
definition of generating sequence.

Claim: Aα = A .

Proof of Claim: Assume not. For alla ∈ A − Aα let ia be the least ordinal such that
t(a, Aα) 	� Aia . Choosea ∈ A − Aα so that,

i. for somel ≤ α eithert(a, Al ) is a c-type anda ↓Al Aα or t(a, Atl ) is a c-type
anda ↓Atl

Aα; and
ii. among thesea, i = ia is the least.

By CP such ana exists.
There are two cases: assume first that for somel < α t(a, Atl ) is a c-type and

a ↓Atl
Aα. Let t ≤ tl be the leastt such thatt(a, Atl ) 	� At. Sincet(a, Atl ) is a c-type

chooseb so that

1. b ↓At Atl , and
2. a �Atl

b.

Then if t− exists, by (2)t(b, Atl ) � At− and so by (1),t(b, At) � At− .
By Lemma 7 we may chooseb′ ∈ A − Aα so thatb′ ↓At Aα and t(b′, Al ) =

t(b, Al ), which contradicts Definition1.4.
So we may assume thatl ≤ α is such thatt(a, Al ) is a c-type anda ↓Al Aα. Let

b′ be the element given byt(a, Al ) being a c-type:b′ ↓Ai Al anda �Al b′. By CP we
may chooseb′′ so thatb′ �Ai b′′ andt(b′′, Ai) is a c-type. By using Lemma 7 twice
we findb ∈ A − Aα such thatb ↓Ai Aα andt(b, Ai) is a c-type.

1. i is not a limit withc f (i) = ω. This is because otherwise by ndidipt(b, Ai) 	�
A j for some j < i and sot(b, Aα) 	� A j, which contradicts the choice ofa.

2. i is not a limit withc f (i) > ω. We see this as above, useκ(T ) ≤ ω1 instead of
ndidip.

3. i is not a successor. Assume it is,i = j + 1. ThenAi is ω1-prime overA j ∪ At j

and by Lemma 6A j ↓At−j
At j . By the choice ofa, t(b, Ai) � A j. So by ndop

t(b, Ai) 	� At j . Becauset(b, Ai) is a c-type we choosec′ so thatc′ ↓At j
Ai and

b �Ai c′. By Lemma 7 we can findc ∈ A − Aα such thatt(c, Ai) = t(c′, Ai)

andc ↓Ai Aα. If t j is not the root, then by the choice ofa, t(c, Aα) � A j and
sinceAt−j ⊆ A j, c ↓At j

Aα andAt j is ω1-saturated, we gett(c, At j ) � At−j . But
this contradicts Definition1.4.

By (1), (2), and (3),i = 0, which, together with the fact thatt(a, Al ) is a c-type and
Lemma 7, contradicts Definition1.4. Hence the Claim.
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Let B ⊆ A beω1-prime over
⋃{At| t ∈ P}. We want to show thatB = A . For this

we choose a generating sequence(Ai)i≤α, sothatAi ⊆ B for all i ≤ α. By the claim
aboveAα = A and soB = A . This completes the proof of the lemma.

Corollary 9 Assume T has ndopand ndidip. Then SP, wSP, CPand sCPare equiv-
alent.

We want to point out that this is not a main gap forω1-saturated models. For main
gap we should prove a proper nonstructure theorem for theories without CP.

Notice that, instead of choosingi in the proof of Lemma 8 the way we did, the
author could not chooset ∈ P so thatt(a,B ) 	� At, because he does not know how
to prove the existence of sucht from ndop and ndidip alone. (Of course, SP implies
the existence of sucht.) This is also the reason why the author thinks that it is not
completely trivial that wSP implies SP (under ndop and ndidip).

Lemma 10 (i) If T has dopthen it does not have SP. (ii) If T has didip then it does
not have SP.

Proof: Since these are similar, we prove only (i).
For a contradiction we assumeT has SP. Letω1-saturatedAi, i < 4, and nonal-

gebraicp ∈ S(A3) be as in the definition of dop, i.e.,

i. A0 ⊆ A1 ∩ A2, A1 ↓A0 A2,
ii. A3 ω1-prime overA1 ∪ A2,

iii. p � Ai for i ∈ {1,2}.
Without loss of generality we may assumeA0 is ω1-prime over∅. Let a realize p
andB = A3[a]. Let (P1, f1, g1) and(P2, f2, g2) be decompositions ofA1 andA2,
respectively. We may assumeP1 ∩ P2 = {r}, wherer is the root of bothP1 and P2

andg1(r) = g2(r) = A0.

Claim: P1 ∪ P2 is a decomposition ofA3.

Proof of Claim: By (i) above,P1 ∪ P2 satisfies (1) – (3) and (5) in the definition of
decomposition. In order to show (4) it is enough to prove thatA3 is ω1-prime over
P1 ∪ P2.

Let A beω1-prime overP1 ∪ P2. Then P1 ∪ P2 is a decomposition ofA . By
(i) and (ii) above we may assume thatA3 ⊆ A . On the other hand we can choose
A ′ ⊆ A3 which isω1-prime overP1 ∪ P2. By SPA ′ = A . Hence the Claim.

Now t(a, A3) � g1(t) for all t ∈ P1 andt(a, A3) � g2(t) for all t ∈ P2, which implies
that P1 ∪ P2 is a decomposition ofB, acontradiction with SP.

Lemma 11 If Teq is 1-based then Teq has sCP.

Proof: The following property of 1-based theories is used in this proof: inMeq,

A ↓acl(A)∩acl(B) B

for all A andB (see Bouscaren and Hrushovski [2]).
LetB ⊆ A beω1-saturated models andt(a, A ) 	� B. Choosec so thatc ↓B A and

c 	 ↓A a. LetC = B[c] andD = A [a]. BecauseT is one-based andc 	 ↓A a, C ∩D 	⊆ B.
Chooseb ∈ (C ∩ D ) − B. Thena �A b and becausec �B b, b ↓B A .
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Corollary 12 ([3]) Assume Teq is 1-based. Then Teq has SP iff it has ndopand
ndidip.

Proof: ⇐: Lemma 11 and Corollary 9.
⇒: Lemma 10.

Notice that in Hart, Pillay, and Starchenko [3] the structure theorem is stronger than
the one needed for SP. Shelah [4] proved SP for countable superstable theories with-
out dop by using regular types more or less the way we use c-types. We notice the
following.

Lemma 13 If for all ω1-saturated models A ⊆ B , A 	= B , there is a ∈ B − A such
that t(a, A ) has weight one, then T has CP.

Proof: It is enough to show that under the assumptions of the lemma every weight
one type overω1-saturated model is a c-type. So assumeB ⊆ A areω1-saturated,
the weight oft(a, A ) is one, andt(a, A ) 	� B. Chooseb so thatb ↓B A andb 	 ↓A a.
Choosec = (ci)i<α, α ≤ ω, amaximal independent sequence overB such that for all
i < α the weight oft(ci,B ) is one andb 	 ↓B ci. The assumption of the lemma implies
thatα > 0. Choosed = (di)i<α so thatt(d � b,B ) = t(c � b,B ) andd ↓B∪b A .

BecauseB is ω1-saturated,d is a maximal independent sequence overA such
that for alli < α the weight oft(di,B ) is one andb 	 ↓B di. Soa 	 ↓A d. Choosej ≤ α

least such thata 	 ↓A (di)i≤ j. Let A ⊆ A be a countable model so thata ∪ d ↓A A . Let
(ei)i< j be chosen fromA so thatt((ei)i< j, A) = t((di)i< j, A). Finaly letb be such
that t(b � (ei)i< j � a, A) = t(d j � (di)i< j � a, A) andb ↓A∪a∪(ei )i< j A .

Thenb ↓A A and sot(b, A ) = t(d j, A ), especiallyb ↓B A and the weight of
t(b, A ) is one. Alsoa 	 ↓A b which impliesa �A b.

If in Lemma 13 we replace “weight one” by “regular,” then the lemma is already
proved in [4]. That proof would also work in this case, but we gave a bit different
proof for a change.

There are examples (unpublished as far as the author knows) which show that
the assumption of Lemma 13 need not hold for theories having SP. Nevertheless we
prove the following lemma which may in some cases be helpful for proving CP.

Lemma 14 Assume A ⊆ B are ω1-saturated models such that B 	= A and for all
b ∈ B − A the weight of t(b, A ) is not one. Then for all b ∈ B − A there are a count-
able model A ⊆ A and ai ∈ B , i < ω, such that (ai)i<ω is independent over A, for
all i < ω, b 	 ↓A ai and b ↓A A . Especially then the weight of t(b, A ) is infinite.

Proof: So letb ∈ B − A . By induction onn < ω we choose countable modelsAn ≺
A , an

i ∈ B, i < n + 1 andcn ∈ B − A such that,

i. an
i , i < n + 1 together withcn is independent overAn;

ii. b 	 ↓An
cn andb 	 ↓An

an
i for all i < n + 1;

iii. for all n < n′, t(b � an
0 � . . . � an

n, An) = t(b � an′
0 � . . . � an′

n , An); and
iv. b ↓A0 A and for alln < n′, An ⊆ An′ .

Clearly if we can do this we have proved the lemma.
n = 0: Because the weight oft(b, A ) is ≥ 2 andA is ω1-saturated, we can

choose countable modelA0 ⊆ A such thatb ↓A0 A andt(b, A0) has pre-weight≥ 2.
Then alsoa0

0 andc0 can be found easily.
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n > 0: Assume we have found these elements forn. We show how to choose
them forn + 1.

Let g = b � cn � an
0 � . . . � an

n. If there isd such thatcn 	 ↓An
d, d ↓An∪cn

an
0 � . . . � an

n andb ↓An d we let D be countable such thatd ⊆ D, An ∪ D is a
model andD ↓An∪d g. Then we chooseD′ ⊂ A such thatt(D′, An) = t(D, An).
Thent(b � D′, An) = t(b � D, An). Finally we choosec′n anda′n

i , i < n +1, so that
t(c′n � a′n

0 � . . . � a′n
n � D′, An ∪ b) = t(cn � an

0 � . . . � an
n � D, An ∪ b). Now

cn ↓An an
0 � . . . � an

n andd ↓An∪cn an
0 � . . . � an

n and sod � cn ↓An an
0 � . . . � an

n.
This implies easily thatan

i , i < n + 1 together withcn is independent overAn ∪ d.
Becauseg ↓An∪d D it is easy to see that (i) – (iv) remain true if we replaceAn with
An ∪ D everywhere. And so the same is true forD′, b, c′n anda′n

i , i < n + 1.
Becauseκ(T ) ≤ ω1 we can repeat this at most countably many times; limits are

no problem because of the finite character of forking. So we can findA′
n, c′

n anda′n
i ,

i < n + 1, such that (i) – (iv) remain true and ifd is such thatc′n 	 ↓A′
n

d anda′n
0 �

. . . � a′n
n ↓A′

n∪c′n d thenb 	 ↓A′
n

d.
We want to chooseAn+1 so that in addition to the above,t(c′n, An+1) has pre-

weight≥ 2. There are two cases.

Case 1: c′n 	 ↓A′
n

A : We let An+1 = An. Then t(c′n, An+1) has pre-weight≥ 2 be-
cause there isd ⊆ A such thatc′n 	 ↓An+1

d and on the other handc′n 	 ↓An+1
b and

b ↓An d.

Case 2: c′n ↓A′
n

A : Becauset(c′n, A ) has weight≥ 2 there is countableD such that
A′

n ∪ D is a model,c′n ↓A′
n

D andt(c′n, A′
n ∪ D) has pre-weight≥ 2. We chooseD

so that

D ↓A′
n∪c′n b � a′n

0 � . . . � a′n
n

i.e.

D ↓A′
n

b � c′n � a′n
0 � . . . � a′n

n .

Becausec′n � a′n
0 � . . . � a′n

n is finite andt(c′n, A′
n) is stationary we can find such

D from A .

Let An+1 = A′
n ∪ D. Clearly (i) – (iv) are true for these elements andt(c′n, An+1)

has pre-weight≥ 2. We letan+1
i = a′n

i for i < n +1. Letd be such thatd 	 ↓An+1
c′n and

d ↓An+1∪c′n an+1
0 � . . . � an+1

n . We want to show thatb 	 ↓An+1
d. For a contradiction

assume not. Then there isd′ ⊆ An+1 − A′
n such thatc′n 	 ↓A′

n
d � d′. But thenb ↓A′

n

d � d′, and

(∗) d � d′ ↓A′
n∪c′n an+1

0 � . . . � an+1
n ,

(c′n � an+1
0 � . . . � an+1

n ↓A′
n

An+1 and soan+1
0 � . . . � an+1

n ↓A′
n∪c′n An+1 ∪ c′n,

which implies (*)), a contradiction.
So we can choosecn+1 andan+1

n+1 so that

1. c′n 	 ↓An+1
cn+1;

2. c′n 	 ↓An+1
an+1

n+1;

3. cn+1 ↓An+1 an+1
n+1; and

4. cn+1 � an+1
n+1 ↓An+1∪c′n b � an+1

0 � . . . � an+1
n .
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Thenb 	 ↓An+1
cn+1, b 	 ↓An+1

an+1
n+1 andcn+1 � an+1

n+1 ↓An+1 an+1
0 � . . . � an+1

n , which
implies thatcn+1 together withan+1

i , i < n + 2, is independent overAn+1.
The especially part follows now immediately from the following easy remark: if

q is a nonforking extension ofp then the weight ofq is not smaller than the pre-weight
of p.

Wefinish this paper by giving another definition of c-types.

Definition 15 t(a,C ) is an f-type if the following holds: ifB ⊆ C andt(a,C ) 	� B
then there areA , A ′,C ′, a′ andc such that,

1. A = C [a], A ′ = C ′[a′];
2. there is an automorphismf that takesA to A ′, C to C ′, f (a) = a′ and fixes

B ∪ c pointwise;
3. C ′ ↓B C , A ′ ↓C ′ C ;
4. c 	 ↓C A ;
5. c ↓A A ′, c ↓A ′ A .

Lemma 16 If t(a,C ) is a c-type then it is an f-type.

Proof: Let B ⊆ C be such thatt(a,C ) 	� B. Becauset(a,C ) is a c-type there is
c′ such thatc′ ↓B C anda �C c′. We chooseA = C [a] andc ∈ A so thatt(c,C ) =
t(c′,C ). We chooseω1-saturated modelsC ′ ⊆ A ′ so thatt(A ′,B ∪ c) = t(A ,B ∪ c)

andA ′ ↓B∪c A . Then it is easy to see that these are as wanted.

Lemma 17 In Meq, if t(a,C ) is an f-type then it is a c-type.

Proof: Let B ⊆ C be such thatt(a,C ) 	� B. ChooseA , A ′,C ′, a′ andc as in the
definition of f-type. Becausec 	 ↓C A there ared ∈ A andϕ(x, y) so thatϕ(d, c) forks
over C . We chooseψ(x, y) ande ∈ A so thatψ(x, e) definesϕ(A , c). As in the
definition of canonical base we choose equivalence relationE as follows: E(v,w)

iff ∀x(ψ(x, v) ↔ ψ(x,w)). Let b = e/E 	∈ B. Let f be the automorphism given by
(2) in the definition of f-type. Letb′ = f (e)/E.

Because of (5) in the definition of f-type,b = b′. Soa �C b and becausea′ �C ′ b,
by the second part of (3) in the definition of f-typeb ↓C ′ C and so by the first part of
(3), b ↓B C .

By using Lemma 17 we can give another proof for Lemma 11. LetC beω1-saturated.
It is enough to show thatt(a,C ) is an f-type. So letB ⊆ C be ω1-saturated and
t(a,C ) 	� B. Chooseb so thatb ↓B C andb 	 ↓C a. LetA = C [a]. We choose setsAi,
i < ω, so thatA0 = A and stp(Ai,B ∪ b) = stp(A ,B ∪ b) andAi ↓B∪b ∪{A j| j < i}.
Then this sequence is indiscernible but not free overB. Choosec from ∪{A j| 1 <

j < ω} so thatc 	 ↓C A . If we letA ′ = A1 then these are as in the definition of f-type;
(5) follows from the following characterization of 1-based theories: the average type
of the sequence is based on any member of the sequence.

Conjecture 18 If Teq is a complete countable stable theory then it has CP.
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