
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 518194, 15 pages
http://dx.doi.org/10.1155/2013/518194

Research Article
Symbolic Solution to Complete Ordinary Differential Equations
with Constant Coefficients

Juan F. Navarro and Antonio Pérez-Carrió

Department of Mathematics, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig,
Alicante, Spain

Correspondence should be addressed to Juan F. Navarro; jf.navarro@ua.es

Received 7 May 2013; Accepted 17 July 2013

Academic Editor: Debasish Roy
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The aim of this paper is to introduce a symbolic technique for the computation of the solution to a complete ordinary differential
equation with constant coefficients. The symbolic solution is computed via the variation of parameters method and, thus,
constructed over the exponential matrix of the linear system associated with the homogeneous equation. This matrix is also
symbolically determined. The accuracy of the symbolic solution is tested by comparing it with the exact solution of a test problem.

1. Introduction

Perturbation theories for differential equations containing
a small parameter 𝜖 are quite old. The small perturbation
theory originated by Sir Isaac Newton has been highly
developed by many others, and an extension of this theory
to the asymptotic expansion, consisting of a power series
expansion in the small parameter, was devised by Poincaré
[1]. The main point is that, for the most of the differential
equations, it is not possible to obtain an exact solution.
In cases where equations contain a small parameter, we
can consider it as a perturbation parameter to obtain an
asymptotic expansion of the solution. In practice, the work
involved in the application of this approach to compute the
solution to a differential equation cannot be performed by
hand, and algebraic processors result in being a very useful
tool.

As explained inHenrard [2], the first symbolic processors
were developed toworkwith Poisson series, that is,multivari-
ate Fourier series whose coefficients are multivariate Laurent
series,
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are called polynomial and angular variables,

respectively. These processors were applied to problems
in nonlinear mechanics or nonlinear differential equation
problems, in the field of celestial mechanics. One of the first
applications of these processorwas concernedwith the theory
of the Moon. Delaunay invented his perturbation method
to treat it and spent 20 years doing algebraic manipulations
by hand to apply it to the problem. Deprit et al. [3, 4]
prolongated the solution of Delaunay’s work with the help
of a special purpose symbolic processor, and Henrard [5]
pushed to order 25. This solution was improved by iteration
by Chapront-Touze [6], and planetary perturbations were
also introduced by Chapront-Touze [7]. At present, the
most complete solution, Ephemeride Lunaire Parisien (ELP)
contains more than 50 000 periodic terms. But the motion of
the Moon is not the only application of algebraic processors.
There are many problems where the facilities provided by
Poisson series processors can lead rather quickly to very
accurate results. As examples, we would like to mention
planetary theories, the theory of the rotation of the Earth
(see, e.g. Navarro and Ferrándiz [8]), and artificial satellite
theories.

In order to achieve better accuracies in the applications of
analytical theories, high orders of the approximate solution
must be computed, making necessary a continuous main-
tenance and revision of the existing symbolic manipulation
systems, as well as the development of new packages adapted
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to the peculiarities of the problem to be treated. Recently,
Navarro [9, 10] developed a symbolic processor to deal with
the solution to second order differential equations of the form

𝑥̈ + 𝑎
1
𝑥̇ + 𝑎

0
𝑥 = 𝑢 (𝑡) + 𝜖𝑓 (𝑥, 𝑥̇) , (2)
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∈ R, 𝑢(𝑡) is a quasipolynomial, that

is, an object of the form
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where 𝑛] ∈ N, 𝛼], 𝜔], 𝜆], and 𝜇] ∈ R, and 𝑓(𝑥, 𝑥̇) admits the
expansion
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To face this problem, the algebraic processor handles objects
called quasipolynomials, and it has resulted in being a useful
tool in the computation of the solution to (2) by the appli-
cation of the asymptotic expansion method. A modification
of this processor has been employed to compute periodic
solutions in equations of type (2) via the Poincaré-Lindstedt
method in Navarro [9, 10]. To that end, the idea is to expand
both the solution and the modified frequency with respect
to the small parameter, allowing to kill secular terms which
appear in the recursive scheme. The elimination of secular
terms is performed through a manipulation system which
works with modified quasipolynomials, that is, quasipolyno-
mials containing undetermined constants:

𝑢 (𝑡) = ∑
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where 𝑛] ∈ N, 𝛼], 𝜔], 𝜆], and 𝜇] ∈ R, 𝜎] ∈ Z, and 𝜏1, . . . , 𝜏𝑄
are real constants with unknown value.

One year later, Navarro [11] presented a symbolic com-
putation package based on the object-oriented philosophy
for manipulating matrices whose elements lie on the set of
quasipolynomials of type (4). The kernel of the symbolic
processor was developed in C++, defining a class for this
new object as well as a set of functions that operate on
the data structure: addition, substraction, differentiation, and
integration with respect to 𝑡, substitution of an undetermined
coefficient by a series, and many others. The goal of this
processor is to provide a tool to solve a perturbed 𝑛-order
differential equation of the class
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As a first step, Navarro and Pérez [12] have developed

a symbolic technique for the computation of the principal
matrix of the linear system associated with a homogeneous
ordinary differential equation with constant coefficients of
the form

𝑥
(𝑛)
+ 𝑎

𝑛−1
𝑥
(𝑛−1)
+ ⋅ ⋅ ⋅ + 𝑎

1
𝑥̇ + 𝑎

0
𝑥 = 0, (10)

where 𝑎
0
, 𝑎

1
, . . . , 𝑎

𝑛−1
∈ R, with initial conditions

𝑥 (0) = 𝑥10
, 𝑥̇ (0) = 𝑥20

, . . . , 𝑥
(𝑛−1)
(0) = 𝑥𝑛0

(11)

being 𝑥
10
, . . . , 𝑥

𝑛0
∈ R. This method provides a final

analytical solution which can be completely computed in a
symbolic way.

The second step in the construction of the solution to (7)
is to obtain a symbolic procedure for computing the solution
to the nonhomogeneus equation
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where, as above, 𝑢(𝑡) is a quasipolynomial.
This new symbolic package can be useful for research and

educational purposes in the field of differential equations or
dynamical systems. Nowadays there aremany open problems
which requires massive symbolic computation as, to cite one
example, the analytical theory of the resonant motion of
Mercury. We would like to stress that the aim of this work is
to develop a symbolic tool, not a numericmethod, as numeric
solutions cannot be used in perturbation methods for differ-
ential equations. However, we have performed comparisons
between the symbolic solution with a numeric one, just to
show the efficiency of the technique.

In next section, we summarize the scheme proposed
in [12] to calculate the solution to (10), which is needed
to express the solution to the complete problem (12). The
technique to construct this solution will be described in
Section 3.

2. Solution to the Homogeneous Problem

As mentioned, Navarro and Pérez [12] have proposed a
symbolic method to compute the solution to (10)
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2.1. Description of the Method. With the aid of the substitu-
tions
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(10) is transformed into the system of differential equations
given by
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To compute the exponential of 𝐴, the matrix is splitted into
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𝐵 = (

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 0

) ,

𝐶 = (

0 0 0 ⋅ ⋅ ⋅ 0

0 0 0 ⋅ ⋅ ⋅ 0

...
...

... d
...

−𝑎
0
−𝑎

1
−𝑎

2
⋅ ⋅ ⋅ −𝑎

𝑛−1

).

(18)

Then, we use the approximation

𝑒
𝐴
≈ (𝑒

𝐵/𝑚
𝑒
𝐶/𝑚
)

𝑚

, (19)
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2.2. Adaptation to a Symbolic Formalism. Navarro and Pérez
[12, 14] have proposed an adaptation of themethod described
above in order to compute the matrix 𝑒𝐴𝑡 instead of 𝑒𝐴. If we
do so, we obtain the principal matrix of (16), whose elements
lie on the set of quasipolynomials, and the symbolic processor
results in being suitable to work with those matrices. The
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Thus, 𝑒𝐴𝑡 is amatrix of quasipolynomials that can be com-
pletely computed through the symbolic processor developed
by Navarro [11]. The procedure for the computation of the
exponential matrix is substantially simplified by using the
following equation, which avoids the symbolic multiplication
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2𝑘 + 1, if 2𝑘 ≤ 𝑚,
2 (𝑚 − 𝑘 + 1) , if 2𝑘 > 𝑚,

(38)

and 𝑐
𝑖𝑗
is determined by the following properties:

(1) ∑𝜎(𝑚,𝑘)

𝑗=1
𝑐
𝑖𝑗
= 𝑚 for all 𝑖 = 1, 2, . . . , (𝑚𝑘 );

(2) ∑[𝜎(𝑚,𝑘)/2]

𝑗=1
𝑐
𝑖(2𝑗)
= 𝑚 − 𝑘 for all 𝑖 = 1, 2, . . . , (𝑚𝑘 ), with

[𝜎(𝑚, 𝑘)/2] being the entire part of 𝜎(𝑚, 𝑘)/2;
(3) 𝑐

𝑖2
̸= 0 for all 𝑖 = 1, 2, . . . , (𝑚𝑘 );

(4) if 𝑐
𝑖𝑗
̸= 0 and 𝑐

𝑖(𝑗+2)
̸= 0, then 𝑐

𝑖(𝑗+1)
̸= 0 for all 𝑖 =

1, 2, . . . , (
𝑚

𝑘 ) and 𝑗 = 1, 2, . . . , 𝜎(𝑚, 𝑘) − 2.

In the following, we summarize some expressions which
simplify the way in which the matrix (𝑒𝐵𝑡/𝑚 + 𝐻(𝑡,𝑚))𝑚 is
symbolically computed. First, let us introduce the following
matrices:

𝑆
𝑛−1 (
𝑡, 𝑚) = (𝑎0

𝑎
1
⋅ ⋅ ⋅ 𝑎

𝑛−1) 𝐹 (𝑡, 𝑚) ,

𝐹 (𝑡, 𝑚) =
(

(

(

𝑡
𝑛−1

(𝑛 − 1) 𝑡
𝑛−2
𝑚

(𝑛 − 1) (𝑛 − 2) 𝑡
𝑛−3
𝑚

2

...
(𝑛 − 1)!𝑡

0
𝑚

𝑛−1

)

)

)

.

(39)

Lemma 1. For any 𝑘 ∈ Z such that 𝑘 > 1,

(𝑒
𝐵𝑡/𝑚
)

𝑘

=(

𝐺
0,𝑘 (
𝑡, 𝑚) 𝐺1,𝑘 (

𝑡, 𝑚) ⋅ ⋅ ⋅ 𝐺𝑛−1,𝑘 (
𝑡, 𝑚)

0 𝐺
0,𝑘 (
𝑡, 𝑚) ⋅ ⋅ ⋅ 𝐺𝑛−2,𝑘 (

𝑡, 𝑚)

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝐺

0,𝑘 (
𝑡, 𝑚)

) ,

(40)

with

𝐺],𝑘 (𝑡, 𝑚) = 𝑘
]
𝑔] (𝑡, 𝑚) , (41)

for each ] = 0, . . . , 𝑛 − 1, where 𝑔](𝑡, 𝑚) is given by (29).

Lemma 2. For any 𝑝 ∈ Z such that 𝑝 > 1,

(𝐻 (𝑡, 𝑚))
𝑝
= (

𝑓 (𝑡, 𝑚)

𝑎
𝑛−1 (
𝑛 − 1)!𝑚

𝑛−1
)

𝑝

(𝑆
𝑛−1 (
𝑡, 𝑚))

𝑝−1

× 𝐹 (𝑡, 𝑚) (𝑎0
𝑎
1
⋅ ⋅ ⋅ 𝑎

𝑛−1) ,

(42)

where 𝑆
𝑛−1
(𝑡, 𝑚) and 𝐹(𝑡, 𝑚) are given by (39).

Lemma 3. For any 𝑝, 𝑘 ∈ Z such that 𝑝, 𝑘 ≥ 1,

(𝑒
𝐵𝑡/𝑚
)

𝑘

(𝐻 (𝑡, 𝑚))
𝑝
= (

𝑓 (𝑡, 𝑚)

𝑎
𝑛−1 (
𝑛 − 1)!𝑚

𝑛−1
)

𝑝

(𝑆
𝑛−1 (
𝑡))

𝑝−1

× Ω𝐹 (𝑡, 𝑚) (𝑎0
𝑎
1
⋅ ⋅ ⋅ 𝑎

𝑛−1) ,

(43)
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where 𝑆
𝑛−1
(𝑡, 𝑚) and 𝐹(𝑡, 𝑚) are given by (39), and

Ω =(

(𝑘 + 1)
𝑛−1

0 ⋅ ⋅ ⋅ 0

0 (𝑘 + 1)
𝑛−2
⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 1

) . (44)

Lemma 4. For any 𝑝, 𝑘 ∈ Z such that 𝑝, 𝑘 ≥ 1,

𝐻
𝑝
(𝑡, 𝑚) (𝑒

𝐵𝑡/𝑚
)

𝑘

= (

𝑓 (𝑡, 𝑚)

𝑎
𝑛−1 (
𝑛 − 1)!𝑚

𝑛−1
)

𝑝

× (𝑆
𝑛−1 (
𝑡))

𝑝−1
𝐹 (𝑡, 𝑚)𝐴 (𝑡, 𝑚) ,

(45)

where 𝑆
𝑛−1
(𝑡, 𝑚) and 𝐹(𝑡, 𝑚) are given by (39),

𝐴 (𝑡,𝑚) = (𝐴0 (
𝑡, 𝑚) 𝐴1 (

𝑡, 𝑚) ⋅ ⋅ ⋅ 𝐴𝑛−1 (
𝑡, 𝑚)) ,

𝐴
𝜇 (
𝑡, 𝑚) =

𝜇

∑

]=0

𝑎]𝑘
𝜇−]
𝑔
𝜇−],

(46)

for any 𝜇 = 0, . . . , 𝑛 − 1, and 𝑔] is given by (29).

For the sake of simplicity, we have omitted the depen-
dence on𝑚 and 𝑡 of 𝑔].

3. Solution to the Nonhomogeneous Problem

The general solution to a nonhomogeneous linear differential
equation of order 𝑛 can be expressed as the sum of the general
solution to the corresponding homogeneous, linear differen-
tial equation and any solution to the complete equation. The
symbolic manipulation system calculates the solution to a
nonperturbed differential equation with initial conditions of
the form (12)

𝑥
(𝑛)
+ 𝑎

𝑛−1
𝑥
(𝑛−1)
+ ⋅ ⋅ ⋅ + 𝑎

1
𝑥̇ + 𝑎

0
𝑥 = 𝑢 (𝑡) , (47)

with initial conditions

𝑥 (0) = 𝑥10
, . . . , 𝑥

(𝑛−1)
(0) = 𝑥𝑛0

, (48)

where 𝑎
0
, 𝑎

1
, . . . , 𝑎

𝑛−1
∈ R, 𝑥

10
, . . . , 𝑥

𝑛0
∈ R, and

𝑢 (𝑡) = ∑

]≥0

𝑡
𝑛]
𝑒
𝛼]𝑡
(𝜆] cos (𝜔]𝑡) + 𝜇] sin (𝜔]𝑡)) , (49)

being 𝑛] ∈ N, and 𝛼], 𝜔], 𝜆], 𝜇] ∈ R. With the aid of the
substitutions

𝑥
1
= 𝑥, 𝑥

2
= 𝑥̇, . . . , 𝑥

𝑛
= 𝑥

(𝑛−1)
, (50)

(12) is reduced to the system of differential equations given by

𝑋̇ (𝑡) = 𝐴𝑋 (𝑡) + 𝐵 (𝑡) , 𝑋 (0) = 𝑋0
, (51)

where

𝐴 = (

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
...

... d
...

−𝑎
0
−𝑎

1
−𝑎

2
⋅ ⋅ ⋅ −𝑎

𝑛−1

),

𝐵 (𝑡) = (

0

0

...
𝑢 (𝑡)

) , 𝑋 (𝑡) = (

𝑥
1 (
𝑡)

𝑥
2 (
𝑡)

...
𝑥
𝑛 (
𝑡)

) ,

𝑋
0
= (

𝑥
10

𝑥
20

...
𝑥
𝑛0

).

(52)

The computation of the solution to the constant coeffi-
cients linear part requires the calculation of the exponential
of the matrix 𝐴, Φ(𝑡) = 𝑒𝐴𝑡:

𝑋 (𝑡) = Φ (𝑡)𝑋0
+ Φ (𝑡) ∫

𝑡

0

exp (𝐴𝜏) 𝐵 (𝜏) 𝑑𝜏. (53)

3.1. Symbolic Expansion of the Solution. In the following, we
give a formula for the symbolic expansion of the solution to
the complete ordinary differential equation. To that end, let
us express the noncommutative parenthesis (𝑒𝐵𝑡/𝑚, 𝐽(𝑡, 𝑚))

𝑚

𝑘

as

(𝑒
𝐵𝑡/𝑚
, 𝐽(𝑡, 𝑚))

𝑚

𝑘
= (

𝑝
(𝑚,𝑘)

𝑟
11

(𝑡) ⋅ ⋅ ⋅ 𝑝
(𝑚,𝑘)

𝑟
1𝑛

(𝑡)

... d
...

𝑝
(𝑚,𝑘)

𝑟
𝑛1

(𝑡) ⋅ ⋅ ⋅ 𝑝
(𝑚,𝑘)

𝑟
𝑛𝑛

(𝑡)

)

= (𝑝
(𝑚,𝑘)

𝑟
𝑖𝑗

(𝑡))

𝑛

𝑖,𝑗=1

= 𝑃 (𝑚, 𝑘) (𝑡) ,

(54)

where each 𝑝(𝑚,𝑘)

𝑟
1𝑛

(𝑡) is a polynomial of degree 𝑟
𝑖𝑗
≤ 𝑚(𝑛 − 1)

in the indeterminate 𝑡 with coefficients from R, and𝑚 ̸= 0.
Let us also express

𝜆
𝑘
(𝑡, 𝑚) = (

1

𝑎
𝑛−1

(𝑒
𝑎
𝑛−1

𝑡/𝑚
− 1))

𝑘

=

𝑘

∑

]=0

𝛼]𝑒
𝛽]𝑡
, (55)

being

𝛼] = (
1

𝑎
𝑛−1

)

𝑘

(

𝑘

]
) (−1)

]
,

𝛽] = −
𝑎
𝑛−1

𝑚

(𝑘 − ]) .

(56)
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Thus, taking into account (33), the exponential matrix of 𝐴
can be arranged as

𝑒
𝐴𝑡
≃

𝑚

∑

𝑘=0

(

𝜙
𝑘 (
𝑡) 𝑝

(𝑚,𝑘)

𝑟
11

(𝑡) ⋅ ⋅ ⋅ 𝜙𝑘 (
𝑡) 𝑝

(𝑚,𝑘)

𝑟
1𝑛

(𝑡)

... d
...

𝜙
𝑘 (
𝑡) 𝑝

(𝑚,𝑘)

𝑟
𝑛1

(𝑡) ⋅ ⋅ ⋅ 𝜙𝑘 (
𝑡) 𝑝

(𝑚,𝑘)

𝑟
𝑛𝑛

(𝑡)

)

=
(

(

𝑚

∑

𝑘=0

𝜙
𝑘 (
𝑡) 𝑝

(𝑚,𝑘)

𝑟
11

(𝑡) ⋅ ⋅ ⋅

𝑚

∑

𝑘=0

𝜙
𝑘 (
𝑡) 𝑝

(𝑚,𝑘)

𝑟
1𝑛

(𝑡)

... d
...

𝑚

∑

𝑘=0

𝜙
𝑘 (
𝑡) 𝑝

(𝑚,𝑘)

𝑟
𝑛1

(𝑡) ⋅ ⋅ ⋅

𝑚

∑

𝑘=0

𝜙
𝑘 (
𝑡) 𝑝

(𝑚,𝑘)

𝑟
𝑛𝑛

(𝑡)

)

)

,

(57)

where

𝜙
𝑘 (
𝑡) =

𝑘

∑

]=0

𝛼]𝑒
𝛽]𝑡
. (58)

In order to develop a symbolic expression of the solution
to the complete differential equation, let us express 𝑢(𝑡) as

𝑢 (𝑡) = 𝑒
𝛿𝑡
(𝑄

𝑎 (
𝑡) cos (𝜔𝑡) + 𝑇𝑏 (𝑡) sin (𝜔𝑡)) , (59)

with 𝑎, 𝑏 ∈ Z ∪ {0}, 𝛿, 𝜔 ∈ R, and 𝑄
𝑎
(𝑡) and 𝑇

𝑏
(𝑡) being

real polynomials of degrees 𝑎 and 𝑏, respectively, in the
indeterminate 𝑡.

The product 𝑒−𝐴𝜏𝐵(𝜏) can be arranged as follows:

𝑒
−𝐴𝜏
𝐵 (𝜏)

=

(

(

(

(

(

(

(

(

∫

𝑡

0

(

𝑚

∑

𝑘=0

(

𝑘

∑

]=0

𝛼]𝑒
𝛽]𝜏
)𝑝

(𝑚,𝑘)

𝑟
1𝑛

(−𝜏)) 𝑢 (𝜏) 𝑑𝜏

∫

𝑡

0

(

𝑚

∑

𝑘=0

(

𝑘

∑

]=0

𝛼]𝑒
𝛽]𝜏
)𝑝

(𝑚,𝑘)

𝑟
2𝑛

(−𝜏)) 𝑢 (𝜏) 𝑑𝜏

...

∫

𝑡

0

(

𝑚

∑

𝑘=0

(

𝑘

∑

]=0

𝛼]𝑒
𝛽]𝜏
)𝑝

(𝑚,𝑘)

𝑟
𝑛𝑛

(−𝜏)) 𝑢 (𝜏) 𝑑𝜏

)

)

)

)

)

)

)

)

.

(60)

Here, the integrand of each element of the above matrix can
be written in the form of a quasipolynomial. Hence, we arrive
to the formulae

∫

𝑡

0

(

𝑚

∑

𝑘=0

(

𝑘

∑

]=0

𝛼]𝑒
𝛽]𝜏
)𝑝

(𝑚,𝑘)

𝑟
𝑗𝑛

(−𝜏)) 𝑢 (𝜏) 𝑑𝜏

= ∑

𝛼
𝑗𝑛

(𝜂
𝛼
𝑗𝑛

𝐶
𝛼
𝑗𝑛
,𝛽
𝑗𝑛
,𝛾
𝑗𝑛
(𝑡) + ]𝛼

𝑗𝑛

𝑆
𝛼
𝑗𝑛
,𝛽
𝑗𝑛
,𝛾
𝑗𝑛
(𝑡)) ,

(61)

where 𝛼
𝑗𝑛
∈ Z+
∪ {0}, 𝛽

𝑗𝑛
, 𝛾

𝑗𝑛
∈ R, 𝑗 = 1, . . . , 𝑛, and

𝐶
𝑚,𝛽,𝛾 (
𝑡) = ∫ 𝑡

𝑚
𝑒
𝛽𝑡 cos (𝛾𝑡) 𝑑𝑡,

𝑆
𝑚,𝛽,𝛾 (
𝑡) = ∫ 𝑡

𝑚
𝑒
𝛽𝑡 sin (𝛾𝑡) 𝑑𝑡.

(62)

These functions are computed recursively through

𝐶
0,𝛽,𝛾 (
𝑡) =

𝛾

𝛽
2
+ 𝛾

2
𝑒
𝛽𝑡 sin (𝛾𝑡) +

𝛽

𝛽
2
+ 𝛾

2
𝑒
𝛽𝑡 cos (𝛾𝑡) ,

𝑆
0,𝛽,𝛾 (
𝑡) =

𝛽

𝛽
2
+ 𝛾

2
𝑒
𝛽𝑡 sin (𝛾𝑡) −

𝛾

𝛽
2
+ 𝛾

2
𝑒
𝛽𝑡 cos (𝛾𝑡) ,

(63)

and, for any𝑚 ≥ 1,

𝐶
𝑚,𝛽,𝛾 (
𝑡) = 𝑡

𝑚
𝐶
0,𝛽,𝛾 (
𝑡) − 𝑚

𝛾

𝛽
2
+ 𝛾

2
𝑆
𝑚−1,𝛽,𝛾

− 𝑚

𝛽

𝛽
2
+ 𝛾

2
𝐶
𝑚−1,𝛽,𝛾 (

𝑡) ,

𝑆
𝑚,𝛽,𝛾 (
𝑡) = 𝑡

𝑚
𝑆
0,𝛽,𝛾 (
𝑡) − 𝑚

𝛽

𝛽
2
+ 𝛾

2
𝑆
𝑚−1,𝛽,𝛾

+ 𝑚

𝛾

𝛽
2
+ 𝛾

2
𝐶
𝑚−1,𝛽,𝛾 (

𝑡) .

(64)

Thus, (53) can be expressed via a quasipolynomial and,
thus, obtained through the designed symbolic system.

4. Symbolic and Numeric Results

4.1. On the Form of the Exponential Matrix. The aim of this
section is to illustrate the form that the approximation of the
exponential matrix adopts. For that purpose, let us consider
the differential equation given by

𝑥
(4)
+ 4𝑥⃛ + 3𝑥̈ + 2𝑥̇ + 𝑥 = 0, (65)

with initial conditions

𝑥 (0) = 1, 𝑥̇ (0) = 0, 𝑥̈ (0) = 0, 𝑥⃛ (0) = 0.

(66)

This equation is transformed into the system of differential
equations given by

𝑋̇ (𝑡) = 𝐴𝑋 (𝑡) , (67)

where 𝐴 is the companion matrix

𝐴 = (

0 1 0 0

0 0 1 0

0 0 0 1

−1 −2 −3 −4

) . (68)

According to the technique described in Section 2, we split
matrix 𝐴 into 𝐵 + 𝐶, where

𝐵 = (

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

) , 𝐶 = (

0 0 0 0

0 0 0 0

0 0 0 0

−1 −2 −3 −4

) .

(69)
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Equation (36),

(𝑒
𝐵𝑡/𝑚
+ 𝐻 (𝑡,𝑚))

𝑚

=

𝑚

∑

𝑘=0

𝜆
𝑘
(𝑡, 𝑚) (𝑒

𝐵𝑡/𝑚
, 𝐽(𝑡, 𝑚))

𝑚

𝑘
,

(70)

allows us to compute a symbolic approximation to the
solution to the differential equation. In the problem we are
discussing, 𝑒𝐵𝑡/𝑚,𝐻(𝑡,𝑚), 𝜆(𝑡, 𝑚), and 𝐽(𝑡, 𝑚) can be written
as

𝑒
𝐵𝑡/𝑚
=

(

(

(

(

(

(

(

1

𝑡

𝑚

𝑡
2

(2𝑚)

𝑡
3

(6𝑚)

0 1

𝑡

𝑚

𝑡
2

(2𝑚)

0 0 1

𝑡

𝑚

0 0 0 1

)

)

)

)

)

)

)

,

𝐻(𝑡,𝑚) = 𝜆 (𝑡, 𝑚) 𝐽 (𝑡, 𝑚) ,

(71)

with

𝜆 (𝑡, 𝑚) =

1

4

(e−4𝑡/𝑚 − 1) ,

𝐽 (𝑡, 𝑚) =

(

(

(

(

(

(

𝑡
3

(6𝑚
3
)

2𝑡
3

(6𝑚
3
)

3𝑡
3

(6𝑚
3
)

4𝑡
3

(6𝑚
3
)

𝑡
2

(2𝑚
2
)

2𝑡
2

(2𝑚
2
)

3𝑡
2

(2𝑚
2
)

4𝑡
2

(2𝑚
2
)

𝑡

𝑚

2𝑡

𝑚

3𝑡

𝑚

4𝑡

𝑚

1 2 3 4

)

)

)

)

)

)

.

(72)

Taking, for instance,𝑚 = 3, we get that

𝑒
𝐴𝑡
≃

3

∑

𝑘=0

𝜆
𝑘
(𝑡, 3) (𝑒

𝐵𝑡/3
, 𝐽 (𝑡, 3))

3

𝑘

= A
3
+ 𝜆 (A

2
B +BA

2
+ABA)

+ 𝜆
2
(AB

2
+B

2
A +BAB) + 𝜆

3
B

3
.

(73)

For the sake of simplicity, we have introduced the following
notation:

A = 𝑒
𝐵𝑡/3
, B = 𝐽 (𝑡, 3) . (74)

0 10987654321

0.5

−0.5

0

x
1
(t

)

t

Figure 1: Comparison of the solution computed through the
symbolic method presented in this paper, and the numeric solution
to the problem calculated by a Runge-Kutta fourth order method
with a step of ℎ = 0.001.

Matrices A3, A2B, BA2, ABA, AB2, B2A, BAB,
andB3 are computed with the help of the designed symbolic
processor, with the result

A
3
=

(

(

(

(

1 𝑡

𝑡
2

2

𝑡
3

6

0 1 𝑡

𝑡
2

2

0 0 1 𝑡

0 0 0 1

)

)

)

)

,

A
2
B =
(

(

(

(

𝑡
3

6

𝑡
3

3

𝑡
3

2

2𝑡
3

3

𝑡
2

2

𝑡
2 3𝑡

2

2

2𝑡
2

𝑡 2𝑡 3𝑡 4𝑡

1 2 3 4

)

)

)

)

,

AB
2

=(

(AB2
)
1,1
(AB2

)
1,2
(AB2

)
1,3
(AB2

)
1,4

(AB2
)
2,1
(AB2

)
2,2
(AB2

)
2,3
(AB2

)
2,4

(AB2
)
3,1
(AB2

)
3,2
(AB2

)
3,3
(AB2

)
3,4

(AB2
)
4,1
(AB2

)
4,2
(AB2

)
4,3
(AB2

)
4,4

),

(75)

where

(AB
2
)
1,1
=

2

6561

𝑡
6
+

4

729

𝑡
5
+

4

81

𝑡
4
+

16

81

𝑡
3
,

(AB
2
)
1,2
=

4

6561

𝑡
6
+

8

729

𝑡
5
+

8

81

𝑡
4
+

32

81

𝑡
3
,
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Exponential matrix

Dep. variable Indep. variable
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ODE
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ODE order
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x t

u(t)

sin(t)

t = 0

a1 a0a2

x10 x20

Figure 2: The first window shown by the symbolic processor allows us to introduce the parameters which define the differential equation to
be solved, including the initial conditions.
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5
+
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𝑡
4
+
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𝑡
3
,
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=

8
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𝑡
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+
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729

𝑡
5
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81

𝑡
4
+
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81

𝑡
3
,
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2
)
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=

1
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5
+

2
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𝑡
4
+

2

9

𝑡
3
+

8

9

𝑡
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,
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2
)
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=

2
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𝑡
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+

4
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𝑡
4
+
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9

𝑡
3
+

16

9

𝑡
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,
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2
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=

1
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𝑡
5
+

2

27

𝑡
4
+

2

3

𝑡
3
+

8

3

𝑡
2
,

(AB
2
)
2,4
=

4

729

𝑡
5
+

8

81

𝑡
4
+

8

9

𝑡
3
+

32

9

𝑡
2
,

(AB
2
)
3,1
=

1

243

𝑡
4
+

2

27

𝑡
3
+

2

3

𝑡
2
+

8

3

𝑡,

(AB
2
)
3,2
=

2

243

𝑡
4
+

4

27

𝑡
3
+

4

3

𝑡
2
+

16

3

𝑡,

(AB
2
)
3,3
=

1

81

𝑡
4
+

2

9

𝑡
3
+ 2𝑡

2
+ 8𝑡,

(AB
2
)
3,4
=

4

243

𝑡
4
+

8

27

𝑡
3
+

8

3

𝑡
2
+

32

3

𝑡,

(AB
2
)
4,1
=

1

162

𝑡
3
+

1

9

𝑡
2
+ 𝑡 + 4,

(AB
2
)
4,2
=

1

81

𝑡
3
+

2

9

𝑡
2
+ 2𝑡 + 8,

(AB
2
)
4,3
=

1

54

𝑡
3
+

1

3

𝑡
2
+ 3𝑡 + 12,

(AB
2
)
4,4
=

2

81

𝑡
3
+

4

9

𝑡
2
+ 4𝑡 + 16,

ABA

= (

(ABA)1,1 (ABA)1,2 (ABA)1,3 (ABA)1,4
(ABA)2,1 (ABA)2,2 (ABA)2,3 (ABA)2,4
(ABA)3,1 (ABA)3,2 (ABA)3,3 (ABA)3,4
(ABA)4,1 (ABA)4,2 (ABA)4,3 (ABA)4,4

),

(76)

where

(ABA)1,1 =
4

81

𝑡
3
,

(ABA)1,2 =
4

243

𝑡
4
+

8

81

𝑡
3
,

(ABA)1,3 =
2

729

𝑡
5
+

8

243

𝑡
4
+

4

27

𝑡
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,

(ABA)1,4 =
2
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+

4

729

𝑡
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+

4
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+
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𝑡
3
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2

9

𝑡
2
,
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2
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𝑡
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+

4
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+

4
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+

2
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+

2
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+

2
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+
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𝑡
2
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3
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9
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+

4
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(ABA)3,3 =
1
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3
+
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+
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+
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+
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+
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+
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+
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BAB

= (

(BAB)1,1 (BAB)1,2 (BAB)1,3 (BAB)1,4
(BAB)2,1 (BAB)2,2 (BAB)2,3 (BAB)2,4
(BAB)3,1 (BAB)3,2 (BAB)3,3 (BAB)3,4
(BAB)4,1 (BAB)4,2 (BAB)4,3 (BAB)4,4

),

(80)

where

(BAB)1,1 =
2

6561

𝑡
6
+

2

729

𝑡
5
+

1

81

𝑡
4
+

2

81

𝑡
3
,

(BAB)1,1 =
4

6561

𝑡
6
+

4

729

𝑡
5
+

2

81

𝑡
4
+

4

81

𝑡
3
,

(BAB)1,1 =
2

2187

𝑡
6
+

2

243

𝑡
5
+

1

27

𝑡
4
+

2

27

𝑡
3
,

(BAB)1,1 =
8

6561

𝑡
6
+

8

729

𝑡
5
+

4

81

𝑡
4
+

8

81

𝑡
3
,

(BAB)1,1 =
2

729

𝑡
5
+

2

81

𝑡
4
+

1

9

𝑡
3
+

2

9

𝑡
2
,

(BAB)1,1 =
4

729

𝑡
5
+

4

81

𝑡
4
+

2

9

𝑡
3
+

4

9

𝑡
2
,

(BAB)1,1 =
2

243

𝑡
5
+

2

27

𝑡
4
+

1

3

𝑡
3
+

2

3

𝑡
2
,

(BAB)1,1 =
8

729

𝑡
5
+

8

81

𝑡
4
+

4

9

𝑡
3
+

8

9

𝑡
2
,

(BAB)1,1 =
4

243

𝑡
4
+

4

27

𝑡
3
+

2

3

𝑡
2
+

4

3

𝑡,

(BAB)1,1 =
8

243

𝑡
4
+

8

27

𝑡
3
+

4

3

𝑡
2
+

8

3

𝑡,

(BAB)1,1 =
4

81

𝑡
4
+

4

9

𝑡
3
+ 2𝑡

2
+ 4𝑡,

(BAB)1,1 =
16

243

𝑡
4
+

16

27

𝑡
3
+

8

3

𝑡
2
+

16

3

𝑡,

(BAB)1,1 =
4

81

𝑡
3
+

4

9

𝑡
2
+ 2𝑡 + 4,

(BAB)1,1 =
8

81

𝑡
3
+

8

9

𝑡
2
+ 4𝑡 + 8,

(BAB)1,1 =
4

27

𝑡
3
+

4

3

𝑡
2
+ 6𝑡 + 12,

(BAB)1,1 =
16

81

𝑡
3
+

16

9

𝑡
2
+ 8𝑡 + 16.

(81)

So, the noncommutative parentheses are given by

(A,B)
3

0
= A

3
, (A,B)

3

3
=B

3
,

(A,B)
3

1
= (A

2
B +BA

2
+ABA)

= (

𝛼
1,1
𝛼
1,2
𝛼
1,3
𝛼
1,4

𝛼
2,1
𝛼
2,2
𝛼
2,3
𝛼
2,4

𝛼
3,1
𝛼
3,2
𝛼
3,3
𝛼
3,4

𝛼
4,1
𝛼
4,2
𝛼
4,3
𝛼
4,4

),

(82)

where

𝛼
1,1
=

2

9

𝑡
3
,

𝛼
1,2
=

4

9

𝑡
3
+

5

243

𝑡
4
,

𝛼
1,3
=

2

3

𝑡
3
+

1

243

𝑡
5
+

10

243

𝑡
4
,

𝛼
1,4
=

8

9

𝑡
3
+

4

6561

𝑡
6
+

2

243

𝑡
5
+

5

81

𝑡
4
,

𝛼
2,1
=

7

9

𝑡
2
,

𝛼
2,2
=

14

9

𝑡
2
+

1

9

𝑡
3
,

𝛼
2,3
=

7

3

𝑡
2
+

2

81

𝑡
4
+

2

9

𝑡
3
,

𝛼
2,4
=

28

9

𝑡
2
+

1

243

𝑡
5
+

4

81

𝑡
4
+

1

3

𝑡
3
,

𝛼
3,1
= 2𝑡,

𝛼
3,2
= 4𝑡 +

4

9

𝑡
2
,

𝛼
3,3
= 6𝑡 +

1

9

𝑡
3
+

8

9

𝑡
2
,

𝛼
3,4
= 8𝑡 +

5

243

𝑡
4
+

2

9

𝑡
3
+

4

3

𝑡
2
,

𝛼
4,1
= 3,

𝛼
4,2
= 6 + 𝑡,

𝛼
4,3
= 9 +

5

18

𝑡
2
+ 2𝑡,

𝛼
4,4
= 12 +

1

18

𝑡
3
+

5

9

𝑡
2
+ 3𝑡,

(A,B)
3

2
= (AB

2
+B

2
A +BAB)

= (

𝛽
1,1
𝛽
1,2
𝛽
1,3
𝛽
1,4

𝛽
2,1
𝛽
2,2
𝛽
2,3
𝛽
2,4

𝛽
3,1
𝛽
3,2
𝛽
3,3
𝛽
3,4

𝛽
4,1
𝛽
4,2
𝛽
4,3
𝛽
4,4

),

(83)

being

𝛽
1,1
=

17

26244

𝑡
6
+

13

1458

𝑡
5
+

11

162

𝑡
4
+

20

81

𝑡
3
,

𝛽
1,2
=

10

6561

𝑡
6
+

29

1458

𝑡
5
+

35

243

𝑡
4
+

40

81

𝑡
3
+

1

78732

𝑡
7
,

𝛽
1,3
=

2

729

𝑡
6
+

47

1458

𝑡
5
+

107

486

𝑡
4
+

20

27

𝑡
3

+

1

472392

𝑡
8
+

5

78732

𝑡
7
,
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𝛽
1,4
=

1

243

𝑡
6
+

65

1458

𝑡
5
+

8

27

𝑡
4
+

80

81

𝑡
3
+

1

4251528

𝑡
9

+

1

118098

𝑡
8
+

1

6561

𝑡
7
,

𝛽
2,1
=

13

2916

𝑡
5
+

1

18

𝑡
4
+

7

18

𝑡
3
+

4

3

𝑡
2
,

𝛽
2,2
=

8

729

𝑡
5
+

7

54

𝑡
4
+

23

27

𝑡
3
+

8

3

𝑡
2
+

1

8748

𝑡
6
,

𝛽
2,3
=

5

243

𝑡
5
+

35

162

𝑡
4
+

71

54

𝑡
3
+ 4𝑡

2
+

1

52488

𝑡
7
+

5

8748

𝑡
6
,

𝛽
2,4
=

23

729

𝑡
5
+

49

162

𝑡
4
+

16

9

𝑡
3
+

16

3

𝑡
2
+

1

472392

𝑡
8

+

1

13122

𝑡
7
+

1

729

𝑡
6
,

𝛽
3,1
=

11

486

𝑡
4
+

7

27

𝑡
3
+

5

3

𝑡
2
+

16

3

𝑡,

𝛽
3,2
=

14

243

𝑡
4
+

17

27

𝑡
3
+

34

9

𝑡
2
+

32

3

𝑡 +

1

1458

𝑡
5
,

𝛽
3,3
=

1

9

𝑡
4
+

29

27

𝑡
3
+

53

9

𝑡
2
+ 16𝑡 +

1

8748

𝑡
6
+

5

1458

𝑡
5
,

𝛽
3,4
=

14

81

𝑡
4
+

41

27

𝑡
3
+ 8𝑡

2
+

64

3

𝑡 +

1

78732

𝑡
7

+

1

2187

𝑡
6
+

2

243

𝑡
5
,

𝛽
4,1
=

5

81

𝑡
3
+

2

3

𝑡
2
+ 4𝑡 + 12,

𝛽
4,2
=

13

81

𝑡
3
+

5

3

𝑡
2
+

28

3

𝑡 + 24 +

1

486

𝑡
4
,

𝛽
4,3
=

17

54

𝑡
3
+

26

9

𝑡
2
+

44

3

𝑡 + 36 +

1

2916

𝑡
5
+

5

486

𝑡
4
,

𝛽
4,4
=

40

81

𝑡
3
+

37

9

𝑡
2
+ 20𝑡 + 48 +

1

26244

𝑡
6

+

1

729

𝑡
5
+

2

81

𝑡
4
.

(84)

In Figure 1, we show a comparison of the solution com-
puted through the symbolic method presented in this paper,
and the numeric solution to the problem calculated by a
Runge-Kutta fourth order method with a step of ℎ = 0.001.
Let us stress that the difference between both solutions at any
time is smaller than 10−7.

4.2. Description of the Program. In order to describe the alge-
braic processor, let us introduce the following test problem:

𝑥̈ + 𝑥̇ + 𝑥 = sin 𝑡, (85)

Matrix A

0 1

−1 −1

Figure 3: Matrix 𝐴.

Matrix B

0 1

0 0

Figure 4: Matrix 𝐵.

with initial conditions

𝑥 (0) = 0, 𝑥̇ (0) = 1. (86)

This equation describes the (small) angular position in
radians 𝑥(𝑡) of a forced damped pendulum with a periodic
driving force. In this equation, 𝑥̈(𝑡) represents the inertia,
𝑥̇(𝑡) represents the friction, and sin(𝑡) represents a sinusoidal
driving torque applied at the pivot of the pendulum.The exact
solution to this problem is given by

𝑥 (𝑡) = − cos 𝑡 + 𝑒−𝑡/2 cos(
√3

2

𝑡) + √3𝑒
−𝑡/2 sin(

√3

2

𝑡) .

(87)

The program proceeds as follows.The first window (Figure 2)
allows us introducing the definition of variables, the order
of the ODE and its coefficients, and the function of the
nonhomogeneous term 𝑢(𝑡).

The next window visualizes the expression of the com-
panion matrix related to the ODE (Figure 3).

Then, matrices 𝐵, exp(𝐵𝑡/𝑚), 𝐶, and exp(𝐶𝑡/𝑚), which
are used in the calculation of the exponential matrix, are
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exp (B/m)

0

((t/m)0)(1/0!) ((t/m)1)(1/1!)

((t/m)0)(1/0!)

Figure 5: Matrix exp(𝐵𝑡/𝑚).

Matrix C

0 0

−1 −1

Figure 6: Matrix 𝐶.

computed by using a value of𝑚 satisfying (23).Thesematrices
are presented in Figures 4, 5, 6, and 7.

In Figures 8 and 9, we evaluate the exponential matrix 𝑒𝐴𝑡
in 𝑡 = 1 and for𝑚 = 1000. The algebraic processor enables us
to change these two parameters. We should emphasize that
the symbolic solution to the problem is dependent on the
value of parameter 𝑚. We have computed this solution for
different values of this parameter (𝑚 = 10, 100, 1000, and
10000). In Figures 10 and 11, we compare the real solutionwith
symbolic solutions 𝑥(𝑡) for these values of𝑚. We observe that
the symbolic solution gets closer to the real solution as the
value of𝑚 is increased.

Table 1 shows the numerical evolution of the symbolic
approximation 𝑥

𝑆
(𝑡), computed for 𝑚 = 1000. These values

have been obtained by substituting variable 𝑡 in the symbolic
solution by values 0.1, 0.2, . . . , 1.

In Figure 12, we compare the symbolic approximation,
computed via the symbolic processor, with the exact solution
(87). We also compare these two functions with a numeric
solution computed through a Runge-Kutta 4th order method
with step ℎ = 0.1. We see that the solution symbolically
computed fits better to the exact solution to than the
described numerical solution. In Table 2, we show the error

exp (C/m)

01

exp(−t/m) exp(−t/m)

Figure 7: Matrix exp(𝐶𝑡/𝑚).

Evaluation on a value of t

Automatic procedure

Variation of the matrix norm

Precision

Digits

t

Value of m

18

13

1

1000

Aproximation of eAt for t

Figure 8: Parameters related to the accuracy of the solution to the
differential equation.

exp (A)

0.6596974858612 0.5335045275926

−0.5335071951242 0.1261956258061

Figure 9: Matrix exp(𝐴).

on the solution computed using both methods. We observe
that error obtained in the symbolic approximation is quite
smaller that the numeric one.This fact can be better observed
in Figure 13, where we show the difference in absolute value
between the exact solution and the symbolic and numeric
solutions. Nevertheless, it is not the goal of this paper to
develop a numeric tool. The symbolic technique we have
developed provides an analytical solution which can be used
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Figure 10: Comparison of real solution (black) and symbolic
solutions for𝑚 = 10 (light blue line) and𝑚 = 100 (yellow line).
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Figure 11: Comparison of real solution (black) and symbolic
solutions for𝑚 = 1000 (dark blue line) and𝑚 = 10000 (green line).
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Figure 12: Exact solution (black), symbolic solution (blue), and
numeric solution (green).

Table 1: Numerical evolution of the symbolic approximation 𝑥
𝑆
(𝑡),

for𝑚 = 1000.

Step 𝑡 𝑥(𝑡)

1 0.1 0.0951665336810
2 0.2 0.1813305224920
3 0.3 0.2594801299955
4 0.4 0.3305856479131
5 0.5 0.3955920028686
6 0.6 0.4554122210115
7 0.7 0.5109218189711
8 0.8 0.5629540836788
9 0.9 0.6122961986812
10 1.0 0.6596861707192

Table 2: Numerical error in the symbolic (𝑥
𝑆
(𝑡)) and numeric

(𝑥
𝑅
(𝑡)) approximations, with respect to the exact solution 𝑥(𝑡).

𝑡 |𝑥
𝑆
(𝑡) − 𝑥(𝑡)| |𝑥

𝑅
(𝑡) − 𝑥(𝑡)|

0.1 0.0000047853239 0.0000001672031
0.4 0.0000712453497 0.0000358751267
0.7 0.0002074165163 0.0003544605868
1.0 0.0003710415717 0.0014307873617
1.3 0.0004547161744 0.0038253117836
1.6 0.0003284030320 0.0080436899562
1.9 0.0000622406880 0.0144197157174
2.2 0.0006216534547 0.0230329551851
2.5 0.0011277539714 0.0336675456541
2.8 0.0013572764337 0.0458134712942
3.1 0.0012347982225 0.0587076431208
3.4 0.0008953272672 0.0714078077594
3.7 0.0006002231245 0.0828896894497
4.0 0.0005492334199 0.0921556872924
4.3 0.0007154938930 0.0983431460014
4.6 0.0008300921248 0.1008204330678
4.9 0.0005487250652 0.0992608551151
5.2 0.0002963137375 0.0936868279861
5.5 0.0015298326576 0.0844798593631
5.8 0.0026838757810 0.0723553936143
6.1 0.0032571351779 0.0583046260627
6.4 0.0030289419613 0.0435091879952
6.7 0.0022189180928 0.0292364988851
7.0 0.0013691340100 0.0167257096706
7.3 0.0010043530807 0.0070750555622
7.6 0.0012821439144 0.0011409176473
7.9 0.0018689726696 0.0005417339524
8.2 0.0021436005756 0.0021897330323
8.5 0.0016148602301 0.0091082291225
8.8 0.0002869277587 0.0196147078451
9.1 0.0012796703448 0.0327897203523
9.4 0.0022771057968 0.0474740017777
9.7 0.0021518593816 0.0623710756305
10.0 0.0009803998394 0.0761625070468
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Figure 13: Error in the symbolic (black) and numeric (blue)
approximations.

as a kernel to apply perturbation methods to compute the
solution to a perturbed differential equation depending on a
small parameter.

5. Conclusions

Wehave developed a symbolic processor as well as a symbolic
technique in order to deal with the solution to a linear
ordinary differential equation with constant coefficients of
order 𝑛.The solution to this equation is computed completely
in a symbolic way that is, the solution is expressed as a
function of 𝑡. This function can be of great interest to face
a perturbed differential equation by means of a perturbation
method. The aim of this work is not to develop a numeric
method. However, we have compared the symbolic solution
obtained via our symbolic processor with a numeric solution
computed with a Runge-Kutta method, in order to show how
our solution is closer to the exact solution.
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