
IMS Collections
From Probability to Statistics and Back: High-Dimensional Models and Processes
Vol. 9 (2013) 254–265
c© Institute of Mathematical Statistics, 2013
DOI: 10.1214/12-IMSCOLL918

Around Nemirovski’s inequality

Pascal Massart and Raphaël Rossignol

Univ. Paris-Sud 11

Abstract: Nemirovski’s inequality states that given independent and cen-
tered at expectation random vectors X1, . . . , Xn with values in �p(Rd), there
exists some constant C(p, d) such that

E‖Sn‖2p ≤ C(p, d)
n∑

i=1

E‖Xi‖2p.

Furthermore C(p, d) can be taken as κ(p∧ log(d)). Two cases were studied fur-
ther in [Am. Math. Mon. 117(2) (2010) 138–160]: general finite-dimensional
Banach spaces and the special case �∞(Rd). We show that in these two cases,
it is possible to replace the quantity

∑n
i=1 E‖Xi‖2p by a smaller one without

changing the order of magnitude of the constant when d becomes large. In the
spirit of [Am. Math. Mon. 117(2) (2010) 138–160], our approach is probabilis-
tic. The derivation of our version of Nemirovski’s inequality indeed relies on
concentration inequalities.

1. Introduction

Let B be some separable Banach space and let X1, . . . , Xn be independent and
centered at expectation B-valued random variables. Let us denote as usual:

Sn =

n∑
i=1

Xi.

In [1], the validity of an inequality like

(1.1) E ‖Sn‖2 ≤ C

n∑
i=1

E ‖Xi‖2

is discussed and the structure of the constant C is investigated. Of course, when B

is a Hilbert space, (1.1) holds with the optimal constant C = 1, but what about
the non-Hilbertian case ? Whenever B = �p(Rd), Nemirovski’s inequality (as stated
in [4]) ensures that for every p ≥ 2

(1.2) E ‖Sn‖2p ≤ C (p, d)

n∑
i=1

E ‖Xi‖2p ,

where the constant C(p, d) can be taken as C(p, d) = κ(p∧ ln(d)) for some universal
constant κ.
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In [1] two different questions are addressed. The optimal value of the constant
C(p, d) is investigated, especially when p = ∞ and d is large. It is in particular
proved that

lim inf
d→∞

C (∞, d)

2 ln (d)
≥ 1,

and

lim sup
d→∞

C (∞, d)

2 ln (d)
≤ e.

In another direction, some extensions of Nemirovski’s inequality are considered. For
instance, it is shown that in any Banach space of dimension d, (1.1) is true with
C = d. Infinite dimensional Banach spaces such as Lp spaces are also considered. In
contrast to Nemirovski’s original approach which is based on analytic arguments,
the methods introduced in [1] are probabilistic. In some sense we would like to go
further in this direction by using some concentration tools.

The main purpose of the present note is to emphasize the benefits one gets from
thinking in terms of concentration inequalities when tackling those questions. The
first benefit is to reduce easily the problem of bounding E(‖Sn‖2) to the problem
of bounding (E‖Sn‖)2. The second advantage is that the concentration approach
will naturally lead to some stronger version of Nemirovki’s inequality without much
effort. To be more precise, let us notice that one can write the norm of any vector
x in B as

(1.3) ‖x‖ = sup
‖t‖≤1

〈t, x〉 ,

where the elements t belong to the dual space of B. From this perspective the
right-hand side of inequality (1.2) may be rewritten as

V =

n∑
i=1

E ‖Xi‖2 = E

[
n∑

i=1

sup
‖t‖≤1

〈t,Xi〉2
]
.

Now let us introduce the following “weak variance” (as opposed to the “strong
variance” V ) :

v = E

[
sup
‖t‖≤1

n∑
i=1

〈t,Xi〉2
]
.

Those definitions look very similar. Passing from the definition of V to that of v
just means commuting the supremum and the summation which of course leads to
v ≤ V . The second benefit of the concentration approach is to lead naturally to
bounds involving v rather than V , with essentially the same constants. We shall
demonstrate this in the case of finite dimensional Banach spaces. Since v can be
substantially smaller than V , this may be a strong improvement upon Nemirovski’s
inequality. In the case B = �∞(Rd), such a result was in fact implicitly present in
[1], although their authors did not emphasize it. To demonstrate the importance of
trading V for v, we shall investigate this in details in the case B = �∞(Rd), which
was announced in [1] as the most interesting (at least from the point of view of
statistical applications).

The paper is organised as follows. The crucial tools from concentration inequal-
ities are presented in Section 2. Notably, Efron-Stein inequality is used in Sec-
tion 3 to reduce, in any Banach space, the control of E‖Sn‖2 to that of (E‖Sn‖)2.
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Then, Section 4 focuses on the finite dimensional case, showing that the inequal-
ity E‖Sn‖2 ≤ CBv holds with a constant CB proportional to the dimension. In
Section 5, we investigate in details the case B = �∞(Rd). We show that the inequal-
ity E‖Sn‖2 ≤ 8 log(2d)v may be considerably stronger than E‖Sn‖2 ≤ 8 log(2d)V .
Then, that inequality is refined in Section 5.3 when dealing with bounded individual
variables Xi,j . Finally some perspectives are provided in Section 6.

2. Some concentration tools

Throughout the paper, we shall use some tools from concentration inequalities. The
first one is the so-called Efron-Stein inequality, cf. [2], Section 2.5.4.

Theorem 2.1 (Efron-Stein inequality). Let X1, . . . , Xn be independent random
variables and let Z = f(X) be a square-integrable function of X = (X1, . . . , Xn).
Then,

Var(Z) ≤
n∑

i=1

E
[
(Z − E

(i)Z)2
]
,

where E
(i) denotes the expectation operator conditioned on all the variables except

Xi.

Next we present some material which will find useful in the finite dimensional
cases, cf. Sections 4 and 5. The following lemma allows to transfer a common bound
on the Laplace transform into a maximal inequality. For a real random variable Z,
we shall denote by ψZ(λ) its log-Laplace transform:

∀λ ∈ R, ψZ(λ) = lnE exp(λZ).

Lemma 2.2. Let {Z(t), t ∈ T} be a finite family of real valued random variables.
Assume that for some nonnegative constants s and c, for every λ ∈ (0, 1/c) (or
λ ∈ (0,+∞) if c = 0) and t ∈ T ,

ψZ(t) (λ) ≤
λ2s

2 (1− cλ)
.

Then,

(2.1) E

[
sup
t∈T

Z (t)

]
≤
√
2s ln (|T |) + c ln (|T |) .

The case c = 0 corresponds to the well-known sub-gaussian setting. On the other
hand, Lemma 2.2 applies if {X(t), t ∈ T} is a finite family of random variables, each
one following the chi-square distribution with p degrees of freedom. One obtains

(2.2) E

[
sup
t∈T

X (t)−p

]
≤ 2
√
p ln (|T |) + 2 ln (|T |) .

Although there is nothing new here, by sake of completeness we give a proof of
Lemma 2.2 in the appendix where we shall also recall the statements of Hoeffding
and Bernstein’s inequalities that we shall use in conjunction with Lemma 2.2.

When T is infinite, one may classically use the inequalities above in conjunction
with a chaining technique and metric entropy computations. For instance, one may
derive the following result, which will be useful in Section 4.
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Proposition 2.3. Let B be the unit ball of a d-dimensional Banach space. Let
(Zt)t∈B be a stochastic process indexed by B such that:

∀t, t′ ∈ B, ∀λ ∈ R
+, ψZ(t)−Z(t′)(λ) ≤

λ2s‖t− t′‖2
2

,

then, for any t0 ∈ B,

E

[
sup
t∈T

Z(t)− Z(t0)

]
≤ 12

∫ 1

0

√
sd log

(
1 +

2

ε

)
dε.

For a proof, one may combine for isntance Theorem 3.17 page 72 of [2], Lem-
ma 4.16 page 56 and inequality (5.7) page 63 of [5].

3. The square does not matter

In the rest of this paper, we keep the notations of the introduction, i.e B is some sep-
arable Banach space and X1, . . . , Xn are independent and centered at expectation
B-valued random variables. Furthermore, we denote:

Sn =

n∑
i=1

Xi.

As noted in the introduction, inequality (1.1) is an equality in Hilbert spaces, with
C = 1. In other Banach spaces, the optimal constant should reflect the geometry
of the norm. The idea of this section is to use a concentration argument in order to
reduce the control of E‖Sn‖2 to that of (E‖Sn‖)2, showing in the meantime that
the geometric meaning of the constant C in inequality (1.1) is entirely contained in
the relation between (E‖Sn‖)2 and V .

Proposition 3.1.
E[‖Sn‖2] ≤ [E‖Sn‖]2 + V.

Proof. Using the notations of Theorem 2.1, notice that for any X(i)-measurable
and square-integrable random variable Zi,

E
[
(Z − E

(i)Z)2
]
≤ E[(Z − Zi)

2].

Thus, Theorem 2.1 and the triangle inequality give:

Var(‖Sn‖) ≤
n∑

i=1

E(‖Sn‖ − ‖Sn −Xi‖)2 ≤ V.

Now, let the weak variance enter the stage just by refining the preceeding argu-
ment.

Proposition 3.2.
E[‖Sn‖2] ≤ [E‖Sn‖]2 + 2v.

Proof. Let X ′ = (X ′
1, . . . , X

′
n) be an independent copy of X. Using the notations

of Theorem 2.1, let Z ′
i = f(X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn). Then,

E
[
(Z − E

(i)Z)2
]
= E[(Z − Z ′

i)
2
+].
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Now, let Z = ‖Sn‖ and use the representation (1.3):

Z = sup
‖t‖≤1

n∑
i=1

〈t,Xi〉.

Suppose that the supremum is attained at some tX . Then,

(Z − Z ′
i)+ ≤ |〈tX , Xi〉 − 〈tX , X ′

i〉|.

Since X ′
i is centered and independent of Xi, taking the expectation with respect to

X ′
i leads to:

E[(Z − Z ′
i)

2
+|X] ≤ 〈tX , Xi〉2 + E[〈tX , X ′

i〉2|X] = 〈tX , Xi〉2 + E[〈tX , X ′
i〉|X]2.

Thus, Theorem 2.1 gives:

Var‖Sn‖ ≤
n∑

i=1

E[〈tX , Xi〉2] +
n∑

i=1

E[〈tX , X ′
i〉2]

≤ 2v.

Apart from the absolute constant 2, we see that one does not loose much in
terms of constants when bounding the variance by the weak quantity v rather than
the strong one V . As we shall see in Section 5.2, it may lead to substantial gains
since v and V can be of very different order of magnitude, notably in �∞(Rd) when
d becomes large.

4. Finite-dimensional Banach spaces

It is proved in [1] Corollary 2.10 that when X1, . . . , Xn are centered independent
random variables in a Banach space of dimension d:

(4.1) E ‖Sn‖2 ≤ d

n∑
i=1

E ‖Xi‖2 .

Below, we shall show that one may replace V =
∑n

i=1 E‖Xi‖2 by v at the price of
losing some universal, constant factor.

Theorem 4.1. Let B be a Banach space of dimension d. There exists a universal
constant κ such that if X1, . . . , Xn are centered independent random variables in B,

E

[
‖Sn‖2B

]
≤ κdv.

The constant κ may be chosen as 1154.

Proof. Let us denote by D the unit ball of the dual space B
∗, so that

‖Sn‖ = sup
t∈D

n∑
i=1

〈t,Xi〉.

Assume first the random variables Xi to be symmetric and let (εi)1≤i≤n be i.i.d.
Rademacher variables which are independent from the variables Xi’s. Then,

E ‖Sn‖ = E

[
sup
t∈D

n∑
i=1

εi〈t,Xi〉
]
.
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Now working conditionally on (Xi)i≤n, supt∈D
∑n

i=1 εi〈t,Xi〉 is the supremum of a
process indexed by D, with sub-Gaussian increments:

Var

(
n∑

i=1

εi〈t− t′, Xi〉
)

=
n∑

i=1

〈t− t′, Xi〉2

≤ ‖t− t′‖2 sup
s∈D

n∑
i=1

〈s,Xi〉2 ,

where ‖t − t′‖ is the norm of t − t′ in B
∗. Thus, Lemma 6.1 and Proposition 2.3

gives:

E

[
sup
t∈D

n∑
i=1

εi〈t,Xi〉 | X1, . . . , Xn

]

≤
(
sup
s∈D

n∑
i=1

〈s,Xi〉2
)1/2

12

∫ 1

0

√
d log

(
1 +

2

ε

)
dε.

By Jensen’s inequality,

(E [‖Sn‖])2 ≤ d× E

[
sup
s∈D

n∑
i=1

〈s,Xi〉2
](

12

∫ 1

0

√
log

(
1 +

2

ε

)
dε

)2

≤ 144d× v ×
∫ 1

0

log

(
1 +

2

ε

)
dε

≤ 144vd(3 log 3− 2 log 2) ≤ 2× 144vd.

When the Xi’s are not symmetric, a standard symmetrization argument gives:

(E [‖Sn‖])2 ≤ 8× 144× vd.

Combining this upper bound with Proposition 3.1,

E
[
‖Sn‖2

]
≤ (2 + 1152d)v ≤ 1154dv.

Notice that in the proof above, Proposition 3.1 is particularly important if one
want to be able to use the chaining result of Proposition 2.3.

5. The case B = �∞(Rd)

In this section, we focus on the key case where B = �∞(Rd). It is proved in [1]
Corollary 2.3 and Corollary 3.5 that when X1, . . . , Xn are centered independent
random variables in �∞(Rd):

(5.1) E ‖Sn‖2 ≤ C(∞, d)
n∑

i=1

E ‖Xi‖2

with:

C(∞, d) =

{
2e ln d− e if d ≥ 3,
d if d ≤ 2.
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In addition, when X1, . . . , Xn are symetric, one may take C(∞, d) = 2 ln(2d). Look-
ing at the proof of Corollary 3.5 in [1], one realizes that Wellner et al. actually show
that when X1, . . . , Xn are symmetric:

E ‖Sn‖2 ≤ 2v log(2d),

and when X1, . . . , Xn are centered:

E ‖Sn‖2 ≤ 8v log(2d).

In this section, we shall first derive (a slightly weaker version of) those results using
our techniques, and then describe some cases where v is dramatically smaller than
V =

∑n
i=1 E ‖Xi‖2.

5.1. Improving Nemirovski’s inequality

First, notice that

(5.2) v = E sup
‖t‖1≤1

n∑
i=1

〈t,Xi〉2 = Emax
j≤d

n∑
i=1

X2
i,j .

Indeed, t �→
∑n

i=1〈t,Xi〉2 is a convex function and the unit �1-unit ball is the convex
hull of the set {±b1, . . . ,±bd} where b1, . . . , bd is the standard basis of Rd. Now,
assume first the random variables Xi to be symmetric. Then, if (εi)1≤i≤n are i.i.d.
Rademacher variables which are independent from the variables Xi’s

E ‖Sn‖ = Emax
j≤d

∣∣∣∣∣
n∑

i=1

εiXi,j

∣∣∣∣∣ .
Working conditionally to the variables Xi’s, note that Lemma 6.1 implies that the
assumptions of Lemma 2.2 are satisfied with s = maxj≤d

∑n
i=1 X

2
i,j and c = 0.

Therefore

E

[
max
j≤d

∣∣∣∣∣
n∑

i=1

εiXi,j

∣∣∣∣∣ | X1, . . . , Xn

]
≤

√√√√2 ln (2d)max
j≤d

n∑
i=1

X2
i,j ,

where we used the fact that:

max
j≤d

∣∣∣∣∣
n∑

i=1

εiXi,j

∣∣∣∣∣ = max
j≤2d

n∑
i=1

εiXi,j

if we define Xi,j = −Xi,j−d for d + 1 ≤ j ≤ 2d. Taking expectation on both sides
of this inequality we derive via Jensen’s inequality that

E

[
max
j≤d

∣∣∣∣∣
n∑

i=1

εiXi,j

∣∣∣∣∣
]
≤

√√√√2 ln (2d)Emax
j≤d

n∑
i=1

X2
i,j .

Combining this inequality with (5.2) and Proposition 3.2, we finally get

(5.3) E ‖Sn‖2∞ ≤ 2 (1 + ln (2d)) v.
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In the general case, by using a standard symmetrization argument, we loose some
factor 2 in the control of E‖Sn‖ and the inequality becomes

(5.4) E ‖Sn‖2∞ ≤ 2 (1 + 4 ln (2d)) v.

We recover thus (a slightly weaker version of) the result of Wellner et al.
Interestingly, the constant 2(1+ln(2d)) has the right order of magnitude when d

goes to infinity and the Xi are symmetric. This is a consequence of the counterex-
ample given in [1] Example 1.2 and we shall by the way provide some alternative
counterexample below, in Section 5.2. Thus in the symmetric case we were able to
produce a stronger version of Nemirovski’s inequality (we mean involving v instead
of V ) with an asymptotically optimal constant.

5.2. Comparison of strong and weak variances

Let us come back a moment to the general Banach framework. Since

v ≥ E

[
max
1≤i≤n

sup
‖t‖≤1

〈t,Xi〉2
]

we derive that
v ≤ V ≤ nv.

Now we focus on the finite dimensional case and denote by vp, respectively Vp, the
values of the quantities v and V respectively whenever B = �p(R

d). Noticing that

v∞ = E

[
max
j≤d

n∑
i=1

X2
i,j

]

we derive that

V∞ ≤ V2 = E

⎡
⎣ d∑
j=1

n∑
i=1

X2
i,j

⎤
⎦ ≤ dv∞

and therefore
v∞ ≤ V∞ ≤ (n ∧ d) v∞.

Our purpose now is to show that the ratio V∞/v∞ can indeed be of order n ∧ d in
two very different (and in some sense opposite) situations described below.

5.2.1. The non i.i.d. case

In this case, it is very easy to exhibit a situation where the ratio V∞/v∞ is maximal.
Let us indeed consider the following highly non i.i.d. scheme. LetXi,j = εiai,j where
ε1, . . . , εn are i.i.d. Rademacher random variables. Then

v∞ = max
j≤d

n∑
i=1

a2i,j while V∞ =

n∑
i=1

max
j≤d

a2i,j .

Choosing aj,j = 1 for every j ≤ n ∧ d and ai,j = 0 otherwise, we readily see that
v∞ = 1 while V∞ = n∧d. This shows that the ratio V∞/v∞ can indeed achieve the
maximal value n ∧ d.
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5.2.2. The i.i.d. case

It is even more interesting to investigate the value of the ratio V∞/v∞ in the
case where the variables Xi,j are i.i.d. standard normal random variables. In this
case, considering ξ1, . . . , ξd i.i.d. standard normal random variables, one has V∞ =
nE[maxj≤d ξ

2
j ]. Moreover, Nemirovski’s inequality writes

Emax
j≤d

∣∣∣∣∣
n∑

i=1

Xi,j

∣∣∣∣∣
2

≤ C (∞, d)V∞

and is equivalent to
V∞ ≤ C (∞, d)V∞.

Since C(∞, d) is of order ln(d) as d goes to infinity, this means that Nemirovski’s
inequality misses the target from a ln(d) factor. This is completely due to the use of
the strong variance V∞ instead of the weak one v∞. Indeed since each of the random
variables

∑n
i=1 X

2
i,j has a chi-square distribution with n degrees of freedom, it comes

from (2.2) below that

E

[
max
j≤d

(
n∑

i=1

X2
i,j

)
− n

]
≤ 2
√
n ln (d) + 2 ln (d)

i.e.
v∞ ≤ n+ 2

(√
n ln (d) + ln (d)

)
.

Since obviously v∞ ≥ n, we derive the following inequalities for the ratio V∞/v∞

(5.5)
E
[
maxj≤d ξ

2
j

]
1 + 2

√
ln (d) /n+ 2 (ln (d) /n)

≤ V∞
v∞

≤ E

[
max
j≤d

ξ2j

]
.

Let us now consider three different asymptotic regimes of dependency of d = dn
w.r.t. n as n goes to infinity.

1. ln(dn)/n tends to 0 as n goes to infinity
2. ln(dn)/n tends to α > 0 as n goes to infinity
3. ln(dn)/n tends to infinity as n goes to infinity.

Recalling that E[maxj≤d ξ
2
j ]/2 ln(d) tends to 1 as d goes to infinity, in the sub-

exponential asymptotic regime 1., inequality (5.5) implies that the ratio V∞/v∞ is
equivalent to 2 ln(dn) as n goes to infinity. Since inequality (5.3) can be rewritten
as

V∞ ≤ 2 (1 + ln (2dn)) v∞

this proves on the one hand the asymptotic optimality of this inequality: i.e. the
2 ln(dn) factor cannot be avoided. On the other hand, since the convergence to 0
of ln(dn)/n can be arbitrary slow, the ratio V∞/v∞ is close to its maximal value
n. In the exponential regime 2., our inequality (5.3) is no longer optimal, but it
misses the target from a factor at most 1 +

√
2α+ 2α. This time the ratio V∞/v∞

is actually of order n (up to some constant) in the sense that

lim inf
n→∞

V∞
nv∞

≥ 2α

1 +
√
2α+ 2α

.

Finally, for the over-exponential regime 3., our inequality misses the target from a
factor bounded by ln(dn)/n and in the meantime the ratio V∞/v∞ is asymptotically
of the order of its maximal value n, in the sense that V∞/nv∞ tends to 1 as n goes
to infinity.
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5.3. A refined inequality for bounded variables

In order to produce some ready to be used inequalities for applications, it would be
more convenient to put moment hypotheses on the individual variables Xi,j rather
than hypotheses on ‖Xi‖. In this case, neither the original version of Nemirovski’s
inequality which involves the strong variance nor our version involving with the
weak variance give an ultimate control on E(‖Sn‖2). We do not want here to produce
a whole bunch of results in this direction but just show that it is possible to do
it at least in the easiest case where the variables are uniformly bounded. Indeed,
using Proposition 3.2, Hoeffding and Bernstein’s inequalities allows to derive the
following control for bounded individual variables.

Proposition 5.1. Let X1, . . . , Xn be centered independent random variables in
�∞(Rd). Suppose that:

sup
i,j

‖Xi,j‖∞ ≤ L and sup
j

1

n

n∑
i=1

E(X2
i,j) ≤ σ2.

Then,

E(‖Sn‖2∞) ≤ 2nσ2

⎧⎨
⎩ln(2d)

(
1 +

L

3σ

√
ln(2d)

2n

)2

+ 1 +
L2

σ2

√
ln(2d)

2n

⎫⎬
⎭ .

Proof. Recall that

E(‖Sn‖2∞) ≤ 2v + (E‖Sn‖∞)2.

We may use Bernstein’s inequality to bound E(‖Sn‖∞). Indeed, from Lemmas 2.2
and 6.2, we derive

E(‖Sn‖∞) ≤
√
2σ2 ln(2d) + L ln(2d)/3.

Now, we use Hoeffding’s inequality to bound v. From Lemmas 2.2 and 6.1, we get

v = E(max
j

n∑
i=1

X2
i,j) ≤ max

j
E(

n∑
i=1

X2
i,j) + L2

√
n ln(2d)

2
.

Gathering the two bounds ends the proof.

Notice that when d is moderately large compared to n, in the sense that (ln d)/n
goes to zero, then Proposition 5.1 leads to a bound equivalent to:

E(‖Sn‖2∞) ≤ 2nσ2 ln(d),

which is optimal.

6. Perspective

When focusing on the case �∞(Rd), we have shown that trading the strong variance
with the weak one improved significantly Nemirovski’s inequality. On the other
hand, in �2(Rd), one cannot beat Nemirovski’s inequality since it is an equality,
with an optimal constant C = 1. Thus, one may naturally wonder what happens
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in the case B = �p(Rd) with p ∈ (2,∞). A trivial step is done by noticing that for
any x ∈ R

d,
‖x‖∞ ≤ ‖x‖p ≤ d1/p‖x‖∞,

which gives for centered independent variables Xi in �p(Rd):

E(‖Sn‖2p) ≤ d1/p2(1 + 4 ln(2d))vp,

with:

vp = E

[
sup

‖t‖p′≤1

n∑
i=1

〈t,Xi〉2
]
,

and 1
p′ + 1

p = 1. Notably, when p is at least of the order of ln(d), we recover a

constant comparable to that of Nemirovski’s inequality, C(p, d) = κ(p∧ ln(d)), but
with the weak variance vp instead of the strong one. Probably there should be some
value of p below which the weak variance does not help and it would be interesting
to understand this phenomenon.

Besides, in the spirit of Section 5.3, it would be interesting to go beyond the case
of bounded variables. This would require a tool to replace Bernstein’s inequality in
that context and is in fact a delicate question. Recent progress in this direction can
be found in [3].

Appendix

First we give a proof of Lemma 2.2. Setting x = E [supt∈T Z (t)], we have by Jensen’s
inequality

exp (λx) ≤ E

[
exp

(
λ sup

t∈T
Z (t)

)]
= E

[
sup
t∈T

exp (λZ (t))

]
,

for any λ ∈ (0, 1/c). Hence, recalling that ψZ(t) (λ) = lnE [exp (λZ (t))],

exp (λx) ≤
∑
t∈T

E [exp (λZ (t))] ≤ |T | exp (ψ (λ)) .

Therefore for any λ ∈ (0, 1/c) we have

λx− ψ (λ) ≤ ln (|T |) ,

which means that

x ≤ inf
λ∈(0,1/c)

[
ln (|T |) + ψ (λ)

λ

]
.

Simple calculus shows that the right-hand side is optimized at λ = 1/(c +√
s/(2 ln |T |)), which gives the value announced in Lemma 2.2.
Finally, below we give Hoeffding and Bernstein inequalities in their exponential

form, i.e the control on the Laplace transform which implies the usual forms of
these well-known inequalities.

Lemma 6.1 (Hoeffding inequality). Let X1, . . . , Xn be independent random vari-
ables with values in [ai, bi] and define:

S =

n∑
i=1

(Xi − E(Xi)).
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Then,

ψS(λ) ≤
λ2

8

n∑
i=1

(bi − ai)
2.

Lemma 6.2 (Bernstein inequality). Let X1, . . . , Xn be independent random vari-
ables such that Xi ≤ L, and define:

S =
n∑

i=1

(Xi − E(Xi)).

Then, for every λ ∈ (0, 1/c)

ψS(λ) ≤
λ2s

2 (1− cλ)

with s =
∑n

i=1 E(X
2
i ) and c = L/3.
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