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A note on insufficiency and the

preservation of Fisher information

David Pollard

Yale University

Abstract: Kagan and Shepp [The American Statistician 59 (2005) 54–56]
presented an elegant example of a mixture model for which an insufficient
statistic preserves Fisher information. This note uses the regularity property
of differentiability in quadratic mean to provide another explanation for the
phenomenon they observed. Some connections with Le Cam’s theory for con-
vergence of experiments are noted.

1. Introduction

Suppose P = {Pθ : θ ∈ Θ} is a statistical experiment, a set of probability measures
on some measure space (X,A) indexed by a subset Θ of the real line.

The Fisher information function IP(θ) can be defined under various regularity
conditions. If S is a measurable map from X into another measure space (Y,B),
each image measure Qθ = SPθ (often called the distribution of S under Pθ, and
sometimes denoted by PθS

−1) is a probability measure on B. The statistical exper-
iment Q = {Qθ : θ ∈ Θ} is less informative, in the sense that an observation y ∼ Qθ

tells us less about θ than an observation x ∼ Pθ. In particular, IQ(θ) ≤ IP(θ) for
every θ. If S is a sufficient statistic the last inequality becomes an equality: there
is no loss of Fisher information.

Statistical folklore holds that the converse is also true. For example, Lehmann
and Casella [12, page 158] set as an exercise the task of verifying, “under suit-
able regularity conditions”, results stated by Basu [1, Section 1], including the
assertion that there is no loss of Fisher information if and only if the statistic is
sufficient. They interpreted Basu’s (unstated) regularity conditions to be “mainly
concerned with interchange of integration with differentiation”. Nevertheless, Kagan
and Shepp [8] (henceforth K&S) were able to show, by means of a simple example,
that it is possible to have IQ(θ) = IP(θ) for every θ without S being sufficient. The
K&S counterexample relies on another property—the support of a density changing
with the unknown parameter—that is notorious for upsetting classical statistical
theory.

My purpose in this note is to make two small additions to the K&S analysis.

(i) I reinterpret the phenomenon identified by K&S, using the geometry of dif-
ferentiabilty in quadratic mean.
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(ii) Using an asymptotic argument, I offer an explanation for why the extent of
the failure of sufficiency in the K&S example is too small to be captured
by the Fisher information. More precisely, I explain why the experiment Qn

obtained by n independent replications of Q is asymptotically equivalent (in
Le Cam’s sense) to the corresponding Pn.

Most of the necessary theory is already available in the literature but is not
widely known. The K&S example provides a good showcase for that theory.

2. The K&S example

What follows is a slightly simplified version of the K&S construction.
Start from a smooth probability density

g(w) = 1
2w

2e−w{w > 0}

with respect to Lebesgue measure m on the real line. The power w2 is chosen so
that

ġ(w)2

g(w)
= g(w)

(
d log g(w)

dw

)2

=
1

2
(2− w)2e−w{w > 0}

is Lebesgue integrable. The shift family of densities {g(w−θ) : θ ∈ R} has constant
Fisher information,

(1) I =

∫ ∞

−∞
ġ(w)2/g(w) dw < ∞.

Let ν denote the probability measure that puts mass 1/2 at each of +1 and −1.
For each θ ∈ Θ = R define a probability measure Pθ on (the Borel sigma-field of)
X = R× {−1,+1} by means of its density

(2) fθ(x) = {z = +1}g(y − θ) + {z = −1}g(θ − y) where x = (y, z) ∈ X

with respect to the measure λ := m⊗ν. That is, the coordinate z has marginal distri-
bution ν and the conditional distribution of y given z is that of θ+zw where w ∼ g
independently of z.

Here are the pertinent statistical facts for a single observation x = (y, z) from Pθ.
(See Section 3 for some proofs.) Define S(x) = y and A(x) = z. The marginal
distribution Qθ of S has density

hθ(y) =
1
2g(y − θ) + 1

2g(θ − y) with respect to m.
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(a) The statistic A is ancillary (its distribution, ν, does not depend on θ). By
itself it gives no statistical information about θ, but in conjunction with S
it does tell us something about θ: if z = +1 then (with Pθ probability one)
θ < y, and if z = −1 then y < θ.

(b) The statistic S is not sufficient because {z = +1} = {y > θ} a.s.[Pθ], implying
Pθ(Z = +1 | y) = {y > θ} almost surely. Equivalently,

Pθ(A(x) = 1 | S) = {S(x) > θ} a.s.[Pθ],

which depends on θ. (More formally, if S were sufficient there would exist
some measurable function π(y) for which Pθ(z = 1 | S) = π(S(x)) a.s.[Pθ],
for every θ.)

(c) Both P := {Pθ : θ ∈ R} and Q := {Qθ : θ ∈ R} have finite Fisher information:
IQ(θ) = IP(θ) = I for all θ, with I as in (1).

In short: There is no loss of Fisher information when only S(x) is observed, even
though S is not a sufficient statistic.

Remark. K&S used a slightly more involved construction, with density

f(x, θ) ={z = +1}
[
0.7g(y − θ) + 0.3g(θ − y)

]
+ {z = −1}

[
0.3g(y − θ) + 0.7g(θ − y)

]
where x = (y, z) ∈ X

with respect to m ⊗ μ where μ{+1} = α = 1 − μ{−1} and α �= 1/2. The analysis
that I present can be extended to this fθ.

3. DQM interpretation

K&S attributed the phenomenon in their version of the example in Section 2 to a
failure of strict convexity of Fisher information with respect to mixtures of statisti-
cal experiments. There is another explanation involving the geometry of Hellinger
derivatives, which I find more illuminating.

By a theorem of Hájek [6, Lemma A.3], Lebesgue integrability of the func-
tion ġ2/g in (1) implies that the set of densities G := {g(y − θ) : θ ∈ R} (with
respect to Lebesgue measure) is Hellinger differentiable with Hellinger derivative
γ(y − θ) at θ, where

γ(w) :=
−ġ(w)

2
√
g(w)

=
(2− w)

2
√
2

e−w/2{w > 0}.

That is,∫
|
√
g(y − θ − t)−

√
g(y − θ)− tγ(y − θ)|2 dy = o(t2) as t → 0.

This assertion is also easy to check by explicit calculations. (See Lehmann and
Romano [13, Cor. 12.2.1] for details.)

The family of densities F := {fθ(x) : θ ∈ R}, for fθ as in (2), inherits the
Hellinger differentiability from G:

(3)

∫ ∣∣√fθ+t(x)−
√
fθ(x)− tζθ(x)

∣∣2λ(dx) = o(t2) as t → 0,
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for the Hellinger derviative

ζθ(x) := {z = +1}γ(y − θ)− {z = −1}γ(θ − y).

The significance of approximation (3) becomes clearer when it is rewritten as
a differentiability property of the likelihood ratios. That is, it helps to work with
the square root of the density of Pθ+t with respect to Pθ. Unfortunately, Pθ+t is
not dominated by Pθ. In general, to eliminate such an embarrassment one needs to
split Pθ+t into a singular part P⊥

t,θ, which concentrates on a set of zero Pθ measure,

plus a part P
(abs)
θ+t that has a density pt,θ with respect to Pθ. For reasons related

to the asymptotic theory for repeated sampling, it is customary to make a small
extra assumption about the behavior of P⊥

t,θX as t tends to zero. Following Le Cam
[9, Section 17.3] and Le Cam and Yang [11, Section 7.2], I will call the slightly
stronger property differentiability in quadratic mean (DQM), to stress that
the definition requires a little more than Hellinger differentiability.

Remark. Some authors (for example, Bickel et al. 3, page 457) use the term DQM
as a synonym for Hellinger differentiability.

Definition 4. Say that P = {Pθ : θ ∈ Θ}, with Θ ⊆ R, is differentiable in quadratic
mean (DQM) at θ with score function Δθ(x) if, for θ + t ∈ Θ,

(i) for the part P⊥
t,θ of Pθ+t that is singular with respect to Pθ,

P⊥
t,θ(X) = o(t2) as t → 0

(ii) Δθ ∈ L2(Pθ)
(iii) the absolutely continuous part of Pθ+t has density pt,θ(x) with respect to Pθ

for which√
pt,θ(x) = 1 + 1

2 tΔθ(x) + rt,θ(x) with Pθ(r
2
t,θ) = o(t2) as t → 0.

Call P DQM if it is DQM at each θ in Θ.

Remark. The factor of 1/2 in requirement (iii) ensures that PθΔ
2
θ is equal to the

Fisher information IP(θ) if the densities are suitably smooth in a pointwise sense.

The P from Section 2 is, in fact, DQM. For t > 0 the singular part P⊥
t,θ has density

{z = −1}g(θ − y){θ < y < θ + t} with respect to λ, so that P⊥
t,θ(X) = O(|t|3). The

part of Pθ+t that is dominated by Pθ has density

pt,θ(x) =
fθ+t(x)

fθ(x)

{
fθ(x) > 0

}
(5)

= {z = +1}g(y − θ − t)

g(y − θ)
{y > θ}+ {z = −1}g(θ + t− y)

g(θ − y)
{y < θ}.

There is a similar expression for the case t < 0. The score function equals

Δθ(x) = 2
ζθ(x)√
fθ(x)

{
fθ(x) > 0

}
(6)

= {z = +1}γ(y − θ)

g(y − θ)
{y > θ} − {z = −1}γ(θ − y)

g(θ − y)
{y < θ}.
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The density pt,θ and the score function Δθ(x) are uniquely determined only up
to a Pθ equivalence. As noted for fact (b) near the end of Section 2, sufficiency fails
for S because

{z = +1} = {y > θ} a.s.[Pθ]

Similarly {z = −1} = {y < θ} a.s.[Pθ]. Together these two equivalences explain
why no Fisher information is lost. The score function Δθ is changed only on a Pθ-
negligible set if we omit the two indicator functions involving z from (6). In effect,
the score function Δθ(x) depends on x only through the value of the statistic S. As
the next theorem (which is proved in Section 5) shows, that property is equivalent
to the preservation of Fisher information.

Theorem 7. Suppose P = {Pθ : θ ∈ Θ} on (X,A) is DQM with score function Δθ.
Suppose S is a measurable map from (X,A) into (Y,B) and Qθ = SPθ is the
distribution of S under Pθ. Then:

(i) The statistical experiment Q = {Qθ : θ ∈ Θ} is also DQM, with score function

Δ̃θ(y) = Pθ(Δθ | S = y).
(ii) At each fixed θ, Fisher information is preserved (that is, IP(θ) = IQ(θ)) if

and only if Δθ(x) = Δ̃θ(Sx) a.s.[Pθ].

With only notational changes, the Theorem extends to the case where Θ is a
subset of some Euclidean space; no extra conceptual difficulties arise in higher
dimensions.

Credit where credit is due

The results stated in Theorem 7 have an interesting history. Property (i) was as-
serted (“Direct calculations show that the function q1/2(y; θ) is differentiable in
L2(ν̃) and possess a continuous derivative . . . ”) in Theorem 7.2 of Ibragimov and
Has’minskii [7, Chapter I, page 70], an English translation from the 1979 Russian
edition. However, that Theorem also (incorrectly, as noted by K&S) asserted that
Fisher information is preserved if and only if S is sufficient.

Pitman [14, pages 19–21] established differentiability in mean, a property slightly
different from (i), in order to deduce a result equivalent to (ii).

Le Cam and Yang [10, Section 7] deduced an analogue of (i) (preservation of
DQM under restriction to sub-sigma-fields) by an indirect argument using equiva-
lence of DQM with the existence of a quadratic approximation to likelihood ratios
of product measures (an LAN condition).

Bickel et al. [3, page 461] proved result (i), citing Ibragimov and Has’minskii [7],
Le Cam and Yang [10], and van der Vaart [15, Appendix A3] for earlier proofs. The
last of these was a revised (“I have not resisted the temptation to rewrite numerous
parts of the original manuscript”) version of van der Vaart’s 1987 Ph.D. thesis. He
cited Le Cam and Yang [10] and a manuscript version of Bickel et al. [3].

4. Large sample interpretation

The example in Section 2 shows that, for a sample x = (y, z) of size one from Pθ,
some “statistical information about θ (namely, whether θ < y or θ > y) is lost
if we discard z. The loss is not detected by Fisher’s measure of information. An
asymptotic analysis, based on a sample of size n from Pθ, sheds a little light on
why the z contribution is relatively unimportant.
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Write Pθ,n and Qθ,n for the n-fold product measures Pn
θ and Qn

θ , with the prob-
ability measures Pθ and Qθ as in Section 2. That is, the statistical experiment
Pn = {Pθ,n : θ ∈ Θ} corresponds to taking n independent observations x1 =
(y1, z1), . . . , xn = (yn, zn) from Pθ and Qn = {Qθ,n : θ ∈ Θ} corresponds to y1, . . . ,
yn.

Both Pn and Qn are locally asymptotically normal [11, Chapter 6]. They share
the same local normal approximations because that have the same score functions
and (hence) the same Fisher information functions: for each fixed θ and each finite
subset T of the real line, the “local experiments”

{Pθ+tn−1/2,n : t ∈ T} and {Qθ+tn−1/2,n : t ∈ T}

are asymptotically equivalent in the (weak) Le Cam sense. The deficiency dis-
tance [11, Section 2.2] between these two local experiments tends to zero as n
tends to infinity. The local asymptotic equivalence of Pn and Qn has many con-
sequences. For example, classical theory establishes existence of many different
estimators θ̂n = θ̂n(x1, . . . , xn) for which

√
n(θ̂n − θ) converges in distribution

under Pθ,n to N(0, I−1), and many different estimators θ∗n = θ∗n(y1, . . . , yn) for
which

√
n(θ∗n − θ) converges in distribution under Qθ,n to the same N(0, I−1). As

shown by the Hájek-Le Cam convolution and asymptotic minimax theorems [3,
Section 2.3], there are various senses in which the N(0, I−1) limit is the best we can
hope to achieve for either experiment. Asymptotically speaking, the zi’s must be
contributing at a less important level.

Remark. Except for the purpose of the root-n asymptotics, perhaps we should
agree with Basu [2, Section 5] that the Fisher information function is a “mathe-
matically interesting but statistically rather fruitless notion”.

For i = 1, . . . , n, write yL:n for the largest yi for which zi = −1 and yR:n the
smallest yi for which yi = +1. Each zi tells us whether yi > θ or yi < θ, implying

(8) yL:n < θ < yR:n with Pθ,n probability one.

The w2 decay in g(w) at zero, implies that both θ−yL:n and yR:n−θ are decreas-
ing at an n−1/3 rate. In fact both n1/3(θ− yL:n) and n1/3(yR:n − θ) have nontrivial
limit distributions under Pθ,n. For example, for each s > 0 direct calculation shows
that Pθ(θ, θ + sn−1/3) = s3/(6n) + o(1/n), so that

Pθ,n

{
n1/3(yR:n − θ) > s

}
= Pθ,n

{
no zi’s in

(
θ, θ + sn−1/2

)}
→ exp

(
−s3/6

)
.

For any n−1/2-consistent estimator θ̂n the event An = {yL:n < θ̂n < yR:n} has Pθ,n

probability that tends very rapidly to one. Put another way,

Pθ,n{∃i ≤ n : θ < yi < θ̂n or θ̂n < yi < θ} → 0.

With high probability, what we learn from the zi’s just duplicates what we usually
can learn from the yi’s.

To make the idea more concrete, define z∗i,n = sgn(yi − θ̂n) and x∗
i,n = (yi, z

∗
i,n).

That is,

z∗i,n =

{
+1 if yi > θ̂n,
−1 if yi < θ̂n.

On the event An we have xi = x∗
i,n for i = 1, . . . , n. If P∗

θ,n denotes the joint
distribution of x∗

1,n, . . . , x
∗
n,n then

supθ∈Θ ‖P∗
θ,n − Pθ,n‖TV ≤ supθ∈Θ Pθ,nA

c
n → 0.
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In the terminology of Le Cam’s theory for convergence of statistical experiments, Pn

and Qn are asymptotically equivalent, not just locally asymptotically equivalent
in the weak sense. The vector (y1, . . . , yn) is asymptotically sufficient for Pn, in
Le Cam’s sense. The map (y1, . . . , yn) → (x∗

1,n, . . . , x
∗
n,n) defines a Le Cam transi-

tion [11, Theorem 2.2] that bounds the deficiency δ(Qn,Pn).
Put another way, for every statistic ψn(x1, . . . , xn) for Pn there is another statis-

tic ψ∗
n(y1, . . . , yn) = ψn(x

∗
1,n, . . . , x

∗
n,n) for Qn that has the same asymptotic behav-

ior.

Remark. Rough calculations suggest that the Le Cam distance between Pn and Qn

tends to zero like exp(−Cn1/3) for some constant C. I omit the details because the
actual rate is not important for the story I am telling.

5. Proof of Theorem 7

Recall that the Kolmogorov conditional expectation Pθ(· | S = y) is abstractly
defined, via the Radon-Nikodym theorem, as an increasing linear map (depend-
ing on θ) κ : L1(Pθ) → L1(Qθ) with properties analogous to those enjoyed by a
Markov kernel. If we identify an f in L1(Pθ) with the (signed) measure μf for which
dμf/dPθ = f , then g = κf is the density of Sμf with respect to Qθ. To stress the
analogy with Markov kernels I will write κyf , or even κyf(x), instead of (κf)(y).
Thus the defining property of κ can be rewritten as

(9) Qθf1(y)κyf2 = Pθf1(Sx)f2(x)

for measurable real functions f1 on Y and f2 on X, at least when f1(Sx)f2(x) is
Pθ-integrable. A reader who chose to interpret κy as a Markov kernel would lose
only a tiny amount of generality.

Of course if one regards κ as acting on the function L1(Pθ), instead of on the
space L1(Pθ) of Pθ-equivalence classes, then one should qualify assertions with the
occasional a.s.[Pθ] caveats and regard κf as being defined only up toQθ equivalence.
Following the usual custom, I will omit such qualifiers.

Proof of assertion (i). The following argument is adapted from van der Vaart [15,
Appendix A3].

To simplify notation, I will prove that Q is DQM only at θ = 0, writing P⊥
t

instead of P⊥
t,0 and pt instead of pt,0. Keep in mind that κy now denotes the condi-

tional expectation operator P0(· | S = y). For each function h(x) in L2(P0) I will

write h̃(y) for its conditional mean κyh(x) and

varyh := κy(h(x)− h̃(y))2 = κyh(x)
2 − h̃(y)2

for its conditional variance.
Start with the simplest case where Pt is actually dominated by P0. Then

ξt(x) =
√
dPt/dP0 = 1 + 1

2 tΔ0(x) + rt(x) with P0r
2
t = o(t2)

and

(10) ξ̃t(y) := κyξt(x) = 1 + 1
2 tΔ̃0(y) + r̃t(y) with Q0r̃

2
t ≤ P0r

2
t = o

(
t2
)

and, by the Radon-Nikodym property,

ηt(y) =
√
dQt/dQ0 =

√
κyξt(x)2.
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The proof of assertion (i) will work by showing that the difference δt(y) :=

ηt(y)− ξ̃t(y) is small, in the sense that Q0δ
2
t = o(t2). For then we will have

ηt(y) = 1 +
1

2
tΔ̃0(y) + [r̃t(y) + δt(y)] with Q0[r̃t(y) + δt(y)]

2 = o(t2),

which implies DQM for Q at 0.
The desired property for δt will be derived from the following three facts about

the conditional variance

(11) σ2
t (y) := vary(ξt) = κyξt(x)

2 − ξ̃t(y)
2 = ηt(y)

2 − ξ̃t(y)
2.

(a) The representation σ2
t (y) = κy(ξt(x)− ξ̃t(y))

2 gives

σ2
t (y) = κy

(
1
2 t
[
Δ0(x)− Δ̃0(y)

]
+

[
rt(x)− r̃t(y)

])2
≤ 2( 12 t)

2κy

[
Δ0(x)− Δ̃0(y)

]2
+ 2κy

[
rt(x)− r̃t(y)

]2
≤ 1

2 t
2κyΔ

2
0 + 2κyr

2
t .

Remark. The cancellation of the leading 1 when ξ̃t is subtracted from ξt seems to
be vital to the proof. For general Hellinger differentiability, the cancellation would
not occur.

(b) δt(y) ≥ 0 because ηt(y)
2 − ξ̃t(y)

2 = σ2
t (y) ≥ 0.

(c) Substitution of δt + ξ̃t for ηt in (11) gives

σ2
t (y) = 2δt(y)ξ̃t(y) + δt(y)

2.

The rest is easy. For each ε > 0 define

At,ε :=
{
y ∈ Y : ξ̃t(y) ≥ 1

2 , σt(y) ≤ ε
}
.

Integration of inequality (a) gives

Q0σ
2
t (y) ≤ 1

2 t
2P0Δ

2
0 + 2P0r

2
t = O(t2) + o(t2) ≤ Ct2 for some constant C,

which, together with (10), implies Q0At,ε → 1 as t → 0.
On the set At,ε equality (c) ensures that δt(y) ≤ σ2

t (y) ≤ εσt(y); on Ac
t,ε the

nonnegativity of δt and equality (c) give δ2t ≤ σ2
t . Thus

Q0δt(y)
2 ≤ ε2Q0σ

2
t (y){y ∈ At,ε}+Q0σ

2
t (y){y /∈ At,ε}

≤ ε2Ct2 + 1
2 t

2Q0κyΔ
2
0A

c
t,ε + 2Q0κyr

2
t by (a).

The Q0-integrability of κyΔ
2
0 and the Dominated Convergence theorem imply

Q0κyΔ
2
0A

c
t,ε → 0. It follows that Q0δ

2
t = o(t2).

Finally, what happens when Pt is not dominated by P0? The analysis for ξ2t ,
the density of the part of Pt that is dominated by P0, is the same as before. The
image measure SP⊥

t has total mass of order o(t2), part of which gets absorbed
intoQ⊥

t . The part of SP
⊥
t that is dominated byQ0 contributes an extra nonnegative

term, γt(y), to the density dQ
(abs)
t /dQ0. The η2t (y) becomes κyξ

2
t (y) + γt(y). The

extra term causes little trouble because√
κyξ2t ≤ ηt ≤

√
κyξ2t +

√
γt and Q0γt = o(t2).
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Proof of assertion (ii). Write H for the closed subspace of L2(Pθ) consisting of
(equivalence classes of) functions measurable with respect to the sub-sigma-field
of A generated by S. Each member of H is of the form f(Sx) for some f in L2(Qθ).

The orthogonal projection of Δθ onto H equals Δ̃θ(Sx). Thus

IP(θ) = PθΔθ(x)
2 = PθΔ̃θ(Sx)

2 + Pθ[Δθ(x)− Δ̃θ(Sx)]
2.

The first term on the right-hand side equals Qθ(Δ̃
2
θ) = IQ; the last term is zero if

and only if Δθ(x) = Δ̃θ(Sx) a.s.[Pθ].
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