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Abstract: Developing an effective multi-stage treatment strategy over time
is one of the essential goals of modern medical research. Developing statis-
tical inference, including constructing confidence intervals for parameters, is
of key interest in studies applying dynamic treatment regimens. Estimation
and inference in this context are especially challenging due to non-regularity
caused by the non-smoothness of the problem in the parameters. While various
bootstrap methods have been proposed, there is a lack of theoretical valida-
tion for most bootstrap inference methods. Recently, Song et al. [Penalized
Q-learning for dynamic treatment regimes (2011) Submitted] proposed the
penalized Q-learning procedure, that enables valid inference without the need
of bootstrapping. As a major drawback, penalized Q-learning can only handle
discrete covariates. To overcome this issue, we propose an adaptive Q-learning
procedure which is an adaptive version of penalized Q-learning. We show that
the proposed method can not only handle continuous covariates, but it can
also be more efficient than penalized Q-learning.

1. Introduction

Since treatment of cancer and certain other chronic diseases typically involve a series
of therapeutic decisions over time, there has recently been increasing interest on how
to choose the best dynamic treatment strategy. The concept of dynamic treatment
regimens, or adaptive treatment strategies [7], is currently one of the most promising
ideas for developing effective, multi-stage therapeutic regimens. This idea has been
utilized in a number of settings, including in drug and alcohol dependency studies.
Data collected from such studies can be used to estimate the optimal treatment
strategy. The estimation procedures are often formed as multistage decision making
problems. Among these procedures, Q-learning [11], a sub-area of machine learning,
has gained popularity in estimation for dynamic treatment regimens.

In spite of this increased interest in developing valid inference procedures via Q-
learning for optimal dynamic treatment regimens, the research output in the area
is rather limited. The difficulty lies in the fact that the treatment effect parameters
at any stage prior to the last stage may be non-regular for certain longitudinal data
settings, as discussed in Robins [8], and recognized by many other researchers. This
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non-regularity arises when the optimal last stage treatment is non-unique for at least
some subjects in the population, causing estimation bias and failure of traditional
inferential approaches. In the special case that the Q-functions take the form of
linear models and the treatment levels take values 1 and −1, the non-regularity
problem concentrates on the “indifference” hyperplane of patient covariates where
the two treatments have the same effect. A crucial step in performing inference for
non-regular parameters is to correctly identify those covariate values which lie on
this indifference hyperplane [see 9].

Research addressing this non-regularity problem includes the following: Moodie
and Richardson [6] proposed the Zeroing Instead of Plugging In (ZIPI) method;
Chakraborty et al. [1] proposed a soft-threshold estimator and implemented several
kinds of bootstrap methods; and Laber et al. [5] proposed an adaptive confidence
interval for the hard-max method. Due to the non-regularity, the asymptotic distri-
bution of these estimators does not have an explicit form and hence data dependent
inference procedure such as the bootstrap method have been proposed. These com-
putational intensive methods can be unaffordably expensive for some multistage and
multi-treatment settings. Moreover, the empirical results in the associated papers
usually do not perform uniformly well over the evaluated design settings. To resolve
this non-regularity while also saving on computational costs, penalized Q-learning
was proposed in Song et al. [9] for inference with dynamic treatment regimens. The
theoretical validity was verified and the computation was shown to be fast without
the additional costs of bootstrapping. As a major drawback, however, penalized
Q-learning can only handle discrete covariates.

The proposed adaptive Q-learning procedure is a penalized Q-learning technique
that uses special adaptive weights in the penalization. We consider a two-stage
decision problem for which the Q-functions have a linear model form. As discussed
by Chakraborty et al. [1] and Song et al. [9], identifying the points that are on the
second-stage indifference hyperplane is the key to solving the non-regularity issue.
Estimation of the second-stage parameters in the adaptive Q-learning is done in two
steps. First, a naive estimator for the treatment effect vector is calculated. This can
be done, for example, using least-squares minimization. Second, the second-stage
parameters are estimated again, this time using least-squares with a penalization
term. The goal of the penalization term is to force the estimated treatment effect
vector towards the true treatment effect vector. Following Goldberg and Kosorok [3]
we use adaptive weights that penalize the angle to observations that are close to or
on the estimated hyperplane, as determined by the naive estimator. After estimating
the second-stage parameters, the proposed adaptive Q-learning procedure follows
the same remaining steps as in standard Q-learning.

We prove a number of theoretical results for the proposed adaptive Q-learning.
First we show that the indifference hyperplane is identified for all n large enough,
with probability one. Second, we show root-n consistency and asymptotic normality
of the estimators for both stages. These two results generalize the results of Song
et al. [9] to the continuous covariates case. Third, we show that when the probability
of being on the indifference hyperplane is positive, the asymptotic variance of the
second stage estimator is the same as it would be if the direction of the indifference
hyperplane were known in advance. We refer to this property, together with the
identification of the indifference hyperplane, as the oracle property. Finally, we show
that when the errors are Gaussian, the estimation is efficient, as if the indifference
hyperplane were known in advance.

The outline of the rest of the paper is as follows. In Section 2, we present a
two-stage Q-learning problem and describe existing approaches for addressing the
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non-regularity problem. In Section 3, we present the proposed adaptive Q-learning.
In Section 4, we give the asymptotic properties of the adaptive Q-learning proce-
dure. Concluding remarks are presented in Section 5. All proofs are deferred to the
Appendix.

2. Q-learning and the non-regularity problem

In the following, we present the framework of a two-stage Q-learning problem. We
then discuss the difficulty that arises due to non-smoothness of the presented prob-
lem. Finally, we review some existing approaches that address this non-smoothness.
A detailed introduction to Q-learning can be found in Sutton and Barto [10]. For
more details on the Q-learning framework discussed here, we refer the reader to
Chakraborty et al. [1] and Song et al. [9].

Let Ot, t = 1, 2, 3, be random vectors that represent the states at the beginning
of stage one, beginning of stage two, and at the end of stage two, respectively. For
t = 1, 2, let At ∈ {−1, 1} be the random action taken at stage t. Let Rt be the
reward of stage t, where Rt is a function of all history, up to and including stage
t, and Ot+1. We also denote the information at the beginning of stage t as St;
specifically, S1 = O1 and S2 = (O1, A1, R1, O2).

Let the Q-function for time t = 1, 2, be modeled as

Qt(St, At;βt,ψt) = β′
tSt(1) + (ψ′

tSt(2))At ,(1)

where St = (S′
t(1),S

′
t(2))

′, and St(1) and St(2) are random vectors that take values

in R
pt and R

qt , respectively. The parameters of the Q-functions are θt = (β′
t,ψ

′
t)

′,
where βt ∈ R

pt reflects the main effect of the current state on the outcome, andψt ∈
R

qt reflects the interaction between the current state and the randomly assigned
treatment. Let Yt denote the optimal pseudo-outcome reward at time t given St and
At. The optimal pseudo-outcome consists of the current outcome plus the expected
sum of all future outcomes when using the optimal treatments at all future stages.
More formally, let Y2 = R2, and Y1 = R1 + maxa∈{−1,1} Q2(S2, a;β

∗
2,ψ

∗
2), where

θ∗
2 = (β∗

2
′
,ψ∗

2
′
)′ are the true unknown parameter values. The observed data thus

consists of n trajectories of the form (O1i, A1i, R1i, O2i, A2i, R2i) for i = 1, . . . , n.
By definition, the pseudo-outcome allows the delayed effects of possible current
treatments to be taken into account.

A standard two-stage Q-learning procedure consists of the following three steps:

Step 1. Estimate the second-stage parameters by least-squares estimation:

θ̂2 = argminβ2,ψ2

n∑
i=1

(
Y2i −Q2(S2i, A2i;β2,ψ2)

)2
.(2)

Step 2. Estimate the first-stage optimal pseudo-outcomes Ŷ1i, where

Ŷ1i = R1i +max
a

Q2(S2i, a; β̂2, ψ̂2) = R1i + β̂
′
2S2i(1) + |ψ̂′

2S2i(2)| .(3)

Step 3. Estimate the first-stage parameters by least-squares estimation:

θ̂1 = argminβ1,ψ1

n∑
i=1

(
Ŷ1i −Q1(S1i, A1i;β1,ψ1)

)2
.(4)

Note that the estimation of the optimal pseudo-outcomes Y1i in Step 2 above
involves a non-smooth function of ψ̂2. Since θ̂1 is a function of {Ŷ11, . . . , Ŷ1n}, it is
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also a non-smooth function of ψ̂2. As a consequence, the asymptotic distribution

of (θ̂1, θ̂2) does not converge uniformly over the parameter space of (θ1,θ2). More

specifically, it can be shown that the distribution of
√
n(θ̂1 − θ1) is normal if

P (ψ∗
2
′
S2(2) = 0) = 0, but is not normal if P (ψ∗

2
′
S2(2) = 0) > 0. As a result,

standard inference methods such as Wald-type confidence intervals may perform
poorly [1, 6, 8, 9].

We define this non-regular condition as

(NR) P (ψ∗
2
′
S2(2) = 0) > 0.

We refer to the hyperplane {S2(2) : ψ∗
2
′
S2(2) = 0} as the indifference hyperplane

since for all points on this hyperplane, the treatment effect ψ∗
2
′
S2(2)A2 is zero,

independent of the choice of treatment A2.
Some estimation procedures have been suggested to address the non-smoothness

in (3) noted above. Moodie and Richardson [6] suggested Zeroing Instead of Plug-
ging In (ZIPI) which replaces Ŷ1i of (3) with

Ŷ1i = R1i + β̂
′
2S2i(1) + |ψ̂′

2S2i(2)| · 1
{ √

n|ψ̂′
2S2i(2)|√

S′
2i(2)Σ̂2S2i(2)

> z1−α/2

}
,(5)

where Σ̂2 is the estimated covariance matrix of ψ̂2, and zα is the α-quantile of a
standard normal. Chakraborty et al. [1] suggested the soft-threshold estimator in
which Ŷ1i is replaced by

Ŷ1i = R1i + β̂
′
2S2i(1) + |ψ̂′

2S2i(2)|
(
1− λi

|ψ̂′
2S2i(2)|

)
+

,

where x+ = max{x, 0}, and λi is a tuning parameter. Song et al. [9] suggested
penalized Q-learning that replaces the minimization problem (2) of Step 1 with the
following penalized version:

θ̂2 = argminβ2,ψ2

n∑
i=1

(
Y2i −Q2(S2i, A2i;β2,ψ2)

)2
+

n∑
i=1

pλn(|ψ′
2S2i(2)|),(6)

where pλn(·) is a pre-specified penalty function and λn is a tuning parameter.

In general, when condition (NR) holds, the asymptotic distribution of θ̂1 for
these three methods is not known. When S2(2) takes values in some finite set, Song

et al. [9] has shown, under some conditions, that both
√
n(θ̂1−θ∗

1) and
√
n(θ̂2−θ∗

2)
converge to normal random vectors (see [9], Theorems 3–4).

3. Adaptive Q-learning

In this section we present the adaptive Q-learning procedure. This procedure is an
example of penalized Q-learning that uses adaptive weights. We then discuss the
choice of weights for the adaptive minimization problem.

Adaptive Q-learning consists of three steps similar to the steps for standard Q-
learning as given in Section 2 above. Here we replace the minimization problem
(2) of Step 1 in the standard Q-learning procedure, with the following adaptive
minimization problem:

Φ2n(θ2) =

n∑
i=1

(
Y2i −Q2(S2i, A2i;β2,ψ2)

)2
+

λn

n

n∑
i=1

ŵni|ψ′
2S2i(2)|,(7)
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where ŵni are data-driven weights and λn is a tuning parameter. Let θ̃2 be the
minimizer of Φ2n. The second and third steps of adaptive Q-learning are the same
as for the standard Q-learning, after replacing θ̂2 with θ̃2. We denote the minimizer
of (4) in adaptive Q-learning by θ̃1.

The choice of the weights is the key to achieving the oracle property. Here, the
oracle property means that the estimator behaves asymptotically as if the indiffer-
ence hyperplane was known in advance. Our goal is to find weights that penalize
observations that are close to or on the indifference hyperplane. We would also
like the weights for points that are far from this hyperplane to converge to zero as
the number of trajectories goes to infinity. Such weights enable us to identify the
indifference hyperplane and hence solve the non-regularity problem.

Following Goldberg and Kosorok [3], we define the weights ŵni = n1/2+α(1 −
nα|ψ̂′

2S2i(2)|)+ for some fixed α ∈ (0, 1/2), and some root-n consistent estimator

ψ̂2. ψ̂2 can be obtained, for example, as the second component of the minimizer

of (2). Note that the weight ŵni is large whenever |ψ̂′
2S2i(2)| is small, i.e., when

S2i(2) is close to the hyperplane {S2(2) : ψ̂
′
2S2(2) = 0}. Since ψ̂2 −ψ∗

2 = Op(n
−1/2),

the weight is large whenever S2i(2) is close to the indifference hyperplane {S2(2) :

ψ∗
2
′
S2(2) = 0}. Moreover, when S2i(2) is far from the indifference hyperplane, the

weight is small or zero.
More formally, define Mn = {i : ψ∗

2
′
S2i(2) �= 0} and let M c

n = {i : ψ∗
2
′
S2i(2) = 0}.

We assume the following:

(A1) S2(2) is bounded, i.e., there is a constant M such that ‖S2(2)‖ ≤ M almost
surely.

(A2) P (|ψ∗
2
′
S2(2)| < x|ψ∗

2
′
S2(2) �= 0) ≤ Cx for some constant C and all x > 0 small

enough.
(A3) Var(S2(2)) is positive definite.

We remark that Assumption (A1) can be relaxed at the price of complicating the
proofs, and that Assumption (A2) holds whenever S2(2)|S′

2(2)ψ
∗
2 �= 0 has bounded

density.
The following result is due to Goldberg and Kosorok [3] (see Lemma 2.1):

Lemma 3.1. Assume (A1)–(A3), then

max
i∈Mn

ŵni√
n

= op(1) ,

and

min
i∈Mc

n

ŵni√
n

→p ∞ .

Remark 3.2. A more general form for the weights is given by

ŵni = n1/2+α1(1− nα2c|ψ̂′
2S2i(2)|)+

for α1, α2 ∈ (0, 1/2) and c > 0. Developing strategies for choosing the parameters
for the weights is an important open research question, which is beyond the scope
of this paper.

4. Theoretical results

In this section, we establish asymptotic properties for the proposed adaptive Q-
learning method.
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We have two goals. First, we would like to show that
√
n(θ̃t − θ∗

t ) converges
weakly to some mean zero normal random vector, for t = 1, 2. Second, we would
like to show that the estimators are oracle. Here, oracle means that when condition
(NR) holds, the indifference hyperplane is identified for all n large enough, with
probability one; and that the asymptotic variance of the estimators is the same as
if the indifference hyperplane was known in advance.

Remark 4.1. The definition of the oracle property is close to the one discussed
by Goldberg and Kosorok [3] in the context of classifiers. It generalizes the oracle
property discussed by Song et al. [9], which consists of identifying the sets Mn and
M c

n for all n large enough, with probability one.

Remark 4.2. The oracle property discussed above is different from the oracle prop-
erty in the context of variable selection (see, for example, [2, 12]). In the context of
variable selection, the oracle property means that if there are zero components, they
are estimated as zero with probability tending to 1, and the nonzero components
are estimated as well as if the correct submodel were known.

We first need some notation. For t = 1, 2, let θ∗
t be the minimizer of

E
[(
Yt −Qt(St, At;θt)

)2] ≡ E
[(
Yt − S′

t(1)βt −AtS
′
t(2)ψt

)2]
.

Define the matrices

Ωt(θt) = E

[{
∂

∂θt
(Yt −Qt(St, At;θt))

2

}{
∂

∂θt
(Yt −Qt(St, At;θt))

2

}′]
,

Ht(θt) = E

[
∂2

∂θ2
t

(Yt −Qt(St, At;θt))
2

]
.

To simplify the notation, denote Ω∗
t ≡ Ωt(θ

∗
t ). Note that Ht(θt) ≡ 2E[ZtZ

′
t], where

Zt = (S′
t(1),S

′
t(2)At)

′, and hence does not depend on the parameters. Moreover, Ht

is positive semi-definite for t = 1, 2.
We need the following regularity assumptions:

(B1) For t = 1, 2, Ht is positive definite.
(B2) For t = 1, 2, θ∗

t ∈ Θt is an inner point, where Θt ⊂ R
pt+qt is compact.

Note that Assumption (B1) implies that, for t = 1, 2, E[(Yt − Qt(St, At;θt))
2] is

strictly convex, and thus has a unique minimizer. Assumption (B2) simplifies the
proofs but can be relaxed.

We start by discussing the properties of θ̃2n. Formally, let v = ψ∗
22/‖ψ

∗
22‖.

Define

ΣV =

⎧⎪⎪⎨⎪⎪⎩
Σ

(NR)
2 ≡ P ′

V (PV H2P
′
V )

−1PV Ω
∗
2P

′
V (PV H2P

′
V )

−1PV ,
when condition (NR) holds,

H−1
2 Ω∗

2H
−1
2 ,

when condition (NR) does not hold,

where

PV =

(
Ip2×p2 0

0 v′

)
.

and where Ip2×p2 is the p2 × p2 identity matrix. The matrix Σ
(NR)
2 is the limiting

covariance matrix of the least-squares estimator for θ∗
2 under the assumption that

ψ∗
2 is known up to scale.
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Theorem 4.3. Assume (A1)–(A3) and (B1)–(B2). Let λn be a sequence bounded
away from zero and infinity. Then θ̃2n →a.s. θ

∗
2, and

√
n(θ̃2n − θ∗

2) →d N(0,ΣV ) .(8)

Moreover, when condition (NR) holds, with probability tending to 1,

ψ̃2n ∈ span(ψ∗
2) .(9)

In other words, the observations that are on the indifference hyperplane are identi-
fied for all n large enough, with probability one.

The proof appears in the Appendix.

Before we continue to discuss the distribution of θ̃1, consider the specific model

Y2i = Q2(S2i, A2;θ
∗
2) + εi = θ∗

2
′
Z2i + εi,(10)

where εi ∼ N(0, σ2) are i.i.d. and independent of the S2i. In this case we have the
following result:

Corollary 4.4. Assume the conditions of Theorem 4.3 and that model (10) holds.
Then when condition (NR) holds, the estimator θ̃2 asymptotically achieves the in-
formation bound for the submodel in which ψ∗

2 is known up to scale.

The proof is provided in the Appendix.

Remark 4.5. Theorem 4.3 and Corollary 4.4 improve on Theorems 2–3 of Song
et al. [9] in two ways. First, Song et al. [9] ensures identification of the indifference
hyperplane only when the set of potential values for S2(2) is finite. Second, when
condition (NR) holds, the asymptotic variance is changed correspondingly to the
identification of the span of ψ∗

2. Moreover, when the normal model (10) holds, θ̃2 is
as efficient as if the ψ∗

2 is known up to scale. Compare to Theorem 3 of Song et al.
[9], where the variance is approximately n−1H−1

2 Ω∗
2H

−1
2 , i.e., it does not change

when condition (NR) holds.

We are now ready to discuss the asymptotic behavior of θ̃1:

Theorem 4.6. Assume (A1)–(A3) and (B1)–(B2). Let λn be a sequence bounded
away from zero and infinity. Let Z̄2 ≡ (S′

2(1),S
′
2(2) sign(ψ

∗
2
′
S2(2)))

′. Then
√
n(θ̃1 −

θ∗
1) → −H−1

1 X, where

X ∼ N
(
0,Cov

{
φ(θ∗

1,θ
∗
2)− 2{P (Z1Z̄

′
2)}F2(Y2,Z2)

})
,

φ(θ∗
1,θ

∗
2) = −2

(
R1 + β∗

2
′
S2(1) + |ψ∗

2
′S2(2)| − θ∗

1
′Z1

)
Z1

and F2(Y2,Z2) is the influence function for θ̃2 given in (22) below.

The proof is provided in the Appendix.

The empirical versions of the asymptotic variance matrices can be used as vari-
ance estimators whether (NR) condition does or does not hold. A test to check if
condition (NR) holds can be performed using (9) of Theorem 4.3, together with
Assumption (A2). Details of such a procedure, as well as an empirical study, are
deferred for future research.
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5. Discussion

In this paper, we have proposed an adaptive Q-learning procedure for dynamic
treatment regimens. We showed that the proposed method has oracle proper-
ties. We also proved that under certain conditions, the estimation of the second-
stage parameters is as efficient as if the indifference hyperplane was known in ad-
vance.

The framework studied in this paper is of a two-stage decision problem for which
the Q-functions have a linear model form. We believe that the results presented here
illustrate an important approach for dealing with inference for non-regular param-
eters in the multistage decision context. While this work focuses on the two-stage
problem, generalization to the multistage decision problem is relatively straightfor-
ward. However, the linear model form of the Q-functions presented here may not
be sufficiently flexible for certain practical settings, and more research is needed to
address such general cases. Further research directions also include more flexible
semiparametric or nonparametric modeling to allow general forms for the covariates
and diverse data such as ordinal or censored outcomes. Finally, an empirical study
is of a great importance in order for both a better understanding of the performance
of the proposed adaptive Q-learning as well as for developing data driven strate-
gies for choosing the constants employed in the adaptive weights. Such empirical
research is the subject of ongoing efforts.

Appendix A: Proofs

Proof of Theorem 4.3. We first assume that condition (NR) holds. Write θ2 =

(β′
2,ψ

′
2)

′ ≡ (β∗
2
′
+

u′
(1)√
n
,ψ∗

2
′
+

u′
(2)√
n
)′, where u = (u′

(1),u
′
(2)) ∈ R

p2+q2 . Define

Γn(u) ≡Φ2n

(
θ∗
2 +

u√
n

)
− Φ2n(θ

∗
2)

=

n∑
i=1

((
Y2i −Q2

(
S2i, A2i;θ

∗
2 +

u√
n

))2

−
(
Y2i −Q2(S2i, A2i;θ

∗
2)
)2)

+
λn

n

n∑
i=1

ŵni

(∣∣∣∣(ψ∗
2 +

u(2)√
n

)′
S2i(2)

∣∣∣∣− |ψ∗
2
′S2i(2)|

)
≡An(u) +Bn(u(2)) .

(11)

Fix u and let

Gn2(θ2) =
∂

∂θ2

(
n∑

i=1

(Y2i −Q2(S2i, A2i;θ2))
2

)
=− 2nPn(Y2 − θ′

2Z2)Z2 ,

where Pn is the empirical measure and Z2 = (S′
2(1),S

′
2(2)A2)

′. It follows from As-
sumption (B1) that

An(u) =
u′
√
n
Gn2(θ

∗
2) +

1

2
u′
Pn[2Z2Z

′
2]u+ op(1) →d N

(
1

2
u′H2u,Ω

∗
2

)
.(12)
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Consider now Bn(u(2)). Write

Bn(u(2)) =
λn

n

∑
i∈Mn

ŵni

(∣∣∣∣(ψ∗
2 +

u(2)√
n

)′
S2i(2)

∣∣∣∣− |ψ∗
2
′S2i(2)|

)
+

λn

n

∑
i∈Mc

n

ŵni√
n
|u′

(2)S2i(2)|

≡ Bn1(u(2)) +Bn2(u(2)) .

(13)

Similar arguments to those that appear in the proof of Theorem 3.2 of Goldberg
and Kosorok [3] verify that

|Bn1(u(2))| = op(‖u(2)‖); Bn2(u(2)) →
{

0, u(2) ∈ V,
∞, u(2) /∈ V.

(14)

Thus,

Γn(u) →d Γ(u) ≡
{

1
2u

′H2u+W ′u, u(2) ∈ V,
∞, u(2) /∈ V,

where W ∼ N(0,Ω∗
2).

Note that in order to minimize Γ(u), u(2) must be in V . Write u = (u′
(1), αv

′)′.
Thus, we need to minimize

1

2
(u′

(1), αv
′)H2

(
u(1)

αv

)
+ (u′

(1), αv
′)

(
W(1)

W(2)

)
≡ 1

2
ū′H̄2ū+ W̄

′
ū ,(15)

where

ū =

(
u(1)

α

)
; H̄2 =

(
I 0
0 v′

)
H2

(
I 0
0 v

)
≡ PV H2P

′
V ; W̄ =

(
W(1)

v′W(2)

)
= PV W .

The minimizer of (15) is ū∗ ≡ −H̄−1
2 W̄ . The covariance matrix of ū∗ is given by

H̄−1
2 PV Ω

∗
2P

′
V H̄

−1
2 . Write u∗ = P ′

V ū
∗ and note that u∗ is the minimizer of Γ(u). Fi-

nally, note that the covariance matrix of u∗ is given by Σ
(NR)
2 ≡ P ′

V H̄
−1
2 PV Ω

∗
2P

′
V ×

H̄−1
2 PV .
Let ũn = argminuΓn(u); then ũn =

√
n(θ̃2n − θ∗

2). We would like to show that
ũn →d u∗. Note that Γn(u), for all n ≥ 1, and Γ(u) are stochastic processes indexed
by R

p2+q2 . The sample paths of Γ are lower semicontinuous and possess a unique
minimum. We would like to show that {ũn}n is uniformly tight. It is enough to
show that for any given ε > 0, there exists a constant C1 such that

P
(

inf
‖u‖≥C1

Φ2n(θ
∗
2 + u/

√
n) > Φ2n(θ

∗
2)
)
≥ 1− ε(16)

for all n large enough. To see this, note that

Φ2n

(
θ∗
2 +

u√
n

)
− Φ2n(θ

∗
2)

≥ u′
√
n
Gn2(θ

∗
2) +

1

2
u′H2u(1 + op(1))

+
λn

n

∑
i∈Mn

ŵni

(∣∣∣∣(ψ∗
2 +

u(2)√
n

)′
S2i(2)

∣∣∣∣− |ψ∗
2
′
S2i(2)|

)
,

(17)
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where the op(1) term is uniform in u. The first term of (17) is Op(1). By Assump-
tion (B1), H2 is positive definite and hence for C1 large enough the second term
dominates the first term. By (14), the second term of (17) also dominates the third
term. Consequently, we obtain that {ũn}n is uniformly tight. Hence, all the condi-
tions of the Argmax Theorem [4, Theorem 14.1] hold, and consequently, ũn →d u∗.

In other words,
√
n(θ̃2n − θ∗

2) →d N(0,Σ
(NR)
2 ), which concludes the proof of (8)

when condition (NR) holds.
We would like to show that ψ̃2n ∈ V with probability that tends to 1. It is

sufficient to show that for any sequence θ2nsatisfying θ2n − θ∗
2 = Op(n

−1/2) and
ψ2n /∈ V , Φ2n(θ2n) > Φ2n(TV θ2n), with probability tending to 1 as n → ∞, where
TV ≡ P ′

V PV is the projection matrix that projects the second component of a
(p2 + q2)-vector onto the subspace V .

For a vector u = (u′
(1),u

′
(2))

′ ∈ R
p2+q2 , write

uV = vv′u(2); uV ⊥ = (Iq2×q2 − vv′)u(2); TV u = (u′
(1),vv

′u(2)) .

Write ψ2n = ψ∗
2 +

uV√
n
+

u
V ⊥√
n
, and note that θ2n − TV θ2n = (0′,

u
V ⊥√
n

′
)′. Hence

Φ2n(θ2)− Φ2n(TV θ2)

‖uV ⊥‖

≥ 1

‖uV ⊥‖
×

(
(θ2 − TV θ2)

′
Gn2(θ

∗
2) + n (θ2 − TV θ2)

′
H2 (θ2 − TV θ2)

(
1 + op(1)

))
+

1

‖uV ⊥‖
λn

n

n∑
i=1

ŵni

(
|ψ′

2S2i(2)| − |TV ψ
′
2S2i(2)|

)
≥ 1√

n

uV ⊥

‖uV ⊥‖

n∑
i=1

∂

∂ψ2

(
Y2i −Q2(S2i, A2i;θ

∗
2)
)2

+ op(1)

+
λn

n

1

‖uV ⊥‖
∑
i∈Mn

ŵni

(
|ψ′

2S2i(2)| −
∣∣∣∣∣
(
ψ∗

2 +
uV√
n

)′
S2i(2)

∣∣∣∣∣
)

+
λn

n

∑
i∈Mc

n

ŵni

|uV ⊥
′S2i(2)|

‖uV ⊥‖

≡ Ãn + B̃n1 + B̃n2 + op(1) .

where the op(1) term is uniform in u. By Assumption (B1), Ãn = Op(1) uniformly

in u. Using similar arguments to those used to prove (14), B̃n1 = op(1) uniformly

in u and B̃n2 →p ∞ uniformly in u. Hence Φ2n(θ2) > Φ2n(TV θ2) with probability
that tends to one uniformly in u. This concludes the proof of (9).

Consider now the case in which condition (NR) does not hold. Note hat Γn(u) =
An(u) + Bn1(u(2)), where An is defined in (12) and Bn1 is defined in (13). It

follows from the same arguments as given above that An(u) →d N
(
1
2u

′H2u,Ω
∗
2

)
and Bn1(u(2)) →p 0. Hence,

Γn(u) →d
1

2
u′H2u+W ′u ,

where W ∼ N(0,Ω∗
2). Note that u∗, the minimizer of 1

2u
′H2u+W ′u, is −H−1

2 W

and follows the distribution N(0, H−1
2 Ω∗

2H
−1
2 ). It can be shown that the Argmax
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theorem conditions now all hold, and thus we obtain that
√
n(θ̃2n−θ∗

2) = ũn →d u∗.
This proves (8) for the case that (NR) does not hold.

Proof of Corollary 4.4. First note that when model (10) holds,

	(Y,S2(1),S2(2)A2;β
∗
2,ψ

∗
2) =

1

σ2
(Y2 − θ∗

2
′
Z2)Z2 ,

and I(θ∗
2) = σ−2E[Z2Z

′
2] where I(θ∗

2) is the Fisher information matrix in the full
model. Note that

Ω(θ∗
2) =4E

[
(Y2 − θ∗

2
′
Z2)Z2Z

′
2(Y2 − θ∗

2
′
Z2)

]
(18)

=4E[ε2]E[Z2Z
′
2] = 4σ2E[Z2Z

′
2] ,

and recall that H2 = 2E[Z2Z
′
2]. Consider the submodel in which ψ∗

2 = αv is known
up to the scalar α. In this case, the score for (β′

2, α)
′ is given by

	(Y,S2(1),S2(2)A2;β2, α) =
1

σ2

(
Y − β′

2S2(1) − αv′S2(2)A2

)
(S′

2(1),v
′S2(2)A2)

′ .

Hence, the information matrix for this submodel at the true parameter values is

I(β∗
2,ψ

∗
2
′
v) =E[	(β∗

2,ψ
∗
2
′
v)	(β∗

2,ψ
∗
2
′
v)′]

(19)

=
1

σ4
E[ε2]PV E[Z2Z

′
2]P

′
V =

1

4σ4
PV Ω(θ

∗
2)P

′
V .

By Theorem 4.3, when condition (NR) holds, the limiting covariance matrix of√
nθ̃2 is given by

Σ
(NR)
2 = P ′

V (PV H2P
′
V )

−1PV Ω
∗
2P

′
V (PV H2P

′
V )

−1PV = P ′
V I−1(β∗

2,ψ
∗
2
′
v)PV ,(20)

where the last equality follows from (18) and (19). Since the parameter of interest
is ψ((β′

2, α)
′) = P ′

V (β
′
2, α)

′ = (β′
2, αv

′)′, the information bound is thus given by

∂ψ(θ2)

∂(β′
2, α)

′ I
−1(β∗

2,ψ
∗
2
′
v)

∂ψ(θ2)

∂(β′
2, α)

′

′
= P ′

V I−1(β∗
2,ψ

∗
2
′
v)PV ,

and the result now follows from (20).

Proof of Theorem 4.6. Note that by taking the derivative, the minimization prob-
lem (4) of Step 3 is equivalent to solving an estimating equation. In the following,
we use Z-estimation results to prove the asymptotic normality. We remark that
since the estimating equation is based on the recursion, the data is no longer i.i.d.

Write

φ(θ1,θ2)(S2) = −2
(
R1 + β′

2S2(1) + |ψ′
2S2(2)| − θ′

1Z1

)
Z1 ,

where Z1 = (S′
1(1),S

′
1(2)A1)

′. Note that

Pnφ(θ1, θ̃2) =
∂

∂θ1

(
1

n

n∑
i=1

(Ŷ1i −Q1(S1i, A1i;θ1))
2

)
;

P (θ1,θ
∗
2) = P

∂

∂θ1
(Y1 −Q1(S1, A1;θ1))

2,
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where Pn and P are the expectations with respect to the empirical and true distribu-
tions, respectively. Hence θ̂1 is the solution of the estimating equation Pnφ(θ1, θ̃2) =
0, and θ∗

1 is the unique solution of P (θ1,θ
∗
2) = 0. Write Ψn(θ1) = Pnφ(θ1, θ̃2),

Ψ∗
n(θ1) = Pnφ(θ1,θ

∗
2), and Ψ(θ1) = Pφ(θ1,θ

∗
2).

Note that

√
n (Ψn(θ1)−Ψ(θ1))

=
√
n (Ψn(θ1)−Ψ∗

n(θ1)) +
√
n (Ψ∗

n(θ1)−Ψ(θ1))

= −2Pn((β̃2 − β2)
′S2(1) + |ψ̃′

2S2(2)| − |ψ∗
2S2(2)|)Z1 +

√
n(Pn − P )φ(θ1,θ

∗
2)(21)

= −2Pn((β̃2 − β2)
′S2(1) + sign(ψ∗

2
′
S2(2))(ψ̃ −ψ∗

2)
′S2(2))Z1 + op(1)

+
√
n(Pn − P )φ(θ1,θ

∗
2) ,

where the op(1) term is uniform over θ1 ∈ Θ1; and where the last equality follows

since, by Theorem 4.3, ψ̃
′
2S2(2) and ψ∗

2S2(2) have the same sign with probability

tending to one. It follows from the proof of Theorem 4.3, that
√
n(θ̃2 − θ∗

2) =√
nPnF2(Y2,Z2) + op(1), where

F2(Y2,Z2) =

⎧⎪⎪⎨⎪⎪⎩
−2H̄−1

2 PV (Y2 − θ′
2Z2)Z2,

when condition (NR) holds,
−2H−1

2 (Y2 − θ′
2Z2)Z2,

when condition (NR) does not hold,

(22)

is the influence function for θ̃2. Hence, we can rewrite (21) as

√
n(Ψn(θ1)−Ψ(θ1)) =

√
n(Pn − P )

(
φ
(
θ1,θ

∗
2 − 2P (Z1Z̄

′
2)F2(Y2,Z2)

))
+ op(1) .

Consequently,

√
n
(
Ψn(θ1)−Ψ(θ1)

)
→d X(θ1) ,

where X(θ1) ∼ N(0,Cov{φ(θ1,θ
∗
2)−2{P (Z1Z̄

′
2)}F2(Y2,Z2)}) is Gaussian process.

As a Gaussian process, X(θ1) has continuous sample paths in θ1. Note that by
Assumption (B1), Ψ is the derivative of a strictly convex function. Hence, for every
sequence θ1n such that ‖Ψ(θ1n)‖ → 0, ‖θ1n − θ∗

1‖ → 0. Finally, note that by
Assumption (B2), Ψ is uniformly bounded over Θ1. Hence, all the conditions of
Corollary 13.6 of Kosorok [4] hold, and we obtain that

√
n(θ̃1 − θ∗

1) →d −H−1
1 X(θ∗

1) ,

which concludes the proof.
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