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Ontologies for Plane,
Polygonal Mereotopology

IAN PRATT and OLIVER LEMON

Abstract Several authors have suggested that a more parsimonious and con-
ceptually elegant treatment of everyday mereological and topological reasoning
can be obtained by adopting a spatial ontology in which regions, not points, are
the primitive entities. This paper challenges this suggestion for mereotopologi-
cal reasoning in two-dimensional space. Our strategy is to define a mereotopo-
logical language together with a familiar, point-based interpretation. It is pro-
posed that, to be practically useful, any alternative region-based spatial ontol-
ogy must support the same sentences in our language as this familiar interpreta-
tion. This proposal has the merit of transforming a vague, open-ended question
about ontologies for practical mereotopological reasoning into a precise ques-
tion in model theory. We show that (a version of) the familiar interpretation is
countable and atomic, and therefore prime. We conclude that useful alternative
ontologies of the plane are, if anything, less parsimonious than the one which
they are supposed to replace.

1 The problem One of the many achievements of coordinate geometry has been
to provide a conceptually elegant and unifying account of the nature of geometrical
entities. According to this account, the one primitive spatial entity is the point, and
the one primitive geometrical property of points is coordinate position. All other ge-
ometrical entities—lines, curves, surfaces, and bodies—are nothing but collections
of points; and all properties and relations involving these entities may be defined in
terms of the relative positions of the points which make them up. The success and
power of this reduction is so great that the identification of spatial regions with the
sets of points they contain has come to seem virtually axiomatic.

Yet various authors have sought to reverse this order of rational reconstruction,
treating regions as primary, and admitting points, if at all, as logical constructions
out of them. The best known of these approaches is perhaps Tarski’s [35] axiom-
atization of Euclidean geometry, taking spheres to be the primitive entities. But the
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policy of taking regions as primitive is most attractive when considering problems in-
volving mereological (part-whole) and topological notions—that is, where no metric
information is to hand. If regions are first-class entities and points are logical con-
structions based on them, then who knows what interesting new ways of considering
spatial entities and relations there might be? Clarke [11], [12], following an idea of
Whitehead [39], sought to reconstruct mereotopology in terms of a primitive relation
of connection holding between regions. Following this work, Biacino and Gerla [5]
have studied models of Clarke’s theory. More recently, and partially as a response
to debates concerning temporal reasoning and knowledge representation (for exam-
ple, Allen [1]), Clarke’s mereotopology has received attention from several research
groups in AI, working with the loosely defined area of qualitative spatial reasoning,
for example, Gotts, Gooday and Cohn [17], Asher and Vieu [2], and Borgo, Guarino,
and Masolo [6]. For a treatment of region-based topology in a general setting, see
Roeper [31].

Motivations for these developments vary, and we do not intend to provide a com-
prehensive account of them here. However, one common recurring theme is the sus-
picion that the familiar, point-based view of space generates a richer ontology than
is needed for mereotopological reasoning in practical situations. For example, Eu-
clidean space contains not only the sorts of regions we want to recognize for everyday
purposes, but also strange, physically unrealizable regions of the kind that populate
point-set topology textbooks. Such regions seem to be mere artifacts of the Euclidean
model of space—useless for describing, and reasoning about, the world we inhabit.
If, on the other hand, we regard regions as primitive entities, perhaps we can be more
selective as to what regions we take to exist and what mereotopological properties
we take them to have. Perhaps—so some researchers in mereotopology suggest—
treating regions as primary opens up the prospect of simpler and more parsimonious
spatial ontologies than the familiar model based on points in the real plane.

The present paper examines this suggestion for the special case of plane mereo-
topology. We show that, under certain reasonable assumptions as to what practical
mereotopological reasoning might involve, taking regions rather than points as prim-
itive cannot lead to a more parsimonious spatial ontology.

2 Polygonal mereotopology To get an idea of what practical mereotopological rea-
soning might involve, consider computer systems specialized for representing plane
spatial data, such as Geographic Information Systems (GISs). Virtually all such sys-
tems represent regions of space by means of boundaries consisting of finitely many
straight lines and straight-line segments. In effect, then, all plane regions recognized
by such systems are polygons. Experience has shown that such a spatial ontology,
whatever its philosophical shortcomings, is certainly equal to the task of describing
everyday planar spatial arrangements such as those found on maps and charts, since
any arrangement of regions one is likely to encounter can be approximated by poly-
gons with arbitrarily high accuracy.

Suppose we take as our spatial ontology the set P of polygons in the plane. We
discuss the formal construction of P later; for the present, all that matters is that all
members of P are plane regions bounded by finitely many straight lines as shown in
Figure1a. (As explained below, we take these regions not to include their boundaries.)



ONTOLOGIES FOR MEREOTOPOLOGY 227

a) Three polygons b) Three nonpolygons

c) Three pairs of polygons and their respective sums

Figure 1: Polygonal mereotopology

Note that we allow polygons to consist of more than one piece, to be unbounded, and
to contain holes, as long as those holes have straight-line boundaries; however, poly-
gons are not allowed to contain “cracks,” as shown in Figure 1b. In addition, we con-
sider the empty set and the whole plane to be polygons.

It turns out that P forms a Boolean algebra. In this Boolean algebra, the product
of two polygons is their intersection; the complement of a polygon is that part of the
plane lying outside it and its boundary; and the sum of two polygons is the polygon
formed by taking their union and “rubbing out” any internal boundaries that result.
Figure 1c illustrates the sum-operation. Accordingly, our mereotopological language
will be equipped with functions-symbols · , − , and + to denote these operations, as
well as the constants 0 and 1 to denote the empty set and the whole plane, respectively.
Note that the formula x · y = x states that x is a subset of y. Hence the Boolean func-
tions can express various mereological properties and relations involving polygons.

In point-set topology, it is usual to define an open set as being connected if it is
not the union of two disjoint, nonempty, open sets. Intuitively, connected sets are just
that—they consist of one piece. Accordingly, our language will be equipped with a
one-place predicate c(x) to express the property of being a connected polygon. (Inci-
dentally, since we take polygons not to include their boundaries, the right-most poly-
gon in Figure 1a is not connected.) If x and y are disjoint, connected and nonempty,
then it is possible to show that the formula c(x + y) is satisfied if and only if x and y
share one or more proper straight line segments on their boundaries. In other words,
the formula c(x + y) can be used to express the relation of external contact along an
edge. Hence, the predicate c(x), together with the Boolean functions, can express
various topological properties and relations involving polygons.
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Thus, we take our mereotopological language L to be a first-order language with
equality and nonlogical constants +, · , −, 0, 1, and c(x). The set P of polygons
will form the domain over which the variables of L range, and the interpretation of
the nonlogical constants of L given above defines a model P on the domain P. The
sentences Th(P) true in this model represent, as it were, the facts of mereotopology
according to the the polygonal ontology employed in most computer systems for rep-
resenting plane spatial data.

We propose to take Th(P) to be the facts of practical mereotopological reason-
ing. After all, the polygonal model P is relatively simple, admits no pathological
regions, and yet is mereotopologically nontrivial and finds use in many practical ap-
plications without apparent loss of useful representational power. Moreover, it will
turn out in Section 6 that P can be considerably liberalized without changing the
resulting theory. We further propose that an alternative spatial ontology for practi-
cal mereotopological reasoning is simply an alternative model of Th(P)—that is, a
model A such that A ≡ P but A �� P. The domain A of A will form the set of regions
of space and the relations and properties needed to interpret the terms in L will give
this space its mereotopological structure.

Note that the domain P contains only polygonal regions, and not the points and
lines of which they are made up. Thus, we employ a language which can talk, in the
first instance, only about regions, in keeping with the spirit of mereotopology. On the
other hand, our model P is fundamentally Euclidean, in that polygons are objects in
the Euclidean plane defined in terms of the points they contain or the lines that bound
them. Thus, P is, as it were, our familiar ontology—one constructed in the familiar
way from points in the Euclidean plane. A general model of Th(P), by contrast, may
have any sorts of objects in its domain, either primitive or constructed in some other
way. The problem we face in the sequel is to identify such general models, and to
determine whether any of them constitute a more elegant and parsimonious spatial
ontology than P.

It may be objected that this strategy is too conservative. After all, who says
that the facts of practical mereotopological reasoning—the facts that we would want
any alternative spatial ontology to support—are the facts that are true of the polyg-
onal data-structures employed in many computer systems? Perhaps we could find
a better theory of space by revising this “computer-mereotopology.” To some ex-
tent, this criticism is justified: we have little to say in favor of the polygonal the-
ory, except that it is familiar, easily formalized and seems to be widely and success-
fully used in a vast range of practical applications. (Proponents of other theories of
mereotopological reasoning should be so lucky.) Nevertheless, our strategy does have
the virtue of transforming a vague and open-ended question about ontologies for prac-
tical mereotopological reasoning into a precise, technical question in model theory.
To be sure, we do not regard the solution of this problem to be the last word on the
metaphysics of space; but at least we now have a definite question to address.

The plan of the rest of the paper is as follows. Section 3 outlines the construc-
tion of the polygonal ontology, Section 4 establishes some preliminary topological
features of this ontology and Section 5 uses these results to prove the model-theoretic
results which form the core of the paper. Finally, Section 6 generalizes these results
beyond the polygonal case.
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3 The polygonal models Our first task in formalizing the polygonal ontology is to
resolve the issue of whether regions include their boundary points. We adopt an ap-
proach, based on regular open sets, which has become reasonably standard in discus-
sions of spatial description languages.

Definition 3.1 Let X be a topological space and x ⊆ X. Then the set⋃{y ⊆ X| y open, y ∩ x = ∅} is an open set in X called the pseudocomplement of
x, written x′. We say that x ⊆ X is regular if x = x′′.

Note, for brevity, we use the term “regular” where most authors would use “regular
open”. We shall never have occasion to refer to regular closed sets.

The following well-known theorem underlies the importance of the regular sets
to mereotopology. We state it here without proof.

Theorem 3.2 Let X be a topological space. Then the set RO(X) of regular sets in
X forms a Boolean algebra with top and bottom defined by 1 = X and 0 = ∅, and
Boolean operations defined by x · y = x ∩ y, x + y = (x ∪ y)′′ and −x = x′.

In fact, RO(X) is a complete Boolean algebra, and moreover, every complete Boolean
algebra is isomorphic to RO(X) for some topological space X; however, we will not
be concerned with these facts about regular sets. (See, e.g., Koppelberg [22], pp. 26
and 60.) Accordingly, we shall sometimes use the term regular Boolean algebra of
a topological space X to refer to RO(X). When dealing with the elements of such a
Boolean algebra, we shall write x · y, x + y, −x and instead of x ∩ y, (x ∪ y)′′, and
x′, respectively.

Theorem 3.2 shows that the part-whole relationship, restricted to the regular sets,
still obeys the axioms of a Boolean algebra, so that confining our attention to such sets
will result in a mathematically manageable theory. Actually, some mereotopologists
think it important that the empty set not count as a region, and be eschewed from the
domain of quantification of mereotopological theories. We see no reason for such a
restriction, but readers who disagree can easily adapt the results below to ontologies
from which the empty set is excluded.

If X is a topological space and y ⊆ X, we denote interior of y (the largest open
set contained in y) by y0, and the closure of y (the smallest closed set containing y)
by [y]. (We reserve the more usual notation ȳ for n-tuples.) The set [x] \ [x]0 is called
the frontier of x, and is denoted by F (x). The following facts about regular sets are
well known.

Lemma 3.3 Let X be a topological space and x ⊆ X. Then x′ = X \ [x] and x′′ =
[x]0.

Lemma 3.3 shows that restricting attention to regular sets is a sensible means of ig-
noring boundary points, because no two regular regions differ only with respect to
their boundary points. As usual in topology, we say that an open set x is connected if
there do not exist two nonempty, disjoint open sets whose union is x. The maximal
connected subsets of a set x are called the components of x. The next two results are
again so straightforward we state them without proof.

Lemma 3.4 Let a1, a2 be connected, regular sets with a1 · a2 �= 0. Then a1 + a2 is
connected.
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Lemma 3.5 Any component of a regular set is regular.

Let X be any topological space and M be any Boolean subalgebra of RO(X). If A
is a finite subset of M and the elements of A are pairwise disjoint, nonempty, and
sum to a ∈ M, we call A a partition of a in M. If, in addition, every element of A is
connected, we call A a connected partition of a in M. In the case a = 1, we refer to A
simply as a (connected) partition in M. The following (rather technical) lemma will
be useful later.

Lemma 3.6 Let X be a topological space, M a Boolean subalgebra of RO(X) and
a1, . . . , an a partition in M. Let m be such that 1 ≤ m ≤ n. Then

a1 + · · · + am = a1 ∪ · · · ∪ am ∪ {p| p ∈ F (ai) for some i (1 ≤ i ≤ m),
p �∈ F (a j) for any j (m < j ≤ n)}.

Proof: Denote the right-hand side of the above equation by x. Suppose p ∈ [a j] for
some j (m < j ≤ n). Then p ∈ F (a j) or p ∈ [a j]0 = a j by Lemma 3.3. If p ∈ a j,
then p �∈ [ai] for any i (1 ≤ i ≤ m) by the disjointness of a1, . . . , an. Either way, then,
p �∈ x.

Suppose p �∈ [a j] for any j (m < j ≤ n). Then certainly p �∈ F (a j) for any j
(m < j ≤ n). Moreover, a1, . . . , an sum to 1, so [a1] ∪ · · · ∪ [an] = 1. Hence p ∈ [ai]
for some i (1 ≤ i ≤ m), so again, p ∈ F (ai) or p ∈ [ai]0 = ai by Lemma 3.3. Either
way, p ∈ x. Hence x = (1 \ [am+1])∩ · · · ∩ (1 \ [an]). By the first part of Lemma 3.3,
x = (−am+1) · · · · · (−an) = a1 + · · · + am. �
Having dealt with the very general notions of regular sets and their Boolean algebras,
we turn to the definition of polygonal regions. Any line in R

2 cuts R
2 into two residual

domains, which we shall call half-planes. It is easy to see that these sets are regular,
with each being the pseudocomplement of the other. Hence, we can speak about the
sums, products, and complements of half-planes in RO(R2).

Definition 3.7 A basic polygon is the intersection of finitely many half-planes in
R

2. A polygon is the sum, in RO(R2), of any finite set of basic polygons.

We denote the set of polygons by R, and will sometimes refer to it as the polygonal
domain. Thus, the elements of R are simply polygons as introduced in the previous
section.

Of course, R is not the only well-behaved spatial domain we might choose. If a
line is defined by an equation ax + by + c = 0, where a, b, and c are rational numbers,
we call it a rational line; and if a half-plane is bounded by a rational line, we call it a
rational half-plane.

Definition 3.8 A rational basic polygon is the intersection of finitely many ratio-
nal half-planes in R

2. A rational polygon is the sum, in RO(R2), of any finite set of
rational basic polygons.

We denote the set of rational polygons by Q, and will sometimes refer to it as the
rational polygonal domain. Thus, R, or perhaps, more modestly, Q, is the spatial
ontology recognized by computer systems such as GISs—both domains provide a
simple view of space from which any remotely pathological behavior has been ex-
cluded. Clearly, R is uncountable, whereas Q is countable; so R and Q are differ-
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ent structures. Nevertheless, these ontologies are very similar, and share many basic
properties. For brevity, we use the symbol P to denote either R or Q.

Theorem 3.9 P is a Boolean subalgebra of RO(R2).

Proof: We need only show that P is closed under the Boolean operations. But this
is obvious given the distribution laws for RO(R2) and the fact that the pseudocom-
plement of a half-plane is a half-plane. �

Now that we have defined the polygonal domain (or more precisely, domains) of
quantification, P, we introduce our mereotopological language L . Let L be the first-
order language with signature 〈c(x),+, · ,−, 0, 1〉, where c(x) is a 1-place predicate,
+ and · are binary function symbols, − is a unary function symbol, and 0 and 1 are
individual constants. Informally, c(x) denotes the property of connectedness (in the
usual topological sense), the function-symbols +, · , and − denote the obvious op-
erations in the Boolean algebra RO(R2), and 0 and 1 denote the empty set and R

2,
respectively. Thus, L has a mereological component in the form of Boolean connec-
tives representing operations on regular sets, and a topological component in the form
of a connectedness predicate.

Formally, we give L two “familiar” interpretations, R and Q, corresponding to
the domains R and Q, respectively.

Definition 3.10 We define the polygonal model R to have the domain R and the
following interpretations of the predicate, constant, and function symbols in L :

1. c(x)R = {a ∈ R|a is connected}
2. 0R = ∅; 1R = R

2

3. For all a ∈ R: −R(a) = −a

4. For all a, b ∈ R: +R(a, b) = a + b and ·R(a, b) = a · b

We define the rational polygonal model Q exactly as for R but with R and R replaced
throughout by Q and Q, respectively.

Again, in view of the similarities between R and Q, we write P to refer indetermi-
nately to either. Thus, the domain of P is P. Anticipating a result of the next section,
it turns out—unsurprisingly—that R and Q make the same sentences of L true. That
is, the ontologies Q and R are indistinguishable for the mereotopological language
L . Hence we may write Th(P) to denote Th(R) = Th(Q). Our main task in this
paper is to find alternative models of Th(P).

We finish this section on the familiar models for L with an example to show that
the pains we took to define our domain of interpretation were not in vain. Consider
the following formula of L :

∀x1∀x2∀x3

(( ∧
1≤i≤3

c(xi) ∧ c(x1 + x2 + x3)

)
−→ (c(x1 + x2) ∨ c(x1 + c3))

)
.

This formula asserts that, if the sum of three connected regions is connected, then the
first must be connected to at least one of the other two. It is true in the model P; but
it would be false in a model whose domain extended to all regular sets of the plane.
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a3

a1 a2

Figure 2: Three regular sets in the plane

For consider the regions a1, a2, and a3 defined by

a1 = {(x, y)| − 1 < x < 0 ; −1 − x < y < 1 + x}
a2 = {(x, y)|0 < x < 1 ; −1 − x < y < sin(1/x)}
a3 = {(x, y)|0 < x < 1 ; sin(1/x) < y < 1 + x} ,

and depicted in Figure 2. (Note: in this figure, the x-axis has been dilated.) It is
not difficult to show that a1, a2, and a3 are regular, that a1 + a2 + a3 is the inte-
rior of the large triangle in Figure 2 and so is connected, but that neither a1 + a2 nor
a1 + a3 is connected. This example demonstrates the importance of having a pre-
cise characterization of the regions our mereotopological language talks about. When
looking for models elementarily equivalent to P as alternative ontologies for practi-
cal mereotopological reasoning, we are making some very specific choices about the
facts of mereotopology that we want to support.

4 Topological analysis Our next step is to establish some basic topological prop-
erties of P. All the results in this section are routine and, in one form or another, well
known. The development is in some places perhaps more explicit than is necessary;
however, this will prove useful when we generalize our results in Section 6. The most
important results for our purposes are Theorem 4.9 and Lemmas 4.13 and 4.14; the
rest are ancillary. We begin with a lemma on which much of the subsequent analysis
depends.

Lemma 4.1 Any element of P is the sum of finitely many connected elements of P.

Proof: Since half-planes are convex, basic polygons are convex, and so are certainly
connected. �
It easy to see that this property does not hold for all Boolean subalgebras of RO(R2),
even where the elements are relatively well behaved. For example, even when x
and y are Jordan domains, the intersection x · y may have infinitely many discon-
nected parts. It is precisely to prevent this possibility that we shall restrict attention
to the domains R and Q. To be sure, the polygons are not the only regions satisfying
Lemma 4.1, as we shall see in Section 6, but they are the simplest.
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Figure 3: A graph* with two nodeless edges

Lemma 4.2 Let a ∈ P and let c be a component of a. Then c ∈ P. Moreover, a
equals the sum of its components.

Proof: By Lemma 4.1, let c1, . . . , cn be connected elements of P such that a = c1 +
· · ·+ cn. For all i (1 ≤ i ≤ n), if c · ci �= 0 then, by Lemma 3.4, ci + c is connected. If,
in addition, (−c) · ci �= 0, then c < c + ci, contradicting the maximality of c. Thus,
if c · ci �= 0, then (−c) · ci = 0. Hence c can be expressed as the sum of various ci

(1 ≤ i ≤ n), and c ∈ P. The remainder of the lemma is trivial. �

Lemma 4.3 Let A be a finite subset of P. Then there exists a connected partition
C in P such that each a ∈ A is expressible as a sum of zero or more elements of C.

Proof: If A = {a1, . . . , an}, let C be the set of all components of all nonzero prod-
ucts of the form ±a1 · · · · · ±an. By Lemma 4.2, these components are elements of
P, and form a connected partition such that every ai can be expressed as a sum of zero
or more elements of C. �
Furthermore, it should come as no surprise that we can picture connected partitions
in P by thinking in terms of plane graphs.

Definition 4.4 A graph* G is a plane graph in the closed real plane having no nodes
of degree 0, together with a (possibly empty) set of nodeless edges. These nodeless
edges are all Jordan curves intersecting no other edge of G (nodeless or otherwise). A
graph* is piecewise linear if all of its edges lie on finitely many straight lines; a graph*
is rational piecewise linear if all of its edges lie on finitely many rational straight lines.
A graph* is said to have an isthmus if there is one edge whose removal increases the
number of its connected components.

Figure 3 shows a piecewise linear graph* (where the page represents the whole closed
plane) with two nodeless edges. This specimen also has no isthmuses and no nodes
of degree 2. We note also that Euler’s formula for a k-component graph, namely
n − e + f = k + 1, applies also to a k-component graph*, where nodeless edges do
not count as components.

If G is a graph*, we denote by |G| the set of points in the edges and vertices of
G, ignoring the point at infinity. It makes sense to talk about the faces of G in the
open plane—that is, the components of R

2 \ |G|. Henceforth, if G is a graph*, when
we speak of ‘the faces of G’, we mean ‘the faces of G in the open plane.’

The following basic theorem establishes the importance of piecewise linear and
rational piecewise linear graphs.
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Theorem 4.5 Let A be a connected partition in R; then there exists a finite piece-
wise linear graph* with no isthmuses whose faces are precisely A. Conversely, let
G be a finite piecewise linear graph* with no isthmuses; then the faces of G form a
finite connected partition in R. The above equivalence also holds if “R” is replaced
by “Q” and “piecewise linear” by “rational piecewise linear”.

Proof (The symbol � is for later reference): Suppose that a1, . . . , an form a con-
nected partition in R. Consider all the half-planes involved in the construction of
elements a1, . . . , an. The lines bounding these half-planes form a finite graph* G∗

in the obvious way, and the faces of G∗ must form a connected partition consisting
of basic polygons, say, b1, . . . , bN . Moreover, each ai (1 ≤ i ≤ n) can certainly be
expressed as a sum of various b j (1 ≤ j ≤ N).

� By renumbering if necessary, let a1 = b1 + · · ·+ bm for some m (1 ≤ m ≤ N). Now
remove from G all nodes p such that p �∈ ⋃{F (bk)|m < k ≤ N} and all edges e such
that e �⊆ ⋃{F (bk)|m < k ≤ N}. The result will be a graph* G1 in which the faces
b1, . . . , bm are merged into a number of faces f1, . . . , fn′ for some n′ (1 ≤ n′ ≤ m).
The union of these faces will then be the set

b1 ∪ · · · ∪ bm ∪ {p ∈ |G| :p ∈ F (bi) for some i (1 ≤ i ≤ m),
p �∈ F (b j) for any j (m < j ≤ N)}.

By Lemma 3.6 this set is just b1 + · · · + bm = a1. Since a1 is connected, n′ = 1 and
G1 contains the face f1 = a1. Proceeding in the same way for a2, . . . , an yields a
graph* G = Gn with faces a1, . . . , an. That G has no isthmuses follows from the fact
that each face of G is regular.

Conversely, suppose that G is a finite piecewise linear graph*; then the edges of G lie
on finitely many straight lines. Consider the graph G∗ made up of all of these lines
(extended in both directions). Each face of G∗ is a basic polygon; hence each face
fi of G will be divided into a finite number of basic polygons, say, bi,1, . . . , bi,mi by
a finite number of straight lines. Since G has no isthmuses, f is a regular set, and it
is easy to check that no smaller regular set contains bi,1, . . . , bi,mi . In other words,
f = bi,1 + · · · + bi,mi ∈ R. The corresponding proof for Q is identical except for the
obvious changes. �

Next we come to some topological results concerning P which, as we shall see in the
next section, will have a significant effect on possible alternative models of Th(P).
We say that an end-cut in an open set x is a Jordan arc lying in x except for one end-
point, which lies on F (x).

Lemma 4.6 Let a ∈ R and p ∈ F (a). Then there is a piecewise linear end-cut α

in a with endpoint p. If a ∈ Q, and p has rational coordinates, then α may be chosen
so as to be rational piecewise linear.

Proof: Obvious. �

Lemma 4.7 There exists a function e : N → N such that, for all n > 0, if G is a
graph* whose n faces form a connected partition in P, then there exist at most e(n)

points lying on the boundaries of more than two of these faces.
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Proof: We suppose that p1, p2, p3 are distinct points all lying on the boundaries of
distinct faces a1, a2, a3 of G, and we derive a contradiction. The result then follows
by putting e(n) = n(n − 1)(n − 2)/3. Let p1, p2, p3 and a1, a2, a3 be as described.
Choose points q1, q2, q3 such that qi ∈ ai (i = 1, 2, 3). By Lemma 4.6, draw three
end-cuts in ai, say αi,1, αi,2, and αi,3 from the point qi to the points p1, p2, and p3,
respectively. Since we can easily choose αi,1, αi,2 and αi,3 so that they intersect only
at qi, this gives us a planar embedding of the graph K3,3, which is well known to be
nonplanar. �

Lemma 4.8 There exists a function f : N → N such that, for all n > 0, if G is a
graph* with n faces forming a connected partition in P, and G has no isthmuses and
no nodes of degree 2, then the size of G is bounded by f (n).

Proof: It is easy to show that, in a plane graph* with no isthmuses, any node of
degree greater than two must lie on the boundary of at least three faces. Then, by
Lemma 4.7, the number of nodes in G is bounded by a function of n. The result then
follows from Euler’s formula. �

We then have the following theorem.

Theorem 4.9 There exists a function g : N → N such that, for all n > 0, there exist
at most g(n) n-element connected partitions in P up to homeomorphism.

Proof: By Theorem 4.5, any such partition is the set of faces of some finite piece-
wise linear graph* with no isthmuses, hence of some graph* with no isthmuses and
no nodes of degree 2, since the nodes of degree 2 can be removed without changing
the faces of G. By Lemma 4.8, all such graphs* are of size bounded by f (n). As-
suming the result that every abstract graph can be embedded in the closed plane in
only finitely many homeomorphically distinct ways, the result follows immediately.

�

Note that Theorem 4.9 is limited to partitions in P. The corresponding result fails
to hold, for example, for arbitrary partitions in the Boolean algebra RO(R2). (It is
easy to find counterexamples using constructions such as that illustrated in Figure 2.)
Moreover, the result also fails for partitions in RO(R3), even when we confine our-
selves to polyhedral objects.

The following lemmas are concerned with showing that P is, in a sense that will
become clear below, topologically homogeneous. It is standard to show, given the
first part of Lemma 4.6, that for every finite plane graph* G, there is a homeomor-
phism of the open plane onto itself taking G to a piecewise linear plane graph* G′.
Moreover, the homeomorphism can be chosen so that points in faces bounded only
by piecewise linear edges in G are unaffected. In effect, finite plane graphs* can have
their curved edges “straightened out” by a homeomorphism. If ν is a homeomorphism
of the open plane onto itself and a a subset of the open plane, we write ν|a to denote
the restriction of ν to a.

Lemma 4.10 Let a, b be connected elements of R such that there is a homeomor-
phism µ of the open plane onto itself taking a to b. Let a1, . . . , an be a connected
partition of a in R. Then there exists a connected partition b1, . . . , bn of b in R and a
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homeomorphism ν of the open plane onto itself such that ν|−a = µ|−a and ν(ai) = bi

for all i (1 ≤ i ≤ n).

Proof: Let the components of −a be t1, . . . , tm. Since t1, . . . , tm, a1, . . . , an is
a connected partition, Theorem 4.5 guarantees that we can find a piecewise linear
graph* G with no isthmuses having these elements as faces. Now µ maps a to b,
hence the components of −a to the components to −b, hence G to a graph* G′ with
faces u1, . . . , um, f1, . . . , fn, say, where f1 + · · · + fm = b. But then we can find a
a homeomorphism µ′ of the closed plane onto itself which takes G′ to a piecewise
linear graph* G′′ without affecting any points in −b or its frontier. Hence, the faces
of G′′ will be u1, . . . , um, b1, . . . , bn, say. Since G′′ clearly contains no isthmuses,
Theorem 4.5 guarantees that the faces of G′′ will be in R, so that ν = µ′ ◦ µ is the
required homeomorphism. �

Lemma 4.11 Let a, b be connected elements of R such that there is a homeomor-
phism µ of the open plane onto itself taking a to b. Let a′ ∈ R satisfying a′ ≤ a. Then
there exists b′ ∈ R and a homeomorphism ν of the open plane onto itself such that
ν|−a = µ|−a and ν(a′) = b′.

Proof: By Lemma 4.3, we can find a connected partition of a in R some of whose
elements sum to a′. The result then follows from Lemma 4.10. �

Definition 4.12 Let a1, . . ., an, b1, . . ., bn be elements of P. We say that a1, . . ., an

and b1, . . . , bn are similarly situated, written a1, . . . , an ∼ b1, . . . , bn, if there is a
homeomorphism µ mapping the open plane onto itself such that µ(ai) = bi for all i
(1 ≤ i ≤ n).

Now we can state the lemma guaranteeing homogeneity of P.

Lemma 4.13 Let a1, . . . , an, b1, . . . , bn, a ∈ P such that a1, . . . , an ∼ b1, . . . , bn.
Then there exists b ∈ P such that a1, . . . , an, a ∼ b1, . . . bn, b.

Proof: Assume first that P is R. Let µ be a homeomorphism of the closed plane
onto itself mapping a1, . . . , an to b1, . . . , bn. Let c1, . . . , cN be all the components
of all nonzero products of the form ±a1 · · · · · ±an and let d1, . . . , dN be all the com-
ponents of all products of the form ±b1 · · · · · ±bn. Then, by Lemma 4.2, c1, . . . , cN

and d1, . . . , dN are connected partitions in R, and by renumbering if necessary, µ

maps c1, . . . , cN to d1, . . . , dN . It suffices to find a b ∈ R such that c1, . . . , cN , a ∼
d1, . . . , dN , b.

For all j (1 ≤ j ≤ N), let c′
j = a · c j. By Lemma 4.11, there exists a d′

j ∈ R and
a homeomorphism ν j mapping c′

j to d′
j and equal to µ outside c j. Then the mapping

ν =
⋃

{ν j|c j : 1 ≤ j ≤ N} ∪ µ|F (c1)∪···∪F (cN )

is a homeomorphism of the open plane onto itself mapping c j to d j for all j (1 ≤ j ≤
N) and mapping a = c′

1 + · · · + c′
N to b = d′

1 + · · · + d′
N ∈ R.

Finally if P is Q, we note that it is possible to show, using the second part of
Lemma 4.6, that any piecewise linear graph can be homeomorphically “tweaked” into
a rational piecewise linear graph, without affecting any nodes with rational coeffi-
cients or the edges which join them (considered as sets). This easily guarantees the
existence of the required element b of Q. �
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Finally, we address the embedding of Q in R. Similar considerations to those above
yield the following lemma.

Lemma 4.14 Let a1, . . . , an ∈ Q and b ∈ R. Then there exists a ∈ Q such that
a1, . . . , an, b ∼ a1, . . . , an, a.

The details are routine and we omit them.

5 Model-theoretic analysis This section contains the main technical result of this
paper, Theorem 5.11. As we shall see, this theorem has negative consequences for the
search for alternative spatial ontologies. Throughout this section, we use the notation
ā to denote an ordered n-tuple a1, . . . , an.

Let us begin by establishing the promised elementary equivalence of Q and R.
First, a reminder from model theory. A type �(x̄) in variables x̄ is a maximal consis-
tent set of formulas having x̄ as their only free variables. Given a model A, we say that
a tuple ā (of the right arity) belongs to type �(x̄) if A |= ϕ[ā] for every ϕ(x̄) ∈ �(x̄).

Lemma 5.1 Let ā and b̄ be tuples in P such that ā ∼ b̄. Then ā and b̄ are of the
same type in P.

Proof: It is straightforward to show that P |= ϕ[ā] if and only if P |= ϕ[b̄] by in-
duction on the complexity of ϕ, and using Lemma 4.13. �

Lemma 5.2 Q � R.

Proof: According to the Tarski-Vaught Lemma (Hodges [20], p. 55), if Q ⊆ R

and, for any n-tuple ā of Q and any formula ϕ(x̄) of the form ∃yψ(x̄, y) such that
R |= ϕ[ā], there exists b ∈ Q such that R |= ψ[ā, b], then Q � R.

By construction, Q ⊆ R. Let ā be an n-tuple of elements of Q, and let ϕ(x̄) be
any formula of L of the form ∃yψ(x̄, y) such that R |= ϕ[ā]. Then there exists a ∈ R
such that R |= ψ[ā, a]. By Lemma 4.14, there exists b ∈ Q such that ā, a ∼ ā, b. By
Lemma 5.1 applied to R,R |= ψ[ā, b]. �
It follows from Lemma 5.2 that Th(Q) = Th(R). We have already agreed to denote
this set of formulas by Th(P).

Clearly, L contains a formula µN (x̄) expressing the notion of being an N-
element connected partition.

Lemma 5.3 For all N > 0, let µN (z1, . . . , zN ) be the formula

∧
1≤i≤N

(c(zi) ∧ zi �= 0) ∧
∧

1≤i< j≤N

zi.z j = 0 ∧
∑

1≤i≤N

zi = 1 .

For any N-tuple c̄ in P, P |= µN[c̄] if and only if c̄ is a connected partition in P.

We will continue to use the abbreviation µN in the sequel. In addition, when M = 0,
we interpret the expression

∑
1≤i≤M zi as the L-term 0.

Lemma 5.4 Let ā be any n-tuple of elements of P; and let x̄ = x1, . . . , xn be
an n-tuple of variables. Then P |= ψ[ā] for some formula ψ of the form
∃z1 · · · ∃zN (µN (z̄) ∧ π(x̄, z̄)), where z̄ = z1, . . . , zN and π(x̄, z̄) is of the form
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1≤i≤n(xi = ∑

1≤ j≤Ni
zi, j) such that, for all i (1 ≤ i ≤ n), Ni ≥ 0, and the zi, j

(1 ≤ j ≤ Ni) are chosen from among the variables z̄.

Proof: Immediate from Lemmas 4.3 and 5.3. �
Having set up our mereotopological language and its countable familiar interpretation
Q, the proof that Q constitutes a “minimal” ontology proceeds quite simply using
standard techniques from model theory. First, we must make more precise the claim
that Q is minimal. The relevant concept here is that of a prime model.

Definition 5.5 A model A is said to be prime if, for any model B, A ≡ B implies
that A can be elementarily embedded in B.

We show that Q is prime. It follows that any alternative spatial ontology making the
same sentences of our mereotopological language true must contain a copy of Q, to-
gether with some additional elements which make no difference to the formulas sat-
isfied by the elements in that copy of Q. The technique we use employs the notion of
an atomic model.

Definition 5.6 A formula ϕ(x̄) is said to be complete in a theory T if, for all for-
mulas θ(x̄), exactly one of T |= ϕ −→ θ and T |= ϕ −→ ¬θ hold. A model A is
said to be atomic if any n-tuple ā in A satisfies a formula ϕ(x̄) in A such that ϕ(x̄) is
complete in Th(A).

Then we have the following standard result from Chang and Keisler [10].

Theorem 5.7 ( [10], 2.3.4) A model is countable atomic if and only if it is prime.

Our task, then, is to show that Q is atomic. The following results will also feature in
the sequel.

Theorem 5.8 ( [10], 2.3.3) If A and B are countable atomic models and A ≡ B,
then A � B.

Theorem 5.9 ( [10], 2.3.13) Let T be a complete theory. Then T is ω-categorical
if and only if, for each n, T has only finitely many types in x1, . . . , xn.

The following lemma contains the main idea of the proof of Theorem 5.11.

Lemma 5.10 Every finite connected partition in P satisfies a complete formula in
Th(P). In fact, for each N, there exist complete formulas γ1(z̄), . . . , γk(z̄) (k de-
pending in N) such that Th(P) |= ∀z(µN (z̄) ←→ (γ1(z̄) ∨ · · · ∨ γk(z̄))).

Proof: Any connected partition satisfies µN (z̄) in P for some N > 0 by Lemma 5.3.
And, conversely, any N-tuple in P satisfying µN (z̄) is an N-element connected par-
tition. By Theorem 4.9, there are only finitely many of these up to homeomorphism.
Moreover, by Lemma 5.1, any two similarly situated N-tuples belong to the same type
�(z̄). Hence, any N-tuple satisfying µN (z̄) must belong to one of a finite number of
types, �1(z̄), . . . , �k(z̄) in the variables z̄. Now simply select pairwise inconsistent
δi(z̄) from each �i (1 ≤ i ≤ k) and set γi = µN ∧ δi. �

Theorem 5.11 P is an atomic model.
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Proof: By Lemma 5.4, every n-tuple ā in P satisfies a formula of the form:

∃z1 · · · ∃zN (µN (z̄) ∧ π(x̄, z̄)) .

So let c̄ be an N-tuple such that ā, c̄ satisfies π and c̄ satisfies µN . Thus, c̄ form a
finite connected partition in P. By Lemma 5.10, let γ be a complete formula in Th(Q)

satisfied by c̄. Then ā satisfies ∃z1 · · · ∃zN (γ(z̄)∧π(x̄, z̄)), which is visibly complete.
�

Hence, the familiar model constitutes a “minimal” ontology for practical mereotopol-
ogy in the following sense.

Corollary 5.12 If A |= Th(P), then Q can be elementarily embedded in A.

The question of course arises as to whether the familiar model Q is strictly minimal
among countable models of Th(P), in that there are countable models of Th(P) not
isomorphic to Q. The answer is: yes and no.

Theorem 5.13 Th(P) is not ω-categorical.

Proof: By Theorem 5.9, it suffices to prove that Th(P) has countably many types
in the single variable x. It is easy to see that, for every positive integer m, the formula
ϕm(x)

∃z1 · · · ∃zm

( ∧
1≤i≤m

(c(zi) ∧ zi �= 0) ∧
∧

1≤i< j≤m

¬c(zi + z j) ∧ x =
∑

1≤i≤m

zi

)

is satisfied in P by all and only those regions having exactly m components. Hence,
the ϕm(x) are all satisfied in P; so each can be extended to a type �m(x) of Th(P).
But the ϕm(x) are also pairwise mutually exclusive in Th(P); so no two of them can
be extended to the same type in Th(P). Hence, Th(P) has countably many types in
x. �
Thus, there exist countable models of Th(P) nonisomorphic to Q. By Theorem 5.8,
these models cannot be atomic, and so cannot be prime. Thus Q is, in a strong sense,
strictly minimal. However, it turns out that Th(P) satisfies a weakened form of of ω-
categoricity. The next theorem shows that the only alternative models to P are those
containing regions comprising, as we might put it, infinitely many pieces.

Theorem 5.14 Any two countable models of Th(P) omitting the set of formulas

�(x) =
{

¬∃z1 · · · ∃zN

( ∧
1≤i≤N

c(zi) ∧ x =
∑

1≤i≤N

zi

)∣∣∣∣∣ N ≥ 1

}

are isomorphic.

Proof: Let A be countable such that A |= Th(P) and A omits �(x). Since A omits
�(x), for every n-tuple ā in A, there exists an N-tuple c̄ satisfying µN in A such that
the elements of ā are expressible according to A as sums of various elements of c̄.
(To see this, simply take all nonzero products of the form ±a1 · · · · · ±an and, using
the fact that A omits �(x), express each such atom as a sum of elements of A, each
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of which satisfies c(x) in A. By Lemma 3.4, Th(P) |= ∀x∀y((c(x) ∧ c(y) ∧ x · y �=
0) −→ c(x + y)), so we may sum together any nondisjoint pairs of these elements
until we have elements c1, . . . , cN satisfying µN in A.) By Lemma 5.10, any tuple
in A realizing µN (z̄) realizes a complete formula, whence A is clearly atomic, by
identical reasoning to that of Theorem 5.11. By Theorem 5.8, A � Q. �

6 Liberalizing the polygonal ontology The purpose of this section is to show that
the polygonal ontology with which we have been working can be significantly liberal-
ized without changing the set of truths expressible in L . As in the polygonal case, the
technical details in this section are routine and, in one form or another, well known
in studies of semialgebraic sets. The reader is referred to Pillay and Steinhorn [26],
Knight, Pillay, and Steinhorn [21] and the works cited there.

Definition 6.1 Let L ′ be the language with signature 〈<,+, · , 0, 1〉, interpreted in
R in the usual way (i.e., with + and · denoting addition and multiplication). A set
A ⊆ R

n is said to be definable (without parameters) if there exists an L ′-formula
ϕ(x1, . . . , xn) such that A = {〈a1, . . . , an〉 ∈ R

n|R |= ϕ[a1, . . . , an]}.
We extend the use of this term in the obvious way: a point ā ∈ R

n is definable if
the set {ā} is definable; a partial function f : R −→ R

n is definable if it is definable
considered as a subset R

n+1; and plane graph in R
2 is definable if all its nodes are

definable points and its edges definable arcs.

Theorem 6.2 Let T be the set of definable, regular sets in R
2. Then T forms a

Boolean subalgebra of RO(R2).

Proof: It is easy to see that if x is definable, −x = R
2 \ [x] is also definable, and

that if y is also definable, x · y = x ∩ y is definable. �
Given this theorem, we define the countable definable model T for our mereotopo-
logical language L by interpreting the primitives of L over the domain of quantifica-
tion T in the obvious way. The main result of this section is:

Theorem 6.3 Q � T. In fact, Q � T.

It follows of course that Th(T) = Th(P), so that the liberalization of the ontology
arising from allowing regions to be described by any formula of L ′ makes no differ-
ence to the set of truths expressible in L . We note in passing that the real polygonal
domain R is not a subset of T , since R is uncountable. A corresponding liberalization
of R would involve the use of parameters from R in the defining formulas. We also
note that the results of this section might possibly be generalized to apply to regular
definable sets in two dimensions over any real closed field. However, it is unclear
that such generalizations would have any significance for our current concerns. The
remainder of this section is devoted to proving Theorem 6.3.

To see where the difficulties lie, recall our treatment of the polygonal case. Since
basic polygons are convex, it was trivial to show that every element of P is the sum of
finitely many connected elements of P, and hence that any component of an element
of P is an element of P. But it is not immediately obvious that corresponding facts
apply to T ; and that is what we must show. Once we have done this, the development
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parallels that of the polygonal case. The following result is well known (see, e.g.,
Hodges [20], p. 92 for an explanation).

Theorem 6.4 Any definable subset of R is a finite union of points and open inter-
vals (possibly unbounded); moreover, the endpoints of these intervals are all defin-
able.

Definition 6.5 (Adapted from Knight, Pillay, and Steinhorn) A 0-cell is a point in
R

2; a 1-cell is the graph {(ξ1, f (ξ1)) ∈ R
2|ξ1 ∈ I}, of a definable, continuous function

f : I −→ R where I is a definable open interval of R (possibly unbounded); a 2-cell is
a set {(ξ1, ξ2) ∈ R

2|ξ1 ∈ I; f (ξ1) < ξ2 < g(ξ1)}, where I is a definable open interval
of R (possibly unbounded) and f and g are definable, continuous functions from I to
R ∪ {±∞} such that f < g over I.

Note that since 2-cells are visibly regular, they are elements of T . The critical theorem
for us is as follows. (See Knight, Pillay, and Steinhorn [21], §3–5 for a proof of this
theorem.)

Theorem 6.6 ([21]) Every definable set in R
2 is a finite union of cells.

Lemma 6.7 Any element of T is the sum of finitely many connected elements of T.

Proof: Let t = c1 ∪ · · · ∪ cn where the ci are 0- 1- and 2-cells. Since t is regular,
t = t′′ = (c1 ∪ · · · ∪ cn)

′′, and it is routine to show that, for any sets c1, . . . , cn, c′′
i is

always regular (1 ≤ i ≤ n) and (c1 ∪ · · · ∪ cn)
′′ = c′′

1 + · · · + c′′
n . If ci is a 0- or 1-cell,

then c′′
i = 0. If ci is a 2-cell c′′

i = ci. �
The development now parallels that of the polygonal case.

Lemma 6.8 Let a ∈ T and let c be a component of a. Then c ∈ T. Moreover, a
equals the sum of its components.

Lemma 6.9 Let A be a finite subset of T. Then there exists a connected partition
C in T such that each a ∈ A is expressible as a sum of zero or more elements of C.

The proofs are identical to those for Lemmas 4.2 and 4.3.

Theorem 6.10 Let A be a connected partition in T; then there exists a finite defin-
able graph* with no isthmuses whose faces are precisely A. Conversely, let G be a
finite definable graph* with no isthmuses; then the faces of G form a finite connected
partition in T.

Proof: Suppose that a1, . . . , an form a connected partition in T . Take a finite collec-
tion C of 2-cells such that each of the ai can be expressed as a sum of various elements
of C. By Theorem 6.4 the boundary of each 2-cell in the closed plane can certainly
be drawn using finitely many definable arcs (possibly passing through the point at
infinity), and together, these arcs form a definable graph* G∗ in the closed plane in
the obvious way. Again by Theorem 6.4, G∗ has finitely many nodes and edges, and
hence finitely many faces, say b1, . . . , bN . These faces are the components of finite
intersections of 2-cells and so are regular, whence each ai (1 ≤ i ≤ n) can certainly
be expressed as a sum of various b j (1 ≤ j ≤ N). The proof now proceeds exactly as
for Theorem 4.5 from the point marked �.
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Conversely, suppose that G is a finite definable graph*. For each edge of G∗,
lying on the arc (ξ1(t), ξ2(t)), say, the set of reals t corresponding to local maxima
and minima of ξ1(t) (including endpoints) is definable and therefore finite by The-
orem 6.4. Similarly, the set of intervals over which the function ξ1(t) is constant is
finite. Now add to G by drawing vertical lines at all these (obviously definable) val-
ues of ξ1(t), for each arc in G. The result must be a finite definable graph* G∗ each
face of which is a 2-cell. If G has no isthmuses, then each face f of G is regular,
and is in fact the smallest regular set containing all the faces of G∗ (i.e., 2-cells) into
which it is divided. Hence f is the sum of these 2-cells, so f ∈ T . �

Lemma 6.11 Let a ∈ R and p ∈ F (a) be a definable point. Then there is a defin-
able end-cut α in a with endpoint p.

Proof: This is visibly true if a is a 2-cell. If a = c1 + · · · + cn where ci is a 2-cell
(1 ≤ i ≤ n), then F (a) ⊆ ⋃

1≤i≤n F (ci), whence the result follows immediately. �

Theorem 6.12 There exists a function g : N −→ N such that, for all n > 0, there
exist at most g(n) n-element connected partitions in T up to homeomorphism.

The proof proceeds, given lemma 6.11, as for Theorem 4.9 and the preceeding lem-
mas.

Finally, we come to the homogeneity results. The critical observation here is
Lemma 6.11. Using this lemma, is it standard to show that, given any finite graph*
G, we can find a homeomorphism of the open plane onto itself taking G to a definable
graph*, while fixing (setwise) all the definable faces of G. The following lemmas can
then be proved as for the polygonal case (with minor changes).

Lemma 6.13 Let a1, . . . , an, b1, . . . , bn, a ∈ T such that a1, . . . , an ∼ b1, . . . , bn.
Then there exists b ∈ T such that a1, . . . , an, a ∼ b1, . . . bn, b.

Lemma 6.14 Let a1, . . . , an ∈ Q and b ∈ T. Then there exists a ∈ Q such that
a1, . . . , an, b ∼ a1, . . . , an, a.

At this point, the conclusion Q � T follows as for the proof of Lemma 5.2. Thus,
T |= Th(P) and by Lemma 6.9, T omits �(x) (as defined in the statement of Theo-
rem 5.14). Moreover, T is countable, so by Theorem 5.14, Q � T.

7 Related work The results presented here not only have ramifications for mereo-
topological theories (Casati and Varzi [8], [9], Varzi [36] and references in Section 1),
but they have connections with more practical disciplines. Various logicians have
sought to give deductive theories of space and space-time (Basri [4], Carnap [7],
Goldblatt [16], Henkin, Suppes, and Tarski [19]), many in terms of modal logics (Bal-
biani et al. [3], Rescher and Garson [29], Rescher and Urquhart [30], Segerberg [32],
Shehtman [34], von Wright [38]). Recent interest in the analysis of visual languages,
such as maps and diagrams (Haarslev [18], Lemon [24], Lemon and Pratt [25],
Pratt [27]) has led to the exploration of planar mereotopology in relation to qualita-
tive spatial reasoning, since it is theorized that an important aspect of the semantics of
such representations may be given by analysis of spatial relations between represen-
tational tokens in the plane. Another more practical area in which ontological issues
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about the plane are raised is in the construction of computational spatial representa-
tions for robots, and in Geographical Information Systems (Davis [13], Vieu [37]).
As we have mentioned, GISs use planar polygonal regions to represent geographic
objects. In mobile robotics too, it is common to represent a robot’s information about
its environment as a planar arrangement of places together with their connection rela-
tions (Davis [14], Dudek, Freedman, and Hadjres [15], Kuipers [23], Shanahan [33]).
A complete axiomatization of Th(P) has been developed in Pratt and Schoop [28].

8 Conclusion In this paper, we have investigated the possibility of alternative spa-
tial ontologies for practical mereotopological reasoning. In order to constrain the
problem, we insisted that any such ontology provide a model elementarily equiva-
lent to the “familiar” polygonal model P. Our motivation for taking P as our point
of departure was that many computer packages designed to manipulate spatial data,
such as GISs, restrict themselves to piecewise linear objects, without any apparent
loss of useful representational power.

We identified rational and real “versions” of P, namely Q and R, with the for-
mer being countable. The main technical results of this paper state that, although Q is
not the only countable countable model of Th(P), it is, in the sense of elementary em-
bedding, the minimal such model. Thus, the countable alternatives to Q all contain a
copy of Q—the “familiar” regions, plus some “nonfamiliar” regions which make no
difference to any properties of the familiar regions expressible in L . Thus, in a strong
sense, they are less parsimonious. Moreover, we found a simple condition on models
of Th(P) which determines Q up to isomorphism, and provides a useful characteriza-
tion of the other models of Th(P). Finally, we showed how P could be considerably
liberalized without affecting the truths expressible in L . Apparently, revisions to our
ontology of the plane which do not violate the facts of polygonal mereotopology—to
the extent they exist at all—must be less parsimonious than the one we started with.
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