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A Supersimple Nonlow Theory

ENRIQUE CASANOVAS and BYUNGHAN KIM

Abstract This paper presents an example of a supersimple nonlow theory and
characterizes its independence relation.

1 Introduction Buechler introduced in [1] a subclass of simple theories called low.
Every stable theory is low, and every supersimple theory having a finite bound of
ranks of complete types is low. Buechler proved in [1] that in any low theory, Las-
car strong type is the same as strong type. In Casanovas [3] an example of a simple
nonlow theory appears. In this paper we show an example of a supersimple nonlow
theory.

Recently, in [2] Buechler, Pillay, and Wagner extended Buechler’s proof to the
full class of supersimple theories. Namely, they proved that a supersimple theory
eliminates hyperimaginaries. This fact implies that the notions of Lascar strong type
and strong type coincide in a supersimple theory. But still we believe that knowing an
example of a nonlow supersimple theory is useful. After Buechler’s proof appeared,
it was naturally asked, what is a nonlow (super)simple structure? The obvious can-
didates are the following.

Example 1.1 The model consists of a disjoint union of countable sets Pn (n ∈ ω �

{0}), where each Pn is a disjoint union of countable sets Un, Vn such that both Un and
Vn can be identified as [ω]n = {A ⊆ ω : |A| = n}. Now there also is a binary relation
R(x, y) such that R(a, b) if and only if a ∈ Un, b ∈ Vn for some n ∈ ω � {0}, and
a ∩ b �= ∅ (when each of Un and Vn is identified as [ω]n). It is easy to see that, for
each 2 ≤ k < ω, there is bk such that R(x, bk) divides over ∅ with respect to k (as
defined below), but not with respect to k − 1.

The theory T of the model has the strict order property, so T is not sim-
ple: the formula R(x; y1) ∨ R(x; y2) has the strict order property. For example,
R(x, {1, . . . , n}) ∨ R(x, {1, . . . , n}) � R(x, {1, . . . , n}) ∨ R(x, {n + 1, 2, . . . , n}) �

R(x, {1, . . . , n}) ∨ R(x, {n + 1, n + 2, 3, . . . , n}) · · · ⊆ R(x, {1, . . . , n}) ∨ R(x, {n +
1, n + 2, n + 3, . . . , n + n}). Apply compactness.
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Example 1.2 The second model is the same as the first one in Example 1.1 up to
that each Pn is a disjoint union of countable sets Un, Vn. Now Un and Vn are identified
as [ω]n and ω, respectively. Again there is a binary relation R(x, y) such that R(a, b)

if and only if a ∈ Un, b ∈ Vn for some n ∈ ω � {0}, and b ∈ a. Similarly there is no
fixed k such that whenever R(x, c) divides over ∅, then it does with respect to k.

This time, the formula R(x1; y) ∧ R(x2; y) has the strict order property:
R({1, . . . , n}, y) ∧ R({1, . . . , n}, y) � R({1, . . . , n}, y) ∧ R({1, . . . , n − 1, n + 1},
y) � R({1, . . . , n}, y) ∧ R({1, . . . , n − 2, n + 1, n + 2}, y) · · · � R(x, {1, . . . , n}) ∧
R(x, {n + 1, n + 2, n + 3, . . . , n + n}). Again apply compactness.

After the previous types of constructions failed, the following was asked next: Is ev-
ery (super)simple theory low? Our example here answers the question negatively.
(Our construction is, in fact, a variation of Example 1.2) This says, in the meantime,
Buechler-Pillay-Wagner’s proof cannot be trivialized by simply showing a supersim-
ple theory is low.

We assume the reader is familiar with the basic facts about simple theories as
exposed in Kim [4] or [5] and Kim and Pillay [7]. Let T be a theory in language L and
let ϕ(x, y) ∈ L. Recall that ϕ(x, a) divides over A with respect to a natural number
k ≥ 2 if there are ai, (i < ω) such that tp(ai/A) = tp(a/A) and {ϕ(x, ai) : i < ω} is
k-inconsistent. It is said that ϕ(x, a) divides over A if it divides over A with respect to
some k. Let α be an ordinal number. We say that ϕ(x, y) divides α times if there are
parameters (bi : i < α) such that {ϕ(x, bi) : i < α} is consistent and for every i < α,
ϕ(x, bi) divides over {b j : j < i}. As remarked in [3], a formula has the tree property
if and only if it divides ω1 times. Hence a theory T is simple if and only if no formula
divides ω1 times in T .

We say that T is low if for every formula ϕ(x, y) ∈ L there is a natural number nϕ

such that ϕ(x, y) does not divide nϕ times. This is equivalent to the original definition
in [1] which is made in terms of some local rank. If a formula divides ω times in T ,
then T is not supersimple. In the example of a simple nonlow theory in [3] there is a
formula which divides α times for every α < ω1. Hence it is not supersimple.

In Section 2 we present the theory in our example and in Section 3 we prove its
consistency and completeness. In Section 4 we show that it is nonlow and we check
the supersimplicity of T by the method of counting types as developed in [3]. In Sec-
tion 5 we characterize the notion of independence of T . This gives a second proof of
supersimplicity according to the results in [7].

2 Axioms of T The language of our theory T has two binary relation symbols
R, E, unary predicates Q0, Q1, and Pn, Q0

n, Q1
n, Q2

n for every natural number n ≥ 1
and, moreover, n-ary function symbols Fn for n ≥ 1. The axioms are as follows.

1. The universe is the disjoint union of Q0 and Q1.
2. R ⊆ Q0 × Q1.
3. E is an equivalence relation on the universe.
4. Each E-class is R-closed and has infinitely many elements in Q0 and in Q1.
5. Each Pn is an E-equivalence class.
6. Pn is the disjoint union of the infinite sets Q0

n, Q1
n, Q2

n.
7. Q0

n ⊆ Q0 and Q1
n ∪ Q2

n ⊆ Q1.
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8. ∀x ∈ Q0
n∃=nu ∈ Q1

n R(x, u).

9. If x, y ∈ Q0
n and ∀u ∈ Qn

1(R(x, u) ←→ R(y, u)), then x = y.

10. If u1, . . . , un ∈ Q1
n, then there exists x ∈ Q0

n such that R(x, u1)∧· · ·∧ R(x, un).

11. If u1, . . . , un ∈ Q1
n are all different, Fn(u1, . . . , un) is the unique x ∈ Q0

n such
that R(x, u1) ∧ · · · ∧ R(x, un). Otherwise Fn(u1, . . . , un) = u1.

12. If A, B are finite disjoint subsets of Q0
n, there exists a v ∈ Q2

n such that

∧

x∈A

R(x, v) ∧
∧

x∈B

¬R(x, v).

13. If u1, . . . , um are different (as sets) (n − 1)-tuples, each one consisting of n − 1
different elements of Q1

n and for each i = 1, . . . , m, Ai, Bi are finite disjoint
subsets of Q2

n, then there exists a u ∈ Q1
n different from each point in u1, . . . , um

and such that for each i = 1, . . . , m

∧

v∈Ai

R(Fn(ui, u), v) ∧
∧

v∈Bi

¬R(Fn(ui, u), v).

14. If U is an E-equivalence class and A, B are finite disjoint subsets of U ∩ Q1

such that |A ∩ Q1
n| < n for every n, then there exists a x ∈ U ∩ Q0 such that

∧

u∈A

R(x, u) ∧
∧

u∈B

¬R(x, u).

15. If U is an E-equivalence class and A, B are finite disjoint subsets of U ∩ Q0,
then there exists a u ∈ U ∩ Q1 such that

∧

x∈A

R(x, u) ∧
∧

x∈B

¬R(x, u).

Remark 2.1

1. Axiom 14 can be expressed in a first-order language as follows: for every
n, k: ∀u∀u1, . . . , un, v1, . . . , vk ∈ Q1 different and such that

∧n
i=1 E(u, ui) ∧∧k

i=1 E(u, vi) and u1, . . . , un �∈ (P1 ∪ · · · ∪ Pn), there exists a x ∈ Q0 such that
E(u, x) and

∧n
i=1 R(x, ui) ∧ ∧k

i=1 ¬R(x, vi).

2. From axiom 12 it follows that for any A, B disjoint subsets of Q0
n there are

infinitely many v ∈ Q2
n such that

∧

x∈A

R(x, v) ∧
∧

x∈B

¬R(x, v).

Similarly for axioms 13, 14, and 15.

3. If C is a set of n − 1 elements of Q1
n and a ∈ Q1

n � C, then for any two (n − 1)-
tuples c1, c2 enumerating C we have Fn(c1, a) = Fn(c2, a). Hence we may use
the notation Fn(C, a) with the obvious meaning.
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3 Consistency and completeness of T

Proposition 3.1 T is consistent.

Proof: Let T0
n be the theory of language R, Pn, Q0

n, Q1
n, Q2

n, Fn whose axioms are
R ⊆ Q0

n × (Q1
n ∪ Q2

n), ∀xPn(x) and (6) to (11). This theory is clearly consistent and
it is preserved under unions of chains. It describes Q2

n as an arbitrary infinite set and
Q0

n as the set [Q1
n]n of all n-element subsets of Q1

n, being R the inverse of membership
and Fn the mapping taking n different elements a1, . . . , an to its set {a1, . . . , an}. Let
Tn be the extension of T0

n obtained by adding axioms 12 and 13. Tn is a complete
theory (this follows from the proof of completeness of T) and it is the theory of all
existentially closed models of T0

n . The new axioms 12 and 13 indicate that R refines
a bipartite random graph between Q0

n and Q2
n. But there is at the same time a more

subtle relation between elements of Q1
n and elements of Q2

n: given m sets A1, . . . , Am

of n − 1 elements of Q1
n, each new element a ∈ Q1

n determines m sets of Q2
n, namely,

Ai ∪ {a} determines the set {b ∈ Q2
n : R(Fn(Ai, a), b)}.

Now if we fix a model Mn of each Tn and we define M as the disjoint union of
all Mn, then with the obvious definition for E, Q0, and Q1, M is a model of T . �

Let A be a set in a model of T . Define F−1
n (A) as the set of all a ∈ Q1

n such that
Fn(a1, . . . , an−1, a) ∈ A for some a1, . . . , an−1 ∈ Q1

n pairwise different and different
from a and define clF(A) as the closure of A under each Fn and F−1

n . This is inde-
pendent of the choice of the model containing A since clF(A) ⊆ acl(A). Clearly,

clF(A) = A ∪
⋃

n≥1

F−1
n (A) ∪ Fn(A ∪ F−1

n (A))

and clF(A) is finite if A is finite. We will see that clF(A) = acl(A).

Proposition 3.2 T is complete.

Proof: Call a set (in a model of this theory) F-closed if it is closed under clF . Let
us work in ω-saturated models and let us consider all finite F-closed partial iso-
morphisms, that is, all finite partial isomorphisms which have F-closed domain and
range. We show how to extend a given finite F-closed partial isomorphism f by
adding a new element a to the domain A of f . This proves completeness. There are
different cases to be considered.

Case 1: a ∈ Q1
n. Since a �∈ A and A is F-closed, clearly ¬R(d, a) for all d ∈ A.

Let A1, . . . , Am be all subsets of A ∩ Q1
n having n − 1 elements and for i = 1, . . . , m

set ai = Fn(Ai, a). Then a1, . . . , am ∈ Q0
n. For i = 1, . . . , m let bi

1, . . . , bi
ki

be all the

elements b in A ∩ Q2
n such that R(ai, b) and let ci

1, . . . , ci
hi

be all the elements c in

A ∩ Q2
n such that ¬R(ai, c). By axiom 13, the theory proves ∃xϕ(x) where ϕ(x) is

the formula

Q1
n(x) ∧

∧

d∈A

x �= f (d) ∧
m∧

i=1

(

ki∧

j=1

R(Fn( f (Ai), x), f (bi
j))∧

∧hi
j=1 ¬R(Fn( f (Ai), x), f (ci

j))).



NONLOW THEORY 511

We take as f (a) a realization of ϕ(x). To make f ∪ {(a, f (a))} F-closed we have
to add now Fn(Ai, a), (i = 1, . . . , m). Obviously we can do it taking as values
Fn( f (Ai), f (a)), (i = 1, . . . , m).

Case 2: a ∈ Q0
n. Let a1, . . . , an be the different elements in Q1

n such that
a = Fn(a1, . . . , an). We know how to add a1, . . . , an to the domain of f . Hence
we can get an F-closed f ′ ⊇ f such that a1, . . . , an ∈ dom f ′. But this implies
a ∈ dom f ′.

Case 3: a ∈ Q2
n. Let b1, . . . , bm be all the elements in A ∩ Q0

n such that R(bi, a)

and let c1, . . . , ck be all the elements in A ∩ Q0
n such that ¬R(ci, a). By axiom 12

the theory proves ∃xϕ(x) for

ϕ(x) := Q2
n(x) ∧

∧

d∈A

x �= f (d) ∧
m∧

i=1

R( f (bi), x) ∧
k∧

i=1

¬R( f (ci), x).

Now we define f (a) as a realization of ϕ(x). In this case f ∪ {(a, f (a))} is F-closed.

Case 4: a �∈ ⋃
n Pn and E(a, a′) for some a′ ∈ A. Assume a ∈ Q0. Let b1, . . . , bm

be all the elements in A such that E(a, bi) and R(a, bi) and let c1, . . . , ck be all the
elements in A such that E(a, ci) and ¬R(a, ci). Since b1, . . . , bm �∈ ⋃

n Pn, by axiom
14 the theory proves ∃xϕ(x) for

ϕ(x) := Q0(x) ∧ E(x, f (a′)) ∧
∧

d∈A

x �= f (d) ∧
m∧

i=1

(R(x, f (bi))∧
∧k

i=1 ¬R(x, f (ci))).

We take as f (a) a realization of ϕ(x). Again f ∪ {(a, f (a))} is F-closed. The case
a ∈ Q1 is analogous, by axiom 15.

Case 5: a �∈ ⋃
n Pn and ¬E(a, a′) for every a′ ∈ A. Assume a ∈ Q0. Since E has

infinitely many classes and every E-class has infinitely many elements in Q0, the fol-
lowing is consistent:

p(x) := {Q0(x)} ∪ {¬Pn(x) : n ≥ 1} ∪ {¬E(x, f (d)) : d ∈ A}.

We take as f (a) a realization of p(x). The case a ∈ Q1 is analogous. �

4 T is supersimple and nonlow

Lemma 4.1

1. acl(A) = clF(A)

2. Any partial isomorphism between algebraically closed sets is elementary.
3. Assume A = acl(A) and a, b �∈ ⋃

n Q0
n. If a, b have the same atomic type over

A, then they have the same type over A.
4. If A is finite, acl(A) is finite.
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Proof: (4) follows from (1) and (2) follows from (1) and the proof of Proposition 3.2
since we may assume that the algebraically closed sets are finite and then the partial
isomorphism belongs to the family which we use to prove completeness. By look-
ing at the proof of Proposition 3.2 one can also see that if A = clF(A) is finite and
a, b �∈ ⋃

n Q0
n have the same atomic type over A, then the mapping which is the iden-

tity on A and takes a to b can be extended to a finite F-closed partial isomorphism.
Therefore, it belongs to the collection considered in the proof of Proposition 3.2 and
it is elementary. Hence (3) follows from (1) too. To conclude the proof of (1) we
have to show that acl(A) ⊆ clF(A). We may assume A is finite. Let a �∈ clF(A). In
case a �∈ ⋃

n Q0
n, looking at the axioms, we easily see that there are infinitely many

objects with the same (atomic) type over clF(A) as a. Hence a �∈ acl(A). Now as-
sume a ∈ Q0

n. Choose b ∈ Q1
n � clF(A) such that R(a, b). By what we have proven

we know that b �∈ acl(A). Let bi (i < ω) be different conjugates of b over A. Let
b1, . . . , bn with b = b1 the different elements in Q1

n with Fn(b1, . . . , bn) = a and
choose bi

1, . . . , bi
n such that bi = bi

1 and tp(b1, . . . , bn/A) = tp(bi
1, . . . , bi

n/A). Ob-
viously if ai = Fn(bi

1, . . . , bi
n), then {ai : i ∈ ω} is infinite and tp(ai/A) = tp(a/A).

This shows that a �∈ acl(A). �
We can take as a definition of supersimplicity the nonexistence of a sequence of for-
mulas ϕi(x, yi) ∈ L, (i < ω) and parameters bi, (i < ω) such that {ϕi(x, bi) : i < ω}
is consistent and for every i < ω, ϕi(x, bi) divides over {b j : j < i}. As shown in [4],
Remark II.2.18, if T is not supersimple there exists such sequence with the addi-
tional condition that x is a single variable. By the same arguments, if x = x1, . . . , xn

and for some fixed formula θ(x), ϕi(x, yi) � θ(x1) ∧ · · · ∧ θ(xn), we can obtain
the sequence ψi(x j, zi) (i < ω) in one variable x j with the additional property that
ψi(x j, zi) � θ(x j). This will be used in what follows.

In [3] it is shown how to decide if a theory is supersimple by counting types.
For κ, λ infinite cardinal numbers, define NT(κ, λ) as the supremum of the cardinali-
ties |P| of families P which consist of pairwise incompatible partial types of size ≤ κ

over a set of cardinality λ. As shown in [3], a theory T is supersimple if and only
if NT(κ, λ) ≤ 2|T |+κ + λ for all κ, λ with κ ≤ λ. As remarked in [3], by the same
reason as above we may restrict ourselves to types in one variable. In fact if there is
a big family P (a family of cardinality > 2|T |+κ + λ ) of incompatible partial types
p = p(x1, . . . , xn) of size κ over a fixed set of cardinality λ and for each p ∈ P it holds
p(x1, . . . , xn) � θ(x1) ∧ · · · ∧ θ(xn), then there is also a big family Q of incompati-
ble partial types of size κ in one variable q = q(y) with parameters in a fixed set of
cardinality λ and such that for each q ∈ Q, q(y) � θ(y). We apply this procedure of
counting types to our theory T .

Proposition 4.2 T is supersimple.

Proof: Let κ ≤ λ. We show that for any set A of cardinality ≤ λ there are at most
2κ + λ pairwise incompatible partial 1-types of size κ over A. Without loss of gener-
ality, A is algebraically closed. By Lemma 4.1 in many cases we have only to look at
the atomic part of the types. Let P be a family of incompatible partial 1-types over
A of size ≤ κ. We may assume that for each p ∈ P, p ∈ S(Ap) for an algebraically
closed set Ap ⊆ A of cardinality κ. Since there are only countably many types over
the empty set, we may assume that all types in P have the same restriction to the empty
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set and since there are only λ many algebraic types over A, we may also assume that
no type in P is algebraic. Write A = {ai : i < λ}.

Assume first p � Q1
n(x) for each p ∈ P. Each p ∈ P is axiomatized by

{Q1
n(x)} ∪ {¬R(a, x) : a ∈ Ap} and a set of formulas of the form R(Fn(C, x), a) and

¬R(Fn(D, x), b) where a, b ∈ Ap and C, D are subsets of n − 1 elements of Ap. We
enumerate the set of all subsets of A of cardinality n − 1, [A]n−1 = {C j : j < λ}.
Let f p : {(i, j) ∈ λ × λ : Ci ⊆ Ap and a j ∈ Ap} → 2 be the mapping defined by:
f (i, j) = 0 if and only if R(Fn(Ci, x), a j) ∈ p. Each f p belongs to the collection
Fn(λ × λ, 2, κ+) of all partial mappings from a subset of λ × λ of power < κ+ into
2 = {0, 1}. If p, q ∈ P are incompatible, the mappings f p, fq are incompatible too,
that is, f p ∪ fq is not a function. Since Fn(λ × λ, 2, κ+) has the (2κ)+-chain con-
dition (cf. [8], Lemma VII.6.10) and { f p : p ∈ P} is an antichain, we conclude that
there are at most 2κ such types in P.

Consider now the case p � Q0
n(x) for each p ∈ P. Observe that there is a natural

bijection between types p(x) such that p(x) � Q0
n(x) and sets {p1(x1), . . . , pn(xn)}

of types pi(xi) such that pi(xi) � Q1
n(xi), namely, given p choose a |= p, choose

different a1 . . . , an ∈ Q1
n such that a = Fn(a1, . . . , an) and define pi as the type of ai.

The types in Q0
n are incompatible if and only if the corresponding sets of types in Q1

n
are incompatible. By the remarks above, the bound for families of incompatible types
with p � Q1

n(x) is also a bound for families of incompatible types with p � Q0
n(x).

In the third possible case we have p � Q2
n(x) for each p ∈ P. Each such p is ax-

iomatized by {Q2
n(x)} ∪ {x �= a : a ∈ Ap} and by a set of formulas of the form R(a, x)

and ¬R(b, x) where a, b ∈ Q0
n ∩ Ap. Again by a chain condition argument we see

that there are at most λ many such types.
Now assume p � ¬Pn(x) for each p ∈ P and for each n ≥ 1. Suppose that for all

p ∈ P, p � Q0(x). The case where p � Q1(x) is similar, so we will not consider it. If
p and q do not have E-representatives, that is, if for all a ∈ Ap, p � ¬E(a, x) and for
all a ∈ Aq, q � ¬E(a, x), then p is compatible with q. Hence we may assume that for
each p ∈ P there is an ap ∈ Ap such that p � E(ap, x). Since there are only λ many
E-classes with representatives in A, it is enough to show that for each a ∈ A there
are at most 2κ many types p ∈ P such that p � E(a, x). Observe that R is a bipartite
random graph between Q0 and Q1 in the E-class of a. This means that again a chain
condition argument gives the result. �

Proposition 4.3 T is nonlow.

Proof: We show that the formula R(x, y) divides n times for any n ∈ ω. Choose
different a1, . . . , an ∈ Q1

n. Clearly {R(x, ai) : i = 1, . . . , n} is consistent. We claim
that for every i, R(x, ai) divides over Ai := {a j : j < i} with respect to n + 1. To
witness it we take different b j ( j < ω) in Q1

n � Ai. Each b j has the same type over
Ai as ai and {R(x, b j) : j < ω} is (n + 1)-inconsistent. �

5 Forking and independence in T In this last section we characterize the indepen-
dence relation of T , that is, nonforking in T . We define directly the relation A |�C

B
between sets A, B, C and we show that it satisfies all the required properties of inde-
pendence in a simple theory. In fact the existence of such relation gives another proof
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of the simplicity of T . It is shown in [7] that any theory with an independence relation
satisfying some basic properties must be simple and, moreover, this independence re-
lation must be just nonforking. Since in our case it is clear that for each tuple a and
each set B there exists a finite C ⊆ B such that a |�C

B this gives also a proof of su-
persimplicity. We will see that our independence relation satisfies the Independence
Theorem over algebraically closed sets and not only over models. By the results in
Kim [6] this implies that in our theory, Lascar strong type is the same as strong type.

The initial definition of A |�B
C is useful to check the basic properties. We

will see that it is equivalent to acleq(AC) ∩ acleq(BC) ⊆ acleq(C). We start defin-
ing clE(A) = acl(A) ∪ {[a]E : a ∈ A �

⋃
n Pn} and

A |�
C

B ⇐⇒ clE(A) ∩ clE(BC) ⊆ clE(C).

Remark 5.1

1. A |�C
B if and only if A |�C

BC.
2. A |�C

B if and only if acl(A) |�acl(C)
acl(B).

3. In case A ⊆ ⋃
n Pn, we have clE(A) = acl(A) and, therefore, A |�C

B if and
only if acl(A) ∩ acl(BC) ⊆ acl(C).

4. If A ∩ ⋃
n Pn = ∅, then clE(A) = A ∪ (A/E) and, moreover, A |�C

B if and
only if A ∩ BC ⊆ C and (A/E) ∩ (BC/E) ⊆ C/E.

The following properties are easy to check:

invariance under automorphisms: if A |�C
B, then f (A) |� f (C)

f (B) for any
automorphism f ;

local character: for every tuple a and every set B there is a
countable subset C ⊆ B (even finite in our
case) such that a |�C

B;

finite character: if a is a tuple and for all tuples b in B, a |�C
b,

then a |�C
B;

monotonicity: if A ⊆ B ⊆ C and D |�A
C, then D |�B

C;

transitivity: if A ⊆ B ⊆ C, D |�A
B and D |�B

C, then
D |�A

C.

It remains only to prove that |� has the three following properties:

symmetry: if A |�C
B, then B |�C

A;

extension: for all sets B ⊆ C, for every tuple a there is
a tuple a′ such that tp(a/B) = tp(a′/B) and
a′ |�B

C;

the Independence Theorem over
algebraically closed sets:

for all tuples a, b and sets A, B, C such that
C ⊆ A ∩ B, A |�C

B, C = acl(C), tp(a/C) =
tp(b/C), a |�C

A and b |�C
B, there exists

a tuple c such that tp(c/A) = tp(a/A),
tp(c/B) = tp(b/B) and c |�C

AB.
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We will prove that this is the case in the next lemmas.

Lemma 5.2

1. If a �∈ ⋃
Q0

n and a ∈ acl(A), then a ∈ acl(b) for some b ∈ A.
2. If a ∈ Q0

n and a ∈ acl(A), then there are a1, . . . , an ∈ A such that a ∈
acl(a1, . . . , an).

3. Let Bi = acl(Bi) for any i = 1, . . . , k. If a ∈ Q0
n ∩ acl(B1 ∪ · · · ∪ Bk), then

there are a1, . . . , an ∈ Q1
n ∩ (B1 ∪ · · · ∪ Bk) such that a = Fn(a1, . . . , an).

4. Let Bi = acl(Bi) for any i = 1, . . . , k. If a ∈ acl(B1 ∪ · · · ∪ Bk) �
⋃

n Q0
n, then

a ∈ B1 ∪ · · · ∪ Bk.

Proof: (1) is clear and (4) follows from (1). To prove (2) and (3) we choose
a1, . . . , an ∈ Q1

n such that a = Fn(a1, . . . , an). In case a ∈ acl(A), then a1, . . . , an ∈
acl(A) and by (1) there are b1, . . . , bn ∈ A such that ai ∈ acl(bi). Hence a ∈
acl(b1, . . . , bn). Assume now a ∈ acl(B1 ∪ · · · ∪ Bk). By (1) again, there are
b1, . . . , bn ∈ B1 ∪ · · · ∪ Bk such that ai ∈ acl(bi). Since every B j is algebraically
closed, ai ∈ B1 ∪ · · · ∪ Bk. �

Lemma 5.3 The symmetry property holds.

Proof: Assume A |�C
B. We want to show B |�C

A. Without loss of generality,
the sets A, B, C are all algebraically closed. Suppose that for some a ∈ clE(B) ∩
clE(AC), a �∈ clE(C). Suppose first a is not an E-equivalence class. In case a �∈⋃

n Q0
n by Lemma 5.2 it is clear that a ∈ acl(AC) � C implies a ∈ A, so we ob-

tain a contradiction. Assume a ∈ Q0
n. By Lemma 5.2 there are different a1, . . . , an ∈

(A ∪ C)∩ Q1
n such that Fn(a1, . . . , an) = a, say a1, . . . , ai ∈ A and ai+1, . . . , an ∈ C.

Since a ∈ B, a1, . . . , ai ∈ acl(B) = B. By the initial hypothesis A ∩ acl(CB) ⊆ C
and we see that a1, . . . , ai ∈ C. It follows that a ∈ C, a contradiction. Now assume
a = [b]E for some b ∈ (A ∪ C) �

⋃
n Pn. Since a �∈ clE(C), b �∈ C. Hence b ∈ A and

a ∈ clE(A). Since a ∈ clE(BC), by the initial hypothesis a ∈ clE(C), a contradiction
again. �
Observe that once we know that independence is symmetric, we can also characterize
it as follows:

A |�
C

B ⇐⇒ clE(AC) ∩ clE(BC) ⊆ clE(C).

Observe also that clE(A) ⊆ acleq(A) and that if a is an E-equivalence class of an
element outside

⋃
n Pn and a ∈ acleq(A), then a = [b]E for some b ∈ A. This means

that acleq(AC) ∩ acleq(BC) ⊆ acleq(C) implies clE(AC) ∩ clE(BC) ⊆ clE(C) and
hence A |�C

B. On the other hand the independence relation coming from nonforking
in a simple theory has always the property that A |�C

B implies acleq(AC) |�acleq(C)

acleq(BC) and hence acleq(AC) ∩ acleq(BC) ⊆ acleq(C). Therefore, after proving
that |� satisfies the extension property and the Independence Theorem we will have
that

A |�
C

B ⇐⇒ acleq(AC) ∩ acleq(BC) ⊆ acleq(C).

Lemma 5.4 If A |�C
B, then A |�CD

BD.
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Proof: Again we may assume that A, B, C, D are algebraically closed. We assume
clE(A) ∩ clE(BC) ⊆ clE(C) and show clE(A) ∩ clE(BCD) ⊆ clE(CD). Let a ∈
clE(A) ∩ clE(BCD). Suppose first a is not an equivalence class. In case a �∈ ⋃

n Q0
n

it is clear by Lemma 5.2 that a ∈ B ∪ C ∪ D and therefore that a ∈ acl(CD). Let
us consider the case a ∈ Q0

n. By Lemma 5.2 there are a1, . . . , an ∈ (B ∪ C ∪ D) ∩
Q1

n different and such that Fn(a1, . . . , an) = a, say a1, . . . , ai ∈ B, ai+1, . . . , a j ∈
C and a j+1, . . . , an ∈ D. Since a1, . . . , an ∈ A, we see that a1, . . . , a j ∈ C. Hence
a1, . . . , an ∈ CD and therefore a ∈ acl(CD). Assume now a = [b]E for some b ∈
(B ∪ C ∪ D) �

⋃
n Pn. In case b ∈ D we are done. And in case b ∈ B ∪ C we get

a ∈ clE(BC) and we may apply the hypothesis to obtain a ∈ clE(C). �

Lemma 5.5 The extension property holds.

Proof: With Lemma 5.4, an easy induction on the length of the tuples shows that
it is enough to check the extension property for elements, that is, for tuples of length
1. Assume a, B, C are given. We find an element a′ such that tp(a/C) = tp(a′/C)

and a′ |�C
B. Without loss of generality, the sets B, C are algebraically closed and

a �∈ C. In the case a ∈ ⋃
n Pn it is enough to find tp(a′/C) = tp(a/C) such that

acl(a′) ∩ acl(BC) ⊆ C and as it is well known this is always possible in any theory.
Now assume a �∈ ⋃

n Pn. If [a]E ∈ clE(C) we need to find a′ �∈ BC with the same
(atomic) type over C as a and this is possible since the types

pi(x) := {Qi(x)} ∪ {E(x, a)} ∪ {x �= b : b ∈ BC}

for i = 0, 1 are consistent. In case [a]E �∈ clE(C) we take for a′ a realization of one
of the types

pi(x) := {Qi(x)} ∪ {¬E(x, b) : b ∈ BC} ∪ {¬Pn(x) : n ≥ 1}.

�

Lemma 5.6 The Independence Theorem over algebraically closed sets holds.

Proof: It is enough to prove it for elements, that is, for tuples of length one. The rea-
son is that starting from this case we can easily prove by induction on the length that it
holds for any closed tuple a1, . . . , an, that is, a tuple such that for every i = 1, . . . , n,
acl(ai) ⊆ {a j : j ≤ i}, and in our theory every tuple a can be extended to a such
closed tuple a∗ with clE(a) = clE(a∗). Assume C = acl(C), C ⊆ A ∩ B, A |�C

B,
a |�C

A, b |�C
B and tp(a/C) = tp(b/C). We have to find c such that c |�C

AB,
tp(c/A) = tp(a/A) and tp(c/B) = tp(b/B). Without loss of generality, A, B are
algebraically closed and a, b �∈ C. It follows that a �∈ A and b �∈ B. Moreover,
C = A ∩ B. There are different cases.

Case 1: a ∈ Q1
n. Then b ∈ Q1

n. Observe that for any (n − 1)-tuple d ∈ C ∩ Q1
n and

any c ∈ C ∩ Q2
n we have that R(Fn(d, a), c) if and only if R(Fn(d, b), c). Let IA be

the set of all pairs (d, c) where d is an (n − 1)-tuple in A, c ∈ A and R(Fn(d, a), c)

and let JA be the set of all pairs (d, c) in A such that ¬R(Fn(d, a), c). Define sim-
ilarly IB and JB with b instead of a and B instead of A. It suffices to take as c a
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realization of the type

p(u) := {Q1
n(u)} ∪ {u �= d : d ∈ A ∪ B} ∪ {R(Fn(d, u), c) : (d, c) ∈ IA ∪ IB}∪

{¬R(Fn(d, u), c) : (d, c) ∈ JA ∪ JB}.

Case 2: a ∈ Q2
n. Then b ∈ Q2

n. Since A ∩ B = C and tp(a/C) = tp(b/C), the
following is consistent:

p(u) := {Q2
n(u)} ∪ {R(d, u) : d ∈ A, R(d, a)} ∪ {¬R(d, u) : d ∈ A,¬R(d, a)}∪

{R(d, u) : d ∈ B, R(d, b)} ∪ {¬R(d, u) : d ∈ B,¬R(d, b)} ∪ {u �= d : d ∈ A ∪ B}.

We define c as a realization of this type.

Case 3: a ∈ Q0
n. Then b ∈ Q0

n. Let a1, . . . , an ∈ Q1
n be such that a = Fn(a1, . . . , an)

and let b1, . . . , bn be such that tp(a, a1, . . . , an/C) = tp(b, b1, . . . , bn/C). Then b =
Fn(b1, . . . , bn). By iteration of Case 1 we find c1,. . ., cn such that tp(c1,. . ., cn/A) =
tp(a1, . . . , an/A), tp(c1, . . . , cn/B) = tp(b1, . . . , bn/B) and c1, . . . , cn |�C

AB. We
define c = Fn(c1, . . . , cn).

Case 4: a �∈ ⋃
n Pn and [a]E ∈ clE(C). Then b �∈ ⋃

n Pn and E(a, b). Without loss
of generality, a, b ∈ Q0. Fix c′ ∈ C such that [c′]E = [a]E. The following is consistent

p(x) := {Q0} ∪ {E(x, c′)} ∪ {R(x, d) : d ∈ A, R(a, d)}∪
{¬R(x, d) : d ∈ A,¬R(a, d)} ∪ {R(x, d) : d ∈ B, R(b, d)} ∪

{¬R(x, d) : d ∈ B,¬R(b, d)} ∪ {x �= d : d ∈ A ∪ B}.

We define c as a realization of this type.

Case 5: a �∈ ⋃
n Pn and [a]E �∈ clE(C). Then b �∈ ⋃

n Pn and since a |�C
A and

b |�C
B, we see that [a]E �∈ clE(A) and [b]E �∈ clE(B). We may assume a, b ∈ Q0.

We take as c a realization of

p(x) := {Q0(x)} ∪ {¬Pn(x) : n ≥ 1} ∪ {¬E(x, d) : d ∈ A ∪ B}.

�
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