
IMS Collections
From Probability to Statistics and Back: High-Dimensional Models and Processes
Vol. 9 (2013) 317–326
c© Institute of Mathematical Statistics, 2013
DOI: 10.1214/12-IMSCOLL923

The average likelihood ratio for

large-scale multiple testing and

detecting sparse mixtures
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Abstract: Large-scale multiple testing problems require the simultaneous as-
sessment of many p-values. This paper compares several methods to assess the
evidence in multiple binomial counts of p-values: the maximum of the binomial
counts after standardization (the “higher-criticism statistic”), the maximum
of the binomial counts after a log-likelihood ratio transformation (the “Berk–
Jones statistic”), and a newly introduced average of the binomial counts after
a likelihood ratio transformation. Simulations show that the higher criticism
statistic has a superior performance to the Berk–Jones statistic in the case of
very sparse alternatives (sparsity coefficient β � 0.75), while the situation is
reversed for β � 0.75. The average likelihood ratio is found to combine the
favorable performance of higher criticism in the very sparse case with that of
the Berk–Jones statistic in the less sparse case and thus appears to dominate
both statistics. Some asymptotic optimality theory is considered but found to
set in too slowly to illuminate the above findings, at least for sample sizes up
to one million. In contrast, asymptotic approximations to the critical values
of the Berk–Jones statistic that have been developed by [In High Dimensional
Probability III (2003) 321–332 Birkhäuser] and [Ann. Statist. 35 (2007) 2018–
2053] are found to give surprisingly accurate approximations even for quite
small sample sizes.

1. Introduction

This paper is concerned with the following mixture problem: One observes X1, . . . ,
Xn i.i.d. F and one wants to test

H0 : F = Φ, the standard normal distribution function

versus

H1 : F = (1− ε)Φ + εΦ(· − μ), for some ε ∈ (0, 1), μ > 0.

Interest in this prototypical setting derives from a number of applications that
involve large-scale multiple testing; see, e.g., [6]. In the case where the proportion of
nonzero means is small, ε = εn = n−β , for β ∈ ( 12 , 1), there is the following result:
Parametrize μ = μn =

√
2r logn for r ∈ (0, 1) and define the detection boundary

ρ∗(β) =

{
β − 1

2 if 1
2 < β ≤ 3

4 ,

(1−
√
1− β)2 if 3

4 < β < 1.
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If r < ρ∗(β), then it is impossible to detect the presence of the nonzero means
μn: Any test with asymptotic level α ∈ (0, 1) can only have trivial asymptotic power
α. On the other hand, if r > ρ∗(β), then the likelihood ratio test (which requires
the knowledge of β and r) at asymptotic level α will have asymptotic power 1; see
[12, 13] and [16]. But β and r are unknown, so direct application the likelihood ratio
test is not possible. [16] and [6] propose to employ the higher criticism statistic

HC∗
n = max

1≤i≤n/2

√
n
(
i/n− p(i)

)/√
p(i)(1− p(i)),

where pi = IP(N(0, 1) > Xi) is the p-value of Xi, and they show that HC∗
n also

attains the optimal detection boundary, i.e., HC∗
n has asymptotic power 1 for all

β ∈ ( 12 , 1) and r > ρ∗(β). Note that HC∗
n does not require the knowledge of β and r.

2. Combining the evidence of multiple binomial counts

Denote by Fn the empirical distribution function of the p-values: Fn(t) := 1
n ×∑n

i=1 1(pi ≤ t). Then one sees that

(1) HC∗
n = max

t∈{p(1),...,p(n/2)}

√
n
Fn(t)− t√
t(1− t)

.

Under the null hypothesis, the p-values pi are an i.i.d. sample from U [0, 1]. Thus the

quantity
√
n Fn(t)−t√

t(1−t)
is the standardized count of p-values that fall in the interval

(0, t], and so HC∗
n looks for an excessive number of p-values in the intervals (0, t]

for t ∈ (0, 1
2 ] by considering the maximum of these standardized binomial counts

over the intervals (0, p(i)] for i = 1, . . . , n/2.
While a standardized binomial random variable is a classical example to illustrate

the convergence to a normal distribution, it is important to keep in mind that its
long tail is not any more subgaussian: As the success probability moves from 1

2 to 0,
the long tail becomes increasingly heavy; see Shorack and Wellner [19, Chap. 11.1].
In fact, the first several terms in HC∗

n even have heavy algebraic tails, as can be
seen from an argument similar to Section 3 in [6]. Since the distribution of the max
depends sensitively on the tails, this means that standardizing the counts does not
guarantee that all counts are treated equally. Rather, HC∗

n gives increasingly more
weight to counts with smaller index i. This raises the question what effect this has
on the performance of HC∗

n.
To investigate this issue, we can compare the performance of HC∗

n with a statistic
that standardizes the binomial counts differently to avoid unequal and heavy tails.
Such a standardization is given by the log-likelihood ratio transformation. Define

log LRn(t) =

{
nFn(t) log

Fn(t)
t + n(1− Fn(t)) log

1−Fn(t)
1−t if 0 < t < Fn(t),

0 otherwise,

where log LRn(t) is the one-sided log-likelihood ratio statistic for testing whether
the parameter of the binomial count nFn(t) equals t vs. whether it is larger than t.
The log-likelihood ratio transformation possesses the important property that it
produces clean subexponential tails under the null hypothesis, no matter what the
binomial parameter t. This fact is implicit in the proof of the Chernoff–Hoeffding
theorem; see [11]. One can now proceed as with HC∗

n and take the maximum of the
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Fig 1. Power of HC∗
n (dashed) and BJ+n (dash-dot) as a function of the sparsity parameter β.

The left plot shows power for sample size n = 104, the right plot for n = 106.

thus standardized binomial counts over the random intervals (0, p(i)]. This essen-
tially yields a statistic proposed by [2]:

BJ+n = max
1≤i≤n/2

log LRn,i,

where log LRn,i := log LRn(p(i)) = (i log i
np(i)

+ (n − i) log 1−i/n
1−p(i)

)1(p(i) <
i
n ). BJ

+
n

was shown by [6] to also attain the optimal detection boundary. Both HC∗
n and BJ+n

are special cases of a family of goodness-of-fit tests based on φ-divergences that are
introduced and studied by [15].

We compare the power of HC∗
n and BJ+n against alternatives μn =

√
2r logn with

r = r(β) = 1.2ρ∗(β) + 0.1 for ten equally spaced values of β between 0.5 and 1.
The significance level was set to 5% by estimating the exact finite sample critical
values of HC∗

n and BJ+n with 105 simulations. The power of HC∗
n and BJ+n was then

simulated with 104 simulations. The left plot in Figure 1 shows the resulting power
values for sample size n = 104, the right plot for sample size n = 106. One sees that
HC∗

n has a better detection performance in the very sparse case β � 3
4 , while BJ+n

has a better performance for smaller β.
The preceding discussion suggests the following explanation of this result: [6]

observed that for β ∈ [ 34 , 1) the strongest evidence against H0 is found near the
maximum of the observations, i.e., at the smallest p-values. Since HC∗

n gives more
weight to smaller p-values compared to BJ+n , HC

∗
n will have more power. But when

β ∈ ( 12 ,
3
4 ), then the most informative place to look is at larger p-values, i.e., one

needs to examine the count of p-values in the interval (0, t] for certain t ∈ (0, 1).
Since HC∗

n gives less weight to the evidence in those intervals, it suffers a perfor-
mance penalty in this case.

The simulation study also confirms the cautionary remarks in [6] about the sam-
ple size required for the above asymptotic optimality theory to adequately assess
the performance of statistical procedures. Both HC∗

n and BJ+n attain the optimal
detection boundary, i.e., have asymptotic power 1 against the alternatives consid-
ered in the above simulation study. But even for a sample size of one million, their
detection power is quite small for a large range of β values. Moreover, the difference
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in power between these two optimal procedures is larger than the gain in power
obtained by increasing the sample size 100fold from n = 104 to n = 106. Thus it
appears that the asymptotic optimality theory sets in too slowly to be informative
for sample sizes up to at least a million, and it seems prudent to instead assess the
performance of such procedures primarily via simulation studies.

The difference in performance between HC∗
n and BJ+n for various β raises the

question whether this difference represents an unavoidable trade-off, or whether it is
possible to improve on this overall performance. If a better performance is possible,
how should one go about developing a better test?

3. The average likelihood ratio statistic

A promising approach to obtain good power uniformly in β is a minimax test,
which is typically constructed as a Bayes solution with respect to a least favorable
prior; see Lehmann and Romano [17, Chap. 8.1]. But in the context at hand, such a
construction appears to be involved since it requires the specification a multivariate
prior over an appropriate set of alternative distributions.

Instead we proceed as follows: suppose we start with an noninformative uniform
prior for the parameter β on ( 12 , 1). Given β, we can use knowledge about the
problem to construct an appropriate conditional test: [6] observe that for β ∈ [ 34 , 1)
the most promising approach is essentially to look at the smallest p-value. Thus we
put prior probability 1

2 on the likelihood ratio test over the interval (0, p(1)]. For

β ∈ ( 12 ,
3
4 ), the most promising interval to detect alternatives with r close to the

detection boundary ρ∗(β) = β− 1
2 is the interval (0, n−4r]. Thus given such a β, we

will employ the likelihood ratio test on the interval (0, t] with t = n−4(β− 1
2 ). If β ∼

U(12 ,
3
4 ), then t = n−4(β− 1

2 ) has density proportional to 1
t on ( 1n , 1). Approximating

the resulting posterior integral with the corresponding weighted sum of the p(i) and

observing that the normalizing factor of the weights is
∑n/2

i=2
1
i ≈ log(n/3) yields

the average likelihood ratio,

ALRn =
1

2
LRn,1 +

1

2

n/2∑
i=2

1

i log(n/3)
LRn,i,

where

LRn,i =

⎧⎨
⎩
(

i
np(i)

)i (
1− i

n

1−p(i)

)n−i

if p(i) <
i
n ,

1 otherwise.

Thus LRn,i is the one-sided likelihood ratio statistic for testing whether the param-
eter of the binomial count on (0, t] equals t, evaluated at t = p(i).

Theorem. ALRn attains the optimal detection boundary.

Proof. Note that it was shown in [6] that with probability converging to 1 there
exists an index i ∈ {1, . . . , n/2} such that log LRn,i � nκ, where κ = κ(β, r) > 0.
Hence BJ+n (and HC∗

n) grow algebraically fast under the alternative. Now LRn,i =
exp(log LRn,i) � exp(nκ). Thus ALRn grows exponentially fast. Some informal
arguments given below suggest that ALRn may have a limiting distribution under
H0, but to complete the proof in a rigorous way it is enough to employ the upper

bound ALRn ≤ 2 exp(BJ+n ) together with BJ+n / log logn
p→ 1 under H0; see Jager

and Wellner [15, Thm. 3.1].
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Fig 2. Power of ALRn (solid), HC∗
n (dashed) and BJ+n (dash-dot) as a function of the sparsity

parameter β. The left plot shows power for sample size n = 104, the right plot for n = 106.

The exponential increase of ALRn has to be taken with a grain of salt. Depending
on β and r, the constant κ(β, r) may be close to zero. Then an enormous n is
required for LRn,i to overcome the divisor i log(n/3) if i ≥ 2. Of course, the same
calamity befalls BJ+n and HC∗

n, where the polynomial nκ needs to overcome a critical
value of order log logn. This appears to be one of the reasons why the asymptotic
theory is so slow to take hold.

As discussed above, it is therefore preferrable to evaluate the performance of
ALRn with a simulation study. Figure 2 compares the power of ALRn, HC

∗
n, and

BJ+n in the same setting that was considered in Section 2.

One sees that ALRn combines the good performance of HC∗
n at larger β with

the good performance of BJ+n at smaller β and thus results in a test that appears
to dominate both HC∗

n and BJ+n .

To avoid numerical difficulties when n is large, it is advisable to rewrite LRn,i =
exp(log LRn,i) with log LRn,i given in Section 2. As above, the simulation study
used a size of 5% for all three tests by estimating the exact finite sample criti-
cal values with 105 simulations. Since such a simulation may not be practical for
larger samples, it is of interest to explore whether reasonably accurate asymptotic
approximations are available.

4. Asymptotic approximations for the null distributions

A first attempt to derive a simple large sample approximation for the critical values

of HC∗
n and BJ+n can be based on HC∗

n/
√
2 log logn

P→ 1 and BJ+n / log logn
P→ 1,

which follows, e.g., from Jager and Wellner [15, Thm. 3.1]. The significance levels
obtained by using the resulting thresholds

√
2 log log n and log logn for HC∗

n and
BJ+n , respectively, are listed under “thresh” in Table 1. One sees that the resulting
size of the tests is very large even for n = 106.

A more refined approximation can be derived from results about the convergence
to an extreme value distribution. In the case of HC∗

n, this result follows from [14]
and [8]; see also Shorack and Wellner [19, Chap. 16]. In the case of BJ+n a proof
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Table 1

Finite sample significance levels (in %) of HC∗
n and BJ+n for various asymptotic approximations

to critical values. Based on 105 simulations

Calibration thresh EVI EVII

Statistic HC∗
n BJ+n HC∗

n BJ+n HC∗
n BJ+n

Nominal level in % - - 5 10 5 10 5 10 5 10
n = 102 44.7 34.7 20.8 27.2 7.2 13.4 19.6 25.3 6.2 11.4

103 45.0 34.0 20.0 26.2 6.7 12.3 19.1 25.1 6.1 11.2
104 45.7 34.4 19.2 25.2 6.4 11.7 18.6 24.3 5.9 10.9
105 45.6 34.4 18.4 24.4 6.2 11.3 17.9 23.7 5.9 10.7
106 46.0 34.9 18.0 23.9 6.2 11.4 17.6 23.3 5.9 10.8

was sketched in [2]. [23] note an apparent error in that sketch and give a rigor-
ous proof. See also Jager and Wellner [15, Thm. 3.1] for a unified treatment of
HC∗

n and BJ . The latter theorem establishes convergence of two-sided versions of
BJ+n and 1

2 (HC∗
n)

2, after centering, to an extreme value distribution with distribu-
tion function E4

v(x) = exp(−4 exp(−x)). As remarked in Shorack and Wellner [19,
p. 600], the two one sided versions as well as the two halves (i ≶ n/2) are asymp-
totically independent. Therefore the pertinent limit for HC∗

n and BJ+n considered
here should be E1

v . The resulting approximation for the level α critical value for
BJ+n is

(2) qα := log logn+
1

2
log log logn− 1

2
log(4π)− log(− log(1− α)),

and the corresponding approximation for HC∗
n is

√
2qα. It is known that conver-

gence to an extreme value distribution is typically extremely slow; see [10]. Thus
there would seem to be little hope that the above approximation is useful for
moderate sample sizes, in particular since it involves a doubly-iterated (!) loga-
rithm. But surprisingly, the simulation study in Table 1 shows that the above
approximation (labeled “EVI”) is quite good for BJ+n even for sample sizes as
small as n = 100. This appears to be another benefit of the clean exponential
tails resulting from the log-likelihood ratio transformation. Unfortunately, the ap-
proximation does not work well for HC∗

n, where it yields very anti-conservative
results.

[23] suggest a further improvement for the approximation to BJ+n by using the
centering c2n/(2b

2
n) with cn = 2 log logn + 1

2 log log logn − 1
2 log(4π) and b2n =

2 log logn in place of the first three terms on the right hand side of (2). The results
of this approximation are labeled “EVII” in Table 1 and show a further improve-
ment for BJ+n , but still not a useful outcome for HC∗

n. This is presumably due
to the heavy binomial tails which are not taken care of by the standardization in
HC∗

n.
In connection to this it is worth pointing out that a key argument in proving the

above limit theorems is to show that with high probability the first log5 n terms
in HC∗

n and BJ+n do not contribute to the maximum, and that for the remaining
terms a strong approximation with a Brownian bridge is applicable. In particular,
this means that asymptotically the heavy binomial tails don’t matter, and that the
maximum will not be attained at the first few terms. But as shown by the simula-
tions above and elsewhere, such as in [6], this is certainly not the case for sample
sizes of up to at least n = 106, which is the largest sample size we could explore
in a reasonable amount of time. As remarked in Wellner [22, p. 43] concerning the
applicability of the asymptotic results, one needs n > 1,010,388 ≈ 106 just to get
log5 n < n/2.
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Next we consider ALRn and write

log LRn,1 =

[
log

1

np(1)
+ (n− 1) log

1− 1/n

1− p(1)

]
1(p(1) < 1/n)

=

[
− log

(
np(1)

(
1−

np(1)

n

)n)
+ log(1− p(1))

+ (n− 1) log(1− 1/n)

]
1(np(1) < 1).

Recall that under H0 we can use the representation p(1)
d
= E1/(E1 + · · · + En+1),

where {Ei} is an infinite sequence of i.i.d. Exp(1) random variables; see Shorack
and Wellner [19, p. 335]. Thus log LRn,1 has the same distribution as a random
variable that converges a.s. to (− logE1 + E1 − 1)1(E1 < 1) by the strong law.
Hence

(3) LRn,1
d→
(
exp(E1)

eE1

)1(E1<1)

.

Next, set In := {i : p(i) ≤ log5 n/n}. Using (A.4) in [6] and (26) on page 602 of
[19], we get

max
i∈In

log LRn,i ≤ max
i∈In

( i
n − p(i))

2

2p(i)(1− p(i))
= op(log log n).

Hence on the event An := {#In ≤ 2 log5 n}:
∑
i∈In

1

i log(n/3)
LRi ≤ exp ((op(log logn))

2 log logn

log(n/3)
= op(1),

and IP(Ac
n) = IP(bin(n, log5 n/n) > 2 log5 n) → 0 by Chebychev.

For p(i) > log5 n/n one can proceed as in the proof of Theorem 3.1 in [15], also
the proof of Theorem 1.1 in [23], and as on page 601 of [19], and first approximate
the log-likelihood ratio process by the square of the normalized empirical process
and then by the square of a normalized Brownian Bridge. This suggests that

n/2∑
i=2

1

i log(n/3)
LRn,1 ≈ Ln :=

1

logn

∫ 1/2

1/n

1

t
exp

(
B+2

(t)

2t(1− t)

)
dt.

It is not clear whether Ln has a finite limit distribution. Simulations show that
the quantiles of Ln increase very slowly as n increases from 102 to 106. For-

mally applying l’Hôpital’s rule gives limn→∞ Ln = limn→∞ exp( B+2
(1/n)

2/n(1−1/n)). Since

exp( B+2
(1/n)

2/n(1−1/n))
d
= exp( 12Z

+2
) with Z ∼ N(0, 1), a conjecture for the limit law of

ALRn would be

(4)
1

2

(
exp(E1)

eE1

)1(E1<1)

+
1

2
exp

(
1

2
Z+2

)
.

This expression reflects the fact that the beta distribution of the first order
statistic behaves like an exponential distribution, while sufficiently larger order
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Table 2

Finite sample significance levels (in %) of ALRn for two different approximations
to the critical values of ALRn. Based on 105 simulations

Calibration 1 Calibration 2
Nominal level in % 5 10 5 10

n = 102 6.3 12.5 6.2 11.7
103 6.0 12.0 5.9 11.3
104 5.8 11.9 5.7 11.1
105 5.7 11.7 5.6 11.0
106 5.7 11.8 5.4 11.0

statistics possess a beta distribution that is closer to a normal. Of course, l’Hôpital’s

rule is not applicable since limn→∞ exp( (B
+)2(1/n)

2/n(1−1/n)) does not exist by the law of the

iterated logarithm for the Brownian bridge, so even if the law of Ln converges, the
limit does not have to be the law of exp( 12Z

+2
).

Table 2 gives the finite sample significance levels of ALRn resulting from the
approximation (4) in the column “Calibration 1.” The critical values used for cal-
ibration 1 are 6.05 and 3.42, which were obtained from 105 simulations of (4).

Calibration 2 uses Ln with n = 105 in place of exp( 12Z
+2

). The resulting criti-
cal values are 6.16 and 3.60. One sees that both approximations are reasonably
accurate, albeit somewhat anti-conservative, for the sample sizes considered.

5. Relation to other work and open problems

Different variations of the average likelihood ratio have been used successfully in
other detection problems; see e.g., [3, 4, 7, 9, 18, 20], or [5], but the above weighted
average likelihood ratio seems not to have been considered before.

It is worthwhile to compare the above results with the setting where the propor-
tion εn of observations with nonzero means is not scattered randomly but possesses
structure, e.g., when εnn consecutive observations possess an elevated mean. Such
problems are typically addressed with the scan statistic, i.e., the maximum likeli-
hood ratio statistic. It was shown by [1] that the scan can detect elevated means of
size μn =

√
2 logn/(εnn). [5] showed that the scan cannot do better than that but

that a version of the average likelihood ratio can detect smaller means where the
factor

√
2 logn in the numerator is replaced by

√
2 log(1/εn) =

√
2β logn. No test

can improve on this latter rate. Thus the scan is optimal only in the case of a single
elevated mean, but its performance relative to the ALR deteriorates as the propor-
tion of nonzero means increases. It was also shown in [21] and [5] that optimality of
the scan can be restored by employing scale-dependent critical values. Comparing
with the results in the present paper, one sees that structure in the elevated means
allows to greatly improve the detection power: In the case of consecutively elevated
means, the detection boundary is lowered by a factor ∼ √

εnn =
√
n1−β , which can

be considerable.

Regarding the setting in the present paper, it would be of interest to develop an
optimality theory that allows to compare the performance of tests at more moderate
sample sizes. Such a comparison might by possible by exploring the rate at which an
estimator can approach the detection boundary while still guaranteeing consistency.
See [21] and [5] for such an analysis in the case of consecutively elevated means.
Finally, it would be of interest to perform a more formal investigation of a possible
limit distribution of the average likelihood ratio.
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	Introduction
	Combining the evidence of multiple binomial counts
	The average likelihood ratio statistic
	Asymptotic approximations for the null distributions
	Relation to other work and open problems
	Acknowledgement
	References

