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Abstract: The general asymptotic distribution theory for the functional re-
gression model in Ruymgaart et al. [Some asymptotic theory for functional
regression and classification (2009) Texas Tech University] simplifies consider-
ably if an extra assumption on the random regressor is made. In the special case
where the regressor is a stochastic process on the unit interval, Johannes [Priv-
ileged communication (2008)] assumes the regressor to be stationary, in which
case the eigenfunctions of their covariance operator turn out to be known,
so that only the eigenvalues are to be estimated. In the present paper we
will also assume the eigenvectors to be known, but within an abstract set-
ting. The simplification mentioned above is due to the circumstance that the
covariance operator of the regressor commutes with its estimator as it can
be constructed under the current conditions. Moreover, it is now possible to
test linear hypotheses for the regression parameter that correspond to linear
subspaces spanned by a finite number of the known eigenvectors.

1. Introduction

Several functional regression models can be found in the monograph by Ramsay
and Silverman [7]. One of these models, concerning functional regression for a real
dependent variable and a single functional independent variable as specified in
(2.1) below, is considered by Hall and Horowitz [2]. These authors establish rate
optimality of the mean integrated square error of an estimator based on a Tikhonov
type inverse of the sample covariance operator, when both the random regressor
and the regression function are assumed to be in L2(0, 1). In this paper we will
also restrict ourselves to this model, that we will briefly refer to as “the functional
regression model”. Mas and Pumo [6] argue that in certain practical situations
it might be preferable to assume they are elements of a Sobolev space such as
W 2,1(0, 1). Johannes [3] obtains results similar to those in [2]: more general in the
sense that general Sobolev norms are used, and more restrictive because this author
assumes the regressor to be a stationary second order process; for further comments
on this interesting special case see below.

The asymptotic distribution of the regression estimator is obtained in Ruymgaart
et al. [8] for abstract Hilbert spaces and without any specific assumption on the
regressor except a standard moment condition. Not included in that paper was the
special case where the eigenvectors of the covariance operator of the regressor are
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assumed to be known and only the unknown eigenvalues are to be estimated. This
special case, referred to above, is motivated by an important instance, considered
by Johannes [3]. This author observes that any stationary second order regressor
with time in the unit interval has a covariance operator with known eigenfunctions⎧⎨⎩

p1(t) = 1,

p2k(t) =
√
2 cos 2πkt, for 0 ≤ t ≤ 1, and k ∈ N.

p2k+1(t) =
√
2 sin 2πkt,

If the eigenvectors are known a different, simpler estimator of the covariance
operator is possible that leads to a different and simpler estimator of the regres-
sion function as well. Because the covariance operator and its simplified estimator
commute, derivatives of analytic functions of these operators also simplify consid-
erably, which in turn leads to simpler asymptotics. Also linear hypotheses can be
formulated in terms of the known basis of eigenvectors which further reduces the
complexity of the asymptotic distribution of the test statistic. Considering the gen-
eral results in [8] such a reduction seems certainly welcome and it is the purpose of
this paper to pursue this well motivated special case. Although direct proofs could
be provided we prefer to derive the results from the general theory in [8].

In Section 2 the model and the basic assumptions are formulated and some
notation is introduced. Section 3 is devoted to the modified sample covariance
operator. It may be obtained by just estimating the eigenvalues, but it also turns
out to be the projection of the usual sample covariance operator onto the subspace
of the Hilbert-Schmidt operators spanned by a suitable collection of known tensor
products (see (3.3)). Consequently its asymptotic distribution is immediate from
the continuous mapping theorem and the convergence in distribution of the usual
sample covariance operator although, indeed, a simple direct proof could be given
as well. The modified estimator of the regression function is presented in Section 4.
Some tools from [8] for functions of operators, in particular a derivative and an
ensuing delta-method are briefly reviewed in Section 5. Finally, in Section 6, these
results are applied to obtain tests for certain linear hypotheses.

2. The model, assumptions, and some notation

Let (Ω,F ,P) be a probability space. It will be assumed that all random elements
are defined on this space. Let H be a separable, infinite dimensional Hilbert space
over the real numbers, equipped with the σ-field of Borel sets BH, and X : Ω → H a
random vector, i.e. an (F ,BH)-measurable mapping. It will be assumed throughout
that

E ‖X‖4 < ∞.

Suppose that X1, . . . , Xn are independent copies of X. For an unknown number
α ∈ R and vector f ∈ H we observe n pairs (Xi, ηi) that are i.i.d. copies of (X, η),
given by

(2.1) η = α+ 〈X, f〉+ ε, α ∈ R, f ∈ H,

where ε is a real valued error variable such that

(2.2) ε ⊥⊥ X, Eε = 0, Eε2 = v2 < ∞.
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The random variable X is called the regressor and the unknown parameter f ∈ H

the regression parameter (usually a function as most Hilbert spaces will be function
spaces). Hall and Horowitz [2] study this model when H = L2(0, 1), and Johannes
[3] considers Sobolev inner products. These authors focus on the (mean) integrated
squared error. Mas and Pumo [6] consider the regression model in the Hilbert space
W 2,1(0, 1).

The mean μ = EX of X is defined as the representer of the bounded functional

E〈a, X〉 = 〈a, μ〉, ∀a ∈ H,

see [5]. In the same vein the covariance operator of X can be considered as a mean
in the Hilbert space LHS of all Hilbert-Schmidt operators mapping H into itself. A
linear operator U : H → H is Hilbert-Schmidt if in any orthonormal basis e1, e2, . . .
of H we have ∞∑

k=1

‖Uek‖2 < ∞.

The inner product in LHS is then defined by

(2.3) 〈U, V 〉HS =

∞∑
k=1

〈Uek, V ek〉.

This inner product does not depend on the choice of basis, see [4]. We can now
define the covariance operator as

(2.4) Σ = E(X − μ)⊗ (X − μ),

where for a, b ∈ H, the operator a ⊗ b is defined by (a ⊗ b)x = 〈x, b〉a, x ∈ H.
Such operators are clearly Hilbert-Schmidt. It is easily seen that Σ in (2.4) is also
uniquely determined by the requirement

E〈a, X − μ〉〈X − μ, b〉 = 〈a, Σb〉, ∀a, b ∈ H.

The latter definition can be found in [5].
It is well known that Σ is nonnegative, Hermitian, with finite trace trΣ = E‖X−

μ‖2, and hence Hilbert-Schmidt and therefore compact. It will be assumed that Σ
is one-to-one or, equivalently, strictly positive. For simplicity of presentation let
us also assume that all eigenvalues have multiplicity one. They can be written in
decreasing order with limit 0 and for Σ we have the spectral representation

(2.5) Σ =

∞∑
k=1

σ2
k · pk ⊗ pk, σ2

1 > σ2
2 > · · · ↓ 0,

where p1, p2, . . . is the corresponding orthonormal basis of eigenvectors.

Assumption 2.1. Throughout this paper it will be assumed that the eigenvectors

(2.6) p1, p2, . . . are known.

Occasionally the stronger assumption that the

(2.7) p1, p2, . . . are known and X
d
= Gaussian(μ,Σ),

will be made.

The eigenvalues are still unknown parameters. Under assumption (2.7), X − μ
has the property that the

(2.8)
1

σj
〈X − μ, pj〉 are i.i.d. Normal (0,1).
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3. The modified sample covariance operator

The traditional sample covariance operator is

Σ̂ =
1

n

n∑
i=1

(Xi − X̄)⊗ (Xi − X̄).

With the eigenvectors known, however, only the eigenvalues need to be estimated.
Since

E〈X − μ, pk〉2 = 〈pk, Σpk〉 = σ2
k,

it seems natural to estimate these eigenvalues by

(3.1) σ̂2
k =

1

n

n∑
i=1

〈Xi − X̄, pk〉2.

This yields a modified estimator of Σ, viz.

(3.2)
̂̂
Σ =

∞∑
k=1

σ̂2
k · pk ⊗ pk.

There exists a nice relation between the two, that are both in LHS . An orthonor-
mal basis for this space (with respect to the inner product in (2.3)) is the collection
of all tensor products pj ⊗ pk (j, k ∈ N). Let us write

(3.3) M = [[p1 ⊗ p1, p2 ⊗ p2, . . .]] ⊂ LHS ,

for the closed linear subspace spanned by the projection operators pj ⊗ pj , (j ∈ N),
and define P : LHS → M to be the orthogonal projection of LHS onto M. We are
now in a position to describe the relation.

Lemma 3.1. In the above notation we havê̂
Σ = PΣ̂.

Proof. A Fourier expansion yields

PΣ̂ =
∞∑
j=1

〈Σ̂, pj ⊗ pj〉HS · pj ⊗ pj .

Using the basis p1, p2, . . . for evaluating the above inner products (cf (2.3)) we
obtain

〈 Σ̂, pj ⊗ pj〉HS =

∞∑
k=1

〈 Σ̂pk, (pj ⊗ pj)pk〉

= 〈 Σ̂pj , pj〉

=
1

n

n∑
i=1

〈(
(Xi − X̄)⊗ (Xi − X̄)

)
pj , pj

〉
=

1

n

n∑
i=1

〈Xi − X̄, pj〉2

= σ̂2
j ,

and we are done.
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Let L be the Banach space of all bounded, linear T : H → H. Since LHS is
continuously embedded in L, convergence in distribution in LHS entails convergence
in distribution in L. It is well known, and it follows at once from the central limit
theorem in separable Hilbert spaces [1] that there exists a zero mean Gaussian
random element GΣ in LHS such that

√
n(Σ̂− Σ)

d→ GΣ, as n → ∞, in LHS ⇒ in L.

The covariance structure of GΣ is given by

EGΣ ⊗HS GΣ

= E {(X − μ)⊗ (X − μ)− Σ} ⊗HS {(X − μ)⊗ (X − μ)− Σ} .

Since PΣ = Σ, the continuous mapping theorem entails at once the following.

Theorem 3.1. The modified sample covariance operator satisfies

(3.4)
√
n(

̂̂
Σ− Σ)

d−→ PGΣ =

∞∑
j=1

〈GΣpj , pj〉 · pj ⊗ pj ,

as n → ∞, in LHS ⇒ in L.
Theorem 3.2. Under assumption (2.7), the above reduces to

(3.5)
√
n(

̂̂
Σ− Σ)

d−→
∞∑
j=1

√
2σ2

jZj · pj ⊗ pj ,

where the Z1, Z2, . . . are i.i.d. Normal(0,1).

Proof. Exploiting (2.8) it has been shown in [8] that GΣ has the Karhunen-Loève
expansion

(3.6) GΣ =

∞∑
j=1

√
2σ2

j Zj,j · pj ⊗ pj +
∑∑

j �=k

σj σk Zj,k · pj ⊗ pk,

where the random variables Zj,k, (j, k ∈ N) are i.i.d Normal(0, 1). It follows at once
from (3.6) and the expression for PGΣ in (3.4) that now PGΣ has the expansion in
(3.5) when we write Zj = Zj,j .

4. The modified estimator of the regression function

The basic equation from which an estimator of f can be obtained is

1

n

n∑
i=1

ηi (Xi − X̄) = Σ̂f +
1

n

n∑
i=1

εi (Xi − X̄),

see, for instance, [2] and [8]. Since Σ̂ is not one-to-one the estimator was based on a

generalized inverse of Σ̂ (of Tikhonov type). Here we want to base the estimator on

an inverse of
̂̂
Σ. Both Σ and

̂̂
Σ are compact and have therefore unbounded inverses.

Consequently we will employ regularized inverses and consider the estimator

(4.1)
ˆ̂
fδ =

(
δI +

̂̂
Σ
)−1

(
1

n

n∑
i=1

ηi(Xi − X̄)

)
,
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where I : H → H is the identity operator and δ > 0, with its deterministic
counterpart

(4.2) fδ = (δI +Σ)−1Σf, f ∈ H.

Remark 4.1. The asymptotics for the modified estimator in (4.1) is much simpler

because Σ and
̂̂
Σ commute (note that Σ and Σ̂ don’t), see Section 5. It has been

argued in [8] that for suitable asymptotic behavior the regularization parameter δ >
0 should be fixed, and the same will be done here. We will exploit in Section 6 that
testing linear hypotheses about f is in fact equivalent to testing the same hypotheses
about fδ, if this hypothesis is formulated in terms of some of the p1, p2, . . . .

We have the decomposition

√
n(

ˆ̂
fδ − fδ)

= −(δI +
̂̂
Σ)−1

√
n(

̂̂
Σ− Σ̂)f +

√
n
(
(δI +

̂̂
Σ)−1 ̂̂Σ− (δI +Σ)−1Σ

)
f

+ (δI +
̂̂
Σ)−1

(
1√
n

n∑
i=1

εi(Xi − X̄)

)
= −U1 + U2 + U3.

In this expansion, two operator functions in the sense of functional calculus are
employed, viz.

(4.3) ϕ1(z) =
1

δ + z
, ϕ2(z) =

z

δ + z
, z ∈ C \ {−δ} .

With the help of these we may write

U1 = ϕ1

(̂̂
Σ
)√

n
(̂̂
Σ− Σ̂

)
f,

U2 =
√
n
(
ϕ2(

̂̂
Σ)− ϕ2(Σ)

)
f,(4.4)

U3 = ϕ1

(̂̂
Σ
)( 1√

n

n∑
i=1

εi(Xi − X̄)

)
.

Before deriving the asymptotic distribution of the estimators we will briefly
review some results for functions of (perturbed) operators.

5. Some results from functional calculus

The spectrum of Σ in (2.5) equals σ(Σ) =
{
0, σ2

2 , σ
2
2 , . . .

}
. Let Γ be a closed contour

in the complex plane C that contains [−1
2δ, σ

2
1 ] in its interior, stays at a distance of

at least 1
2δ from this interval, but keeps −δ outside (δ is the same as in (4.1)). Let

Ω denote the open region enclosed by Γ, D ⊃ (Ω ∪ Γ) = Ω̄ an open neighborhood
of Ω̄, and suppose that

ϕ : D −→ C is analytic.

Let L be the Banach space of all bounded operators mapping H into itself, and
let Π ∈ L be a perturbation satisfying

(5.1) ‖Π‖L ≤ 1

4
δ,
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where ‖·‖L is the usual operator norm on L. For such perturbations it can be shown

that σ(Σ̃) = σ(Σ + Π) ⊂ Ω, so that the resolvent sets for Σ and Σ̃ satisfy

(5.2) ρ(Σ̃) = ρ(Σ + Π) ⊃ Ωc ⊃ Γ, ρ(Σ) =
(
σ(Σ)

)c
.

The resolvents of Σ and Σ̃ are defined by

R(z) = (zI − Σ)−1, z ∈ ρ(Σ),

R̃(z) = (zI − Σ̃)−1, z ∈ ρ(Σ̃),

and they are analytic on the respective resolvent sets. According to the usual func-
tional calculus we define

ϕ(Σ) =
1

2πi

∮
Γ

ϕ(z)R(z) dz, ϕ(Σ̃) =
1

2πi

∮
Γ

ϕ(z)R̃(z) dz,

where the latter is well defined for the same contour because of (5.2). It is well
known that these definitions reduce to recognizable expressions in special cases, as
in the examples below

Example 5.1. For ϕ1 as in (4.3), we have

ϕ1(Σ) =

∞∑
k=1

1

δ + σ2
k

pk ⊗ pk = (δI +Σ)−1.

Example 5.2. For ϕ2 as in (4.3) we have

ϕ2(Σ) =

∞∑
k=1

σ2
k

δ + σ2
k

pk ⊗ pk = (δI +Σ)−1Σ.

Let us write
Mϕ = max

z∈Γ
|ϕ(z)| .

In the present general situation, where we do not yet assume that Π and Σ commute,
we have the following result.

Theorem 5.1. Provided that (5.1) is fulfilled we have, for some number 0 < C <
∞,

‖ϕ(Σ + Π)− ϕ(Σ)‖ ≤ C Mϕ · 1
δ
‖Π‖L ,

‖ϕ(Σ + Π)− ϕ(Σ)− ϕ̇Σ Π‖ ≤ C Mϕ

(
1

δ
‖Π‖L

)2

,

where the derivative ϕ̇Σ : L → L is bounded and given by

(5.3) ϕ̇Σ Π =
∑
k

ϕ′(σ2
k) PkΠPk +

∑∑
j �=k

ϕ(σ2
k)− ϕ(σ2

j )

σ2
k − σ2

j

PjΠPk.

This result almost immediately yields a delta-method for obtaining limiting dis-

tributions for functions of
̂̂
Σ. In view of (3.4) the random perturbation

̂̂
Π =

̂̂
Σ−Σ is

small in probability, and because
̂̂
Σ is based on the same eigenprojections as Σ it is

obvious that
̂̂
Π commutes with all these eigenprojections. Therefore the derivative

ϕ̇Σ
̂̂
Π reduces to the single sum on the right in (5.3) and we obtain the following

result.
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Theorem 5.2. In the present situation where (2.6) is assumed to hold true and
̂̂
Σ

is given by (3.2), we have

(5.4)
√
n

{
ϕ(

̂̂
Σ)− ϕ(Σ)

}
d−→ ϕ̇ΣPGΣ, as n → ∞,

in L, where the derivative reduces to

(5.5) ϕ̇ΣPGΣ =

∞∑
k=1

ϕ′(σ2
k)PkPGΣPk.

Under the assumption (2.7) we have

(5.6) ϕ̇ΣPGΣ =

∞∑
k=1

√
2ϕ′(σ2

k)σ
2
kZkpk ⊗ pk.

6. Testing hypotheses about the regression function

6.1. Asymptotics under the null hypothesis

Since the estimator of the regression function in (4.1) differs from the one in [8]

which is based on Σ̂ rather than
̂̂
Σ, we can not directly refer to the results in that

paper. The straightforward proof of its convergence in distribution, however, is very
similar to the proof in [8] and will be omitted. In order to present the result, apart
from (5.4), we will need (cf. (4.4))

1√
n

n∑
i=1

εi(Xi − X̄)
d−→ G0, in H, as n → ∞,

where

(6.1) G0 =

∞∑
k=1

v σkZ
′
k pk,

with v as in (2.2) and the

Z ′
1, Z

′
2, . . . i.i.d. Normal(0,1),

independent of the Z1, Z2, . . . in (5.6).

Theorem 6.1. For any fixed δ > 0, we have

√
n(

ˆ̂
fδ − fδ)

d−→ H(f), as n → ∞,

in H, where H(f) = H1(f) + H2(f) + H3, and the random elements on the right
are zero mean, Gaussian, and given by

H1(f) = ϕ1(Σ)(P⊥GΣ)f,

H2(f) = (ϕ̇2,Σ(PGΣ))f,(6.2)

H3 = ϕ1(Σ)G0,

and where, moreover,
H3 ⊥⊥ (H1(f), H2(f)).
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For each of these processes, a more explicit expression can be obtained by ex-
ploiting the basic expressions in (3.4), (5.5) and (6.1), and by realizing that

P⊥GΣ =
∑∑

j �=k

〈GΣ, pj ⊗ pk〉HS pj ⊗ pk

=
∑∑

j �=k

〈GΣpk, pj〉 pj ⊗ pk.

Theorem 6.2. We have, more explicitly,

H1(f) =

∞∑
k=1

1

δ + σ2
k

(
〈GΣpk, f〉 − 〈GΣpk, pk〉 〈f, pk〉

)
pk,(6.3)

H2(f) =
∞∑
k=1

δ

(δ + σ2
k)

2
〈GΣpk, pk〉 〈f, pk〉 pk,(6.4)

H3 =

∞∑
k=1

vσk

δ + σ2
k

Z ′
k pk.

If the assumption in (2.7) is made, the above random elements can be even
made more explicit. Substitution of the r.h.s of (3.6) into (6.3) and (6.4) yields the
following.

Theorem 6.3. If (2.7) is fulfilled we have

H1(f) =
∞∑
k=1

σk

δ + σ2
k

(∑
j �=k

σj Zj,k〈f, pj〉
)
pk,(6.5)

H2(f) =

∞∑
k=1

√
2δσ2

k

(δ + σ2
k)

2
Zk 〈f, pk〉pk,(6.6)

H3 =

∞∑
k=1

vσk

δ + σ2
k

Z ′
kpk,(6.7)

where the Zj,k(j �= k), the Zk and the Z ′
k are all mutually independent with Nor-

mal(0,1) distribution. This entails in particular that

H1(f), H2(f), H3 are mutually independent.

Remark 6.1. The important difference between (6.3), (6.4) on the one hand and
(6.5), (6.6) on the other is that, although the 〈GΣpj , pk〉 are always normal, they
are independent if (2.7) is satisfied.

Let us now apply these results to testing hypotheses. In [8] the simple hypothesis
f = f0 was reduced to f = 0, which in turn was seen to be equivalent with fδ = 0.
Assuming just (2.6), that the p1, p2, . . .are known, we will here more generally test
the null hypothesis

(6.8) H0 : f ∈ M = [[p1, p2, . . . , pm]], m ∈ N.

This seems rather natural in the present situation. It is clear from (4.2) that we
have

(6.9) H0 : f ∈ M ⇐⇒ fδ ∈ M ⇐⇒ P⊥
M
fδ = 0,
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where PM, P⊥
M

denote the orthogonal projection onto M and M
⊥ respectively.

Let us note that

f ∈ M ⇐⇒ 〈f, pk〉 = 0, ∀ k ≥ m+ 1,(6.10)

P⊥
M

pk = 0, ∀k ≤ m.(6.11)

This entails that

P⊥
M

H2(f)

= P⊥
M

( ∞∑
k=1

√
2δσ2

k

(δ + σ2
k)

2
Zk 〈f, pk〉pk

)

=

m∑
k=1

√
2δσ2

k

(δ + σ2
k)

2
Zk 〈f, pk〉P⊥

M
pk +

∞∑
k=m+1

√
2δσ2

k

(δ + σ2
k)

2
Zk 〈f, pk〉P⊥

M
pk

= 0, ∀f ∈ M.

It is now immediate from (6.9), Theorem 6.1 and the continuous mapping theo-
rem that

n
∥∥∥P⊥

M

ˆ̂
fδ

∥∥∥2(6.12)

= n
∥∥∥P⊥

M
(
ˆ̂
fδ − fδ)

∥∥∥2 d−→
∥∥∥P⊥

M

(
H1(f) +H3

)∥∥∥2 , as n → ∞,

where the l.h.s of (6.12) can be employed as a test statistic for testing H0 in (6.9).
Again, we can be more specific about the limiting distribution if we assume (2.7).

Theorem 6.4. If (2.7) is satisfied we have

(6.13) n
∥∥∥P⊥

M

ˆ̂
fδ

∥∥∥2 d−→
(
v2 +

m∑
j=1

σ2
j 〈f, pj〉2

) ∞∑
k=m+1

σ2
k

(δ + σ2
k)

2
U2
k ,

as n → ∞ where U1, U2, . . . , are i.i.d. Normal(0,1).

Proof. It is immediate from (6.5) and (6.7) that

P⊥
M

H1(f) =

∞∑
k=m+1

σk

δ + σ2
k

Vk pk,

where the Vk are independent and

Vk =

m∑
j=1

σj Zj,k〈f, pj〉 d
= Normal

(
0,

m∑
j=1

σ2
j 〈f, pj〉2

)
,

P⊥
M

H3 =

∞∑
k=m+1

σk

δ + σ2
k

Wk pk,

where the Wk are mutually independent and independent of the Vk and

Wk = v Z ′
k

d
= Normal(0, v2).

The result follows by observing that

Vk +Wk =

(
v2 +

m∑
j=1

σ2
j 〈f, pj〉2

)1/2

Uk.
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Let F (x; f, v2, σ2
1 , σ

2
2 , . . .), x ≥ 0 denote the c.d.f. of the random variable on

the right of (6.13). Consistent estimators for the unknown parameters are (δn ↓
0, as n → ∞)

ˆ̂
fδn , v̂2 =

1

n

n∑
i=1

(
ηi − 〈Xi − X̄,

ˆ̂
fδn〉

)2

,

and the σ̂2
k as in (3.1). Let us write F̂ (x), x ≥ 0 for this c.d.f. when the parameters

are replaced with the above estimators.

Theorem 6.5. An approximate level α ∈ (0, 1) test for testing H0 in (6.8) rejects

the null hypothesis for n‖P⊥
M

ˆ̂
fδ‖2 > F̂−1(1− α).

6.2. Asymptotics under local alternatives

Suppose that

(6.14) fn = f +
1√
n
g, f, g ∈ H.

For such fn only minor changes in the asymptotics are required, because the con-
ditions on the Xi and εi still are the same and don’t depend on n. In the notation
of (4.2) we have

(6.15) fn,δ = fδ +
1√
n
gδ,

where fδ = (δI + Σ)−1Σf , gδ = (δI + Σ)−1Σg. The following is immediate from a
minor modification of Theorem 6.1.

Theorem 6.6. Under the local alternative in (6.14) we have

√
n(

ˆ̂
fδ − fδ)

d−→ gδ +H1(f) +H2(f) +H3, as n → ∞ in H,

where H1(f) = ϕ1(Σ)(P⊥GΣ)f , H2(f) = (ϕ̇2,Σ(PGΣ))f , H3 is the same as in (6.2),
and H3 ⊥⊥ (H1(f),H2(f)).

Let us apply this result to derive the power of the test described in Theorem 6.5
against local alternatives. For this purpose suppose that

(6.16) f ∈ M, g ⊥ M,

so that fδ ∈ M and P⊥
M
fδ = 0, and gδ ⊥ M, and hence P⊥

M
gδ = gδ.

Theorem 6.7. Under the local alternatives specified in (6.15) and (6.16) we have

n
∥∥∥P⊥

M

ˆ̂
fδ

∥∥∥2 d−→
∥∥gδ + P⊥

M
(H1(f) +H3)

∥∥2, as n → ∞.

If (2.7) is satisfied the distribution on the right can be further specified similar to
(6.13). Parameters can be estimated as before.
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