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Abstract: The estimation of a linear combination of several restricted loca-
tion parameters is addressed from a decision-theoretic point of view. A bench-
mark estimator of the linear combination is an unbiased estimator, which is
minimax, but inadmissible relative to the mean squared error. An interesting
issue is what is a prior distribution which results in the generalized Bayes and
minimax estimator. Although it seems plausible that the generalized Bayes es-
timator against the uniform prior over the restricted space should be minimax,
it is shown to be not minimax when the number of the location parameters,
k, is more than or equal to three, while it is minimax for k = 1. In the case
of k = 2, a necessary and sufficient condition for the minimaxity is given,
namely, the minimaxity depends on signs of coefficients of the linear combi-
nation. When the underlying distributions are normal, we can obtain a prior
distribution which results in the generalized Bayes estimator satisfying min-
imaxity and admissibility. Finally, it is demonstrated that the estimation of
ratio of normal variances converges to the estimation of difference of the normal
positive means, which gives a motivation of the issue studied here.
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1. Introduction

The point estimation of restricted parameters has been studied from a decision-
theoretic point of view since Katz (1961) showed that the generalized Bayes es-
timator of a restricted parameter is minimax and admissible in a one-parameter
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exponential family. Farrell (1964) established the minimaxity and admissibility in
the general location family. This classical problem was revisited by Marchand and
Strawderman (2004, 2005) and Kubokawa (1990, 2004). Hartigan (2004) consid-
ered the simultaneous estimation of a mean vector restricted to a convex cone in
a k-variate normal distribution and used the Gauss divergence theorem to show
that the generalized Bayes estimator against the uniform prior dominates the un-
biased estimator. Tsukuma and Kubokawa (2008) established the minimaxity of
the generalized Bayes estimator and proved that it is admissible for k = 1, 2 and
inadmissible for k ≥ 3, which is an extension of the Stein result. For a good survey
of admissibility, see Rukhin (1995).

In this paper, we consider the estimation of the linear combination of the several
location parameters where each location parameter is restricted to be positive. More
specifically, we consider the following simple model: Let X1, . . . , Xk be mutually
independent random variables where Xi has probability density function fi(xi − μi)
with location parameter μi such that μi > 0 for i = 1, . . . , k. It is assumed that
E[X2

i ] < ∞. In matrix notation, let X = (X1, . . . , Xk)t, x = (x1, . . . , xk)t and
μ = (μ1, . . . , μk)t where Xt denotes the transpose of X. Then, the joint density of
X is denoted by

(1.1) f(x − μ) =
k∏

i=1

fi(xi − μi),

and μ is restricted on the space,

D = {μ | μi > 0, i = 1, . . . , k}.

For real constants ai’s and a = (a1, . . . , ak)t, consider a linear combination of μ
given by

θ =
k∑

i=1

aiμi = atμ.

We study the estimation of θ in a decision-theoretic framework, where an estimator
θ̂ of θ is evaluated by the mean squared error R(μ, θ̂) = E[(θ̂ − θ)2].

An unbiased estimator of θ is given by

(1.2) θ̂U =
k∑

i=1

aiμ̂
U
i ,

where μ̂U
i is the unbiased estimator of μi given by

μ̂U
i = Xi − ci, for ci = E[Xi − μi].

As shown in Section 2, θ̂U is minimax, but inadmissible because of the restriction
on the parameter μ. Thus, it is of interest to obtain the admissible and minimax
estimator of θ. To this end, consider the uniform prior

(1.3) π(μ)dμ = dμI(μ ∈ D),

where dμ =
∏k

i=1dμi and I(μ ∈ D) is the indicator function such that I(μ ∈ D) = 1
if μ ∈ D, I(μ ∈ D) = 0 otherwise. The resulting generalized Bayes estimator of θ is

θ̂GB =
∫

D

atμf(X − μ)dμ/

∫
D

f(X − μ)dμ

=
k∑

i=1

ai

∫ ∞

0

μifi(Xi − μi)dμi/

∫ ∞

0

fi(Xi − μi)dμi,(1.4)
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and our first concern is whether θ̂GB is minimax or not. We investigate this problem
in Section 3 and show that θ̂GB is not minimax for k ≥ 3, but minimax for k = 1.
The minimaxity in the case of k = 2 depends on the signs of the coefficients a1

and a2, and a necessary and sufficient condition for the minimaxity of θ̂GB is that
a1a2 ≤ 0. This means that, for example, the generalized Bayes estimator θ̂GB is
not minimax in the estimation of the sum μ1 + μ2, but minimax in the estimation
of the difference μ1 − μ2.

Concerning minimaxity of the generalized Bayes estimator against the uniform
prior, it is interesting to note that we have different answers for the simultane-
ous estimation of μ and the estimation of the linear combination atμ. Namely,
μ̂GB =

∫
D

μf(X − μ)dμ/
∫

D
f(X − μ)dμ is always minimax for the simultaneous

estimation of μ under a quadratic loss, while θ̂GB is not necessarily minimax and
its minimaxity depends on the dimension of μ.

In Section 4, we focus on the normal distributions, and suggest a specific prior
distribution such that the resulting generalized Bayes estimator is minimax and
admissible. In Section 5, we use the arguments as in Rukhin (1992) to show that
the estimation of ratio of normal variances asymptotically reduces to the estimation
of difference of positive normal means, which gives a motivation of the estimation
problem studied here.

2. Minimaxity and inadmissibility of the unbiased estimator

In this section, we show that the unbiased estimator θ̂U given in (1.2) is minimax,
but inadmissible under the assumption that E[X2

i ] < ∞ for i = 1, . . . , k. The
minimaxity of θ̂U can be verified by using similar arguments as in Girshick and
Savage (1951).

Proposition 2.1 (minimaxity of the unbiased estimator). The unbiased esti-
mator θ̂U of θ =

∑k
i−1 aiμi is minimax in the estimation of the restricted parameters

on D, and the risk function R0 = R(μ, θ̂U ) is a constant.

Proof. Let Dm = {μ| 0 < μi < m, i = 1, . . . , k} for m = 1, 2, . . ., and consider the
sequence of prior distributions given by

πm(μ) =
{

m−k if μ ∈ Dm

0 otherwise,

which yields the Bayes estimators

θ̂π
m = θ̂π

m(X) =
∫

Dm

atuf(X − u)du

∫
Dm

f(X − u)du

with the Bayes risk function

(2.1) rm(πm, θ̂π
m) =

1
mk

∫
Dm

∫ {
θ̂π

m(x) − atμ
}2

f(x − μ)dxdμ.

Since rm(πm, θ̂π
m) ≤ rm(πm, θ̂U ) = R0, it is sufficient to show that

lim infm→∞ rm(πm, θ̂π
m) ≥ R0. Making the transformations z = x−μ and t = u−μ
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with dz = dx and dt = du gives that

θ̂π
m(x) − atμ = θ̂π

m(z + μ) − atμ

=
∫

Dm

at(u − μ)f(z + μ − u)du

∫
Dm

f(z + μ − u)du

=
∫

t+μ∈Dm

attf(z − t)dt

∫
t+μ∈Dm

f(z − t)dt.(2.2)

Making the transformation ξi = (2/m)(μi − m/2) with dξ = (2/m)kdμ for ξ =
(ξ1, . . . , ξk)t, we can rewrite the condition 0 < μi < m as |ξi| < 1. Also the condition
that 0 < ti +μi < m for t = (t1, . . . , tk)t is expressed by the inequality −(m/2)(ξi +
1) < ti < (m/2)(1 − ξi). Let D∗

m = {t| − (m/2)(ξi + 1) < ti < (m/2)(1 − ξi)}. Then
the transformations are used in (2.2) and (2.1) to obtain that

θ̂π
m(x) − atμ =

∫
D∗

m

attf(z − t)dt

∫
D∗

m

f(z − t)dt ≡ θ̂∗
m(z|ξ),(2.3)

and

rm(πm, θ̂π
m) =

1
2k

∫
|ξi |<1,i=1,...,k

∫ {
θ̂∗

m(z|ξ)
}2

f(z)dzdξ.

For a small ε > 0, it is observed that

rm(πm, θ̂π
m) ≥ 1

2k

∫
|ξi |<1−ε,i=1,...,k

∫ {
θ̂∗

m(z|ξ)
}2

f(z)dzdξ.

The range of t in the integrals in θ̂∗
m(z|ξ) given by (2.3) is D∗

m = {t| −(m/2)(ξi+1) <
ti < (m/2)(1 − ξi)}. Since |ξi| < 1 − ε, it is noted that 1 − ξi > 1 − (1 − ε) = ε > 0
and 1 + ξi > 1 + (−1 + ε) = ε > 0. These inequalities imply that the end point
(m/2)(1 − ξi) tends to infinity as m → ∞. Thus θ̂∗

m(z|ξ) converges to θ̂U (z). Using
the Fatou lemma, we obtain that

lim inf
m→∞

rm(πm, θ̂π
m) ≥ lim inf

m→∞

1
2k

∫
|ξi |<1−ε,i=1,...,k

∫ {
θ̂∗

m(z|ξ)
}2

f(z)dzdξ

≥ 1
2k

∫
|ξi |<1−ε,i=1,...,k

∫ {
lim inf
m→∞

θ̂∗
m(z|ξ)

}2

f(z)dzdξ

=
1
2k

∫
|ξi |<1−ε,i=1,...,k

dξ

∫ {
θ̂U (z)

}2

f(z)dz

= (1 − ε)kR(μ, θ̂U ) = (1 − ε)kR0

From the arbitrariness of ε > 0, it follows that lim infm→∞ rm(πm, θ̂π
m) ≥ R0,

completing the proof of Proposition 2.1.

Proposition 2.1 is an extension of the results of Marchand and Strawderman
(2005) and Kubokawa (2004) who treated the case of k = 1.

Since the unbiased estimator μ̂U
i = Xi − ci of the positive parameter μi takes

a negative value with a positive probability for i = 1, . . . , k, it is plausible that
θ̂U =

∑k
i=1 aiμ̂

U
i can be improved on by a truncated procedure. Let Λ+ and Λ− be

subsets of {1, . . . , k} such that

(2.4) ai > 0 if i ∈ Λ+, and aj < 0 if j ∈ Λ−.
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Then θ and θ̂U are decomposed as

θ = θ+ − θ− for θ+ =
∑

i∈Λ+

aiμi and θ− = −
∑

i∈Λ−

aiμi,

θ̂U = θ̂U
+ − θ̂U

− for θ̂U
+ =

∑
i∈Λ+

aiμ̂
U
i and θ̂U

− = −
∑

i∈Λ−

aiμ̂
U
i .

(2.5)

Since θ+ and θ− are positive, it is reasonable to truncate θ̂U
+ and θ̂U

− at zero, namely,
θ̂TR
+ = max{θ̂U

+ , 0} and θ̂TR
− = max{θ̂U

−, 0}, which results in the truncated estimator

θ̂TR = θ̂TR
+ − θ̂TR

− .

Proposition 2.2 (inadmissibility of the unbiased estimator). The truncated
estimator θ̂TR dominates the unbiased estimator θ̂U , namely θ̂TR is minimax.

Proof. Noting that θ̂U
+ and θ̂U

− are mutually independent, we can write the risk
difference Δk = E[(θ̂U − θ)2] − E[(θ̂TR − θ)2] as

Δk = E[(θ̂U
+ − θ+)2 − (θ̂TR

+ − θ+)2] + E[(θ̂U
− − θ−)2 − (θ̂TR

− − θ−)2]

+ 2E[θ̂TR
+ − θ+]E[θ̂TR

− − θ−].

It can be seen that (θ̂U
+ − θ+)2 − (θ̂TR

+ − θ+)2 = θ̂U
+(θ̂U

+ − 2θ+)I(θ̂U
+ < 0) > 0

where I(A) is the indicator function such that I(A) = 1 if A is true, I(A) = 0
otherwise. Also, E[θ̂TR

+ − θ+] = E[max{θ̂U
+, 0} − θ+] = E[θ̂U

+ − θ+ +max{0, −θ̂U
+ }] =

E[max{0, −θ̂U
+ }] ≥ 0. These observations show that Δk > 0 for any μ ∈ D.

3. Is the uniform prior Bayes estimator minimax?

We now investigate whether the generalized Bayes estimator θ̂GB for the uniform
prior over D is minimax or not. As shown below, the minimaxity depends on the
dimension k of the location vector μ.

3.1. Minimaxity in the case of k = 1

Let X be a random variable whose density function is given by f(x − μ) where
μ is a location parameter restricted on the space {μ ∈ R|μ > 0}. The unbiased
estimator of μ is μ̂U = X − c0 for c0 = E[X − μ] =

∫
uf(u)du, which is minimax.

We first consider a class of estimators of the form

μ̂(φ) = X − φ(X)

for an absolutely continuous function φ(·), and derive sufficient conditions on φ(·)
for the minimaxity. From Kubokawa (1994a, 1999, 2004), we can obtain an integral
expression for the risk difference of two estimators μ̂U and μ̂(φ).

Lemma 3.1. Assume that φ(·) is an absolutely continuous function such that
limw→∞ φ(w) = c0. Then, the difference of the risk functions of μ̂U and μ̂(φ) can
be written as

Δ ≡ R(μ, μ̂U ) − R(μ, μ̂(φ))

= − 2
∫ {∫ w

− ∞
uf(u)du − φ(w + μ)

∫ w

− ∞
f(u)du

}
φ′(w + μ)dw.(3.1)
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Proof. Since limw→∞ φ(w) = c0, it can be seen that

Δ = E[[(X − φ(X + t) − μ)2]∞
t=0] = E[

∫ ∞

0

d
dt

(X − φ(X + t) − μ)2dt],

which can be rewritten as

Δ = −2
∫ ∫ ∞

0

{
x − φ(x + t) − μ

}
φ′(x + t)dtf(x − μ)dx.

Making the transformations w = x + t − μ and u = w − t with dw = dx and
du = −dt in turn gives

Δ = − 2
∫ ∫ ∞

0

{
w − t − φ(w + μ)

}
φ′(w + μ)f(w − t)dtdw

= − 2
∫ ∫ w

− ∞

{
u − φ(w + μ)

}
φ′(w + μ)f(u)dudw,

which yields (3.1).

Lemma 3.1 provides a class of estimators improving on μ̂U .

Proposition 3.1. Assume that φ(·) is an absolutely continuous function such that
(a) φ(w) is nondecreasing in w, limw→∞ φ(w) = c0, and (b) φ(w) ≥ φGB(w), where

φGB(w) =
∫ w

− ∞
uf(u)du/

∫ w

− ∞
f(u)du.

Then the estimator μ̂(φ) dominates μ̂U , namely μ̂(φ) is minimax.

It is easy to see that the function φGB(w) is nondecreasing and limw→∞ φGB(w) =
c0. Since φGB(w) ≤ w, it is also seen that φGB(w) ≤ φTR(w) = min{w, c0}. Thus,
φGB(w) and φTR(w) satisfy the conditions in Proposition 3.1, and we get the im-
proved estimators

μ̂GB = X − φGB(X) =
∫ ∞

0

μf(X − μ)dμ/

∫ ∞

0

f(X − μ)dμ,

μ̂TR = X − φTR(X) = max{X, 0}.

Note that μ̂GB is the generalized Bayes estimator of μ against the uniform prior
dμ over the space of μ > 0, and μ̂TR is the maximum likelihood estimator of μ.

It can be easily seen that limμ→∞ R(μ, μ̂GB) = R0 = R(μ, μ̂U ). Also from Lemma
3.1, we get the following risk property for the generalized Bayes estimator μ̂GB .

Proposition 3.2. Both estimators μ̂GB and μ̂U have the same risk at μ = 0,
namely, R0 = R(0, μ̂U ) = R(0, μ̂GB). Also, R(μ, μ̂GB) converges to R0 as μ → ∞.

3.2. Minimaxity and non-minimaxity in the case of k = 2

Let X1 and X2 be two mutually independent random variables whose densities are
f1(x1 − μ1) and f2(x2 − μ2), respectively, where μ1 and μ2 are unknown location
parameters, μ1 > 0 and μ2 > 0. Let us consider the problem of estimating the
linear combination of μ1 and μ2, namely,

θ = θa1,a2 = a1μ1 + a2μ2,
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where a1 and a2 are known real constants. From the results in the previous sub-
section, it can be guessed that the generalized Bayes estimator θ̂GB of θ against
the uniform prior dμ1dμ2 over the space of μ1 > 0 and μ2 > 0 improves on
the unbiased estimator θ̂U = a1μ̂

U
i + a2μ̂

U
2 in terms of the mean squares error,

R(μ1, μ2, θ̂
U ) = E[(θ̂U − θ)2]. Here μ̂U

i = Xi − ci and ci = E[Xi − μi] for i = 1, 2.
However, this conjecture is not true. As shown below, the condition for the mini-
maxity of θ̂GB depends on signs of a1 and a2.

In general, let us consider a class of estimators of the form θ̂(φ1, φ2) = a1μ̂1(φ1)+
a2μ̂2(φ2), where μ̂i(φi) = Xi − φi(Xi) for i = 1, 2 and φi(·) is an absolutely contin-
uous function.

Lemma 3.2. The risk difference of the estimators θ̂U and θ̂(φ1, φ2) is written as

R(μ1,μ2, θ̂
U ) − R(μ1, μ2, θ̂(φ1, φ2))

= a2
1{R(μ1, μ̂

U
1 ) − R(μ1, μ̂1(φ1))} + a2

2{R(μ2, μ̂
U
2 ) − R(μ2, μ̂2(φ2))}

− 2a1a2E[μ̂1(φ1) − μ1]E[μ̂2(φ2) − μ2].

It is noted that E[μ̂i(φi) − μi] = E[Xi − μi − φi(Xi)] = ci − E[φi(Xi)]. If
φi(w) is a nondecreasing function with limw→∞ φi(w) = ci, then it can be seen
that E[μ̂i(φi) − μi] ≥ 0. Hence from Proposition 3.1 and Lemma 3.2, we get the
following proposition.

Proposition 3.3. For i = 1, 2, assume that φi(·) is an absolutely continuous func-
tion such that (a) φi(w) is nondecreasing in w and limw→∞ φi(w) = c0, and (b)
φi(w) ≥ φGB

i (w), where

φGB
i (w) =

∫ w

− ∞
ufi(u)du/

∫ w

− ∞
fi(u)du.

If a1a2 ≤ 0, then the estimator θ̂(φ1, φ2) is minimax.

It is interesting to note that the condition a1a2 ≤ 0 is necessary and sufficient
for the minimaxity of the generalized Bayes estimator against the uniform prior
over the restricted space, which is expressed as θ̂GB = a1μ̂

GB
1 + a2μ̂

GB
2 for μ̂GB

i =
Xi − φGB

i (Xi).

Proposition 3.4. The generalized Bayes estimator θ̂GB = a1μ̂
GB
1 +a2μ̂

GB
2 against

the uniform prior dμ1dμ2, μ1 > 0 and μ2 > 0, is minimax relative to the squared
error loss if and only if a1a2 ≤ 0.

Proof. From Proposition 3.1, it follows that R(μi, μ̂
U
i ) −R(μi, μ̂

GB
i ) ≥ 0 for i = 1, 2.

Since φGB
i satisfies condition (a) of Proposition 3.3,

E[μ̂i(φGB
i ) − μi] = ci − E[φGB

i (Xi)] > 0.

If a1a2 ≤ 0, it is seen that −2a1a2E[μ̂1(φi)μ̂2(φ2)] ≥ 0. Thus, the dominance of
θ̂GB over θ̂U is proved.

Reversely, suppose that θ̂GB dominates θ̂U . We show that supposing the in-
equality a1a2 > 0 yields a contradiction. From Lemma 3.2, it is seen that at
(μ1, μ2) = (0, 0),

R(0,0, θ̂U ) − R(0, 0, θ̂GB)

= a2
1{R(0, μ̂U

1 ) − R(0, μ̂GB
1 )} + a2

2{R(0, μ̂U
2 ) − R(0, μ̂GB

2 )}
− 2a1a2E0[μ̂GB

1 ]E0[μ̂GB
2 ],
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which is equal to −2a1a2E0[μ̂GB
1 ]E0[μ̂GB

2 ] from Proposition 3.2. Under the condition
a1a2 > 0, it is clear that −2a1a2E0[μ̂GB

1 ]E0[μ̂GB
2 ] < 0 at (μ1, μ2) = (0, 0). This

contradicts to the fact that θ̂GB dominates θ̂U . Hence, if θ̂GB dominates θ̂U , then
a1a2 ≤ 0.

3.3. Non-minimaxity for k ≥ 3

We treat here the case of k ≥ 3 where the random variables X1, . . . , Xk are as in
(1.1). Although it may be guessed that the generalized Bayes estimator against the
uniform prior over the parameter D is minimax, the following proposition shows
that this conjecture is not correct.

Proposition 3.5. The generalized Bayes estimator θ̂GB, given in (1.4), against
the uniform prior over D is not minimax if k ≥ 3.

Proof. Corresponding to the decompositions given in (2.5), we can write θ̂GB as
θ̂GB = θ̂GB

+ − θ̂GB
− for θ̂GB

+ =
∑

i∈Λ+
aiμ̂

GB
i and θ̂GB

− = −
∑

i∈Λ−
aiμ̂

GB
i . Since

k ≥ 3, either Λ+ or Λ− includes more than two elements. We suppose here that
Λ+ has more than two elements without any loss of generality. The risk difference
of the two estimators θ̂U and θ̂GB is expressed as

Δ(μ) = R(μ, θ̂U ) − R(μ, θ̂GB)

= E[(θ̂U
+ − θ+)2 − (θ̂GB

+ − θ+)2] + E[(θ̂U
− − θ−)2 − (θ̂GB

− − θ−)2]

+ 2E[θ̂GB
+ − θ+]E[θ̂GB

− − θ−]
= Δ+(μ) + Δ−(μ) + 2B+(μ)B−(μ), (say)

for B+(μ) = E[θ̂GB
+ − θ+] and B−(μ) = E[θ̂GB

− − θ−]. Note that B−(μ) =
−

∑
i∈Λ−

aiBi(μi) for Bi(μi) = Eμi [Xi − μi − φGB
i (Xi)] and that Bi(μi) = ci −

E0[φGB
i (Xi + μi)]. Since Bi(μi) → 0 as μi → ∞, it is seen that B−(μ) → 0 as

μi → ∞ for all i ∈ Λ−. Since

Δ−(μ) =
∑

i∈Λ−

a2
i

{
E[(μ̂U

i −μi)2]−E[(μ̂GB
i −μi)2]

}
−2

∑
i∈Λ−

∑
j �=i,j∈Λ−

aiajBi(μi)Bj(μj),

from Proposition 3.2, it can be seen that Δ−(μ) → 0 as μi → ∞ for all i ∈ Λ−.
Thus,

lim
μi →∞,i∈Λ−

Δ(μ) = Δ+(μ).

Similarly, Δ+(μ) is written as

Δ+(μ) =
∑

i∈Λ+

a2
i

{
E[(μ̂U

i −μi)2]−E[(μ̂GB
i −μi)2]

}
−2

∑
i∈Λ+

∑
j �=i,j∈Λ+

aiajBi(μi)Bj(μj),

and from Proposition 3.1, it follows that the first term in the r.h.s. is equal to zero
when μi = 0 for all i ∈ Λ+. Since Bi(0) = ci − E0[φGB

i (Xi)] > 0 and aiaj > 0 for
any i, j ∈ Λ+, it is concluded that

lim
μi →0,i∈Λ+

lim
μi →∞,i∈Λ−

Δ(μ) = lim
μi →0,i∈Λ+

Δ+(μ) = −2
∑

i∈Λ+

∑
j �=i,j∈Λ+

aiajBi(0)Bj(0),

which is negative. That is, R(μ, θ̂U ) < R(μ, θ̂GB) for a μ ∈ D, which means that
θ̂GB is not minimax.



32 T. Kubokawa

4. Admissible and minimax estimation in normal distributions

The generalized Bayes estimator against the uniform prior over D is not necessarily
minimax as shown in the previous section. An interesting query is what is a prior
distribution which results in the minimax and Bayes estimator. Although it may be
hard to answer this query for the general location family, we can find an affirmative
solution in a setup where the underlying distributions are normal.

Let X1, . . . , Xk be mutually independent random variables where Xi has a nor-
mal distribution with mean μi and unit variance, N (μi, 1) for μi > 0. We use the
same notations D, μ, θ, a as defined in (1.1). For the prior distribution considered
here, denoted by π∗(μ), with probability one,

μi = αiξ+ for i ∈ Λ+, and μj = βjξ− for j ∈ Λ−,

where αi = ai

∑
j∈Λ+

aj/
∑

j∈Λ+
a2

j , βj = aj

∑
i∈Λ−

ai/
∑

i∈Λ−
a2

i , and ξ+ and ξ−
are distributed uniformly over the set {(ξ+, ξ−)|ξ+ > 0, ξ− > 0}. For notational
simplicity, let A1 =

∑
i∈Λ+

ai, A2 =
∑

i∈Λ+
α2

i , B1 = −
∑

i∈Λ−
ai and B2 =∑

i∈Λ−
a2

i . Then it is noted that
∑

i∈Λ+
α2

i = A2
1/A2,

∑
i∈Λ+

αixi/
∑

i∈Λ+
α2

i =

θ̂U
+/A1,

∑
i∈Λ+

aiαi = A1, and similar equalities are satisfied for βj . The joint den-
sity function of (X, μ) is

(2π)−k/2 exp{ − 1
2

∑
i∈Λ+

(xi − αiξ+)2 − 1
2

∑
j∈Λ+

(xj − βjξ−)2}dxdξ+dξ−

= exp{ − A2
1

2A2
(ξ+ −

θ̂U
+

A1
)2 − B2

1

2B2
(ξ− −

θ̂U
−

B1
)2}p(S1, S2)dxdξ+dξ−,(4.1)

where p(S1, S2) = (2π)−k/2 exp{ −(S+ + S−)/2} for

S+ =
∑

i∈Λ+

x2
i − (

∑
i∈Λ+

αixi)2/
∑

i∈Λ+

α2
i ,

S− =
∑

j∈Λ−

x2
j − (

∑
j∈Λ−

βjxj)2/
∑

j∈Λ−

β2
i .

To simplify the notation, let

θ1 = θ+/
√

A2, θ2 = θ−/
√

B2, z1 = θ̂U
+/

√
A2, z2 = θ̂U

−/
√

B2.

Then, z1 and z2 are mutually independently distributed as N (θ1, 1) and N (θ2, 1),
respectively, and

(4.2) θ =
√

A2θ1 −
√

B2θ2.

Making the transformation ξ1 = A1A
−1/2
2 ξ+ and ξ2 = B1B

−1/2
2 ξ−, we can rewrite

the joint density function of (X, μ) given in (4.1) as

(4.3) exp{−‖ξ − z‖2/2}
√

A2B2

A1B1
p(S1, S2)dxdξ,

where ξ = (ξ1, ξ2)t and z = (z1, z2)t. Since
∑

i∈Λ+
aiαiξ+ +

∑
j∈Λ−

ajβjξ− =√
A2ξ1 −

√
B2ξ2, the generalized Bayes estimator of θ against the prior π∗ can be
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written as

θ̂GB∗ =

∫
D

(
√

A2ξ1 −
√

B2ξ2) exp{−‖ξ − z‖2/2}dξ∫
D

exp{−‖ξ − z‖2/2}dξ
(4.4)

=
√

A2{z1 − φGB∗(z1)} −
√

B2{z2 − φGB∗(z2)},

where atX = θ̂U
+ − θ̂U

− =
√

A2z1 −
√

B2z2 and

φGB∗(w) =
∫ w

− ∞
u exp{ −u2/2}du/

∫ w

− ∞
exp{−u2/2}du,

Minimaxity and admissibility of θ̂GB∗ can be established in the following proposi-
tion.

Proposition 4.1. The generalized Bayes estimator θ̂GB∗ of θ against the prior π∗

is admissible and minimax.

Proof. The minimaxity of θ̂GB∗ follows from Proposition 3.3. In fact, the arguments
given in (4.2) and (4.4) mean that the generalized Bayes estimator of θ =

√
A2θ1 −√

B2θ2 is based on z ∼ N (θ, I2), where θ = (θ1, θ2)t for θ1 > 0 and θ2 > 0. Thus,
it can be seen that φGB∗(w) satisfies the conditions (a) and (b) of Proposition 3.3,
so that θ̂GB∗ is minimax.

We next prove the admissibility of θ̂GB∗ using the method of Brown and Hwang
(1982). Consider a sequence of the prior distributions π∗

n(μ) such that with proba-
bility one,

μi = αiξ+ for i ∈ Λ+, and μj = βjξ− for j ∈ Λ−,

where (ξ+, ξ−) is distributed as {hn(A1A
−1/2
2 ξ+ + B1B

−1/2
2 ξ−)}2 for

hn(t) =

⎧⎨
⎩

1, if 0 ≤ t < 1
1 − log t/ log n, if 1 ≤ t ≤ n
0, if n < t.

Similarly to (4.3), we can write the joint density function of (X, μ) given in (4.1)
as

(4.5) exp{−‖ξ − z‖2/2} {hn(|ξ|)}2

√
A2B2

A1B1
p(S1, S2)dxdξ,

where |ξ| denotes |ξ| = ξ1 + ξ2. The generalized Bayes estimator δn against the
prior π∗

n(μ) can be expressed as

δn =

∫
D

(
√

A2ξ1 −
√

B2ξ2){hn(|ξ|)}2 exp{−‖ξ − z‖2/2}dξ∫
D

{hn(|ξ|)}2 exp{−‖ξ − z‖2/2}dξ

and the generalized Bayes estimator θ̂GB∗ corresponds to the case of hn(|ξ|) = 1,
where D = {ξ|ξ1 > 0, ξ2 > 0}. From (4.3), the difference of the Bayes risk functions
of two estimators θ̂GB∗ and δn is written by

Δn =
∫

D

∫ {
(θ̂GB∗ − θ)2 − (δn − θ)2

}

× exp{−‖ξ − z‖2/2} {hn(|ξ|)}2

√
A2B2

A1B1
p(S1, S2)dxdξ

=
∫

(θ̂GB∗ − δn)2
∫

D

exp{−‖ξ − z‖2/2}{hn(|ξ|)}2

√
A2B2

A1B1
p(S1, S2)dξdx,
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where θ =
√

A2ξ1 −
√

B2ξ2 in the above bracket. Noting that z1, z2 and (S+, S−)
are mutually independent, we can evaluate Δn as

Δn = C

∫
(θ̂GB∗ − δn)2

∫
D

exp{−‖ξ − z‖2/2}{hn(|ξ|)}2dξdz

≤ 2CA2

∫ {∫
D

ξ1f2(ξ)dξ −
∫

D

ξ1f1(ξ)dξ
}2

×
∫

D

exp{−‖ξ − z‖2/2}{hn(|ξ|)}2dξdz

+ 2CB2

∫ {∫
D

ξ2f2(ξ)dξ −
∫

D

ξ2f1(ξ)dξ
}2

×
∫

D

exp{−‖ξ − z‖2/2}{hn(|ξ|)}2dξdz

= Δ+ + Δ−, (say)(4.6)

where C is an appropriate positive constant, and

f1(ξ) =
{hn(|ξ|)}2 exp(−‖ξ − z‖2/2)∫

D
{hn(|ξ|)}2 exp(−‖ξ − z‖2/2)dξ

,

f2(ξ) =
exp(−‖ξ − z‖2/2)∫

D
exp(−‖ξ − z‖2/2)dξ

.

We now show that Δ+ → 0 and Δ− → 0 as n → ∞ by using the same arguments
as in Tsukuma and Kubokawa (2008). Let θ ∨ η = (max(θ1, η1), max(θ2, η2))t and
θ ∧ η = (min(θ1, η1), min(θ2, η2))t for θ = (θ1, θ2)t and η = (η1, η2)t. Since {hn(t)}2

is nonincreasing in t, it is noted that {hn(|θ ∧η|)}2 ≥ {hn(|ξ|)}2, which implies that
f1(θ)f2(η) ≤ f2(θ ∨ η)f1(θ ∧ η). Hence it follows from Karlin and Rinott (1980)
that

(4.7)
∫

D

ξif1(ξ)dξ ≤
∫

D

ξif2(ξ)dξ, i = 1, 2.

Using the integration by parts, we can see that

∫
D

(ξ1 − z1){hn(|ξ|)}2 exp(−‖ξ − z‖2/2)dξ

= exp(−z2
1/2)

∫ n

0

{hn(ξ2)}2 exp(−(ξ2 − x2)2/2)dξ2

−
∫

ξ∈D,1≤ |ξ|≤n

hn(|ξ|){1/(|ξ| log n)} exp(−‖ξ − z‖2/2)dξ,(4.8) ∫
D

(ξ1 − z1) exp(−‖ξ − z‖2/2)dξ

= exp(−z2
1/2)

∫ ∞

0

exp(−(ξ2 − z2)2/2)dξ2.(4.9)
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Combining (4.7), (4.8) and (4.9) gives

0 ≤
∫

D

(ξ1 − z1)f2(ξ)dξ −
∫

D

(ξ1 − z1)f1(ξ)dξ

=
exp(−z2

1/2)∫ ∞
0

exp(−(ξ1 − z1)2/2)dξ1

−
exp(−z2

1/2)
∫ n

0
{hn(ξ2)}2 exp(−(ξ2 − z2)2/2)dξ2∫

D
{hn(|ξ|)}2 exp(−‖ξ − z‖2/2)dξ

+

∫
ξ∈D,1≤ |ξ|≤n

(|ξ| log n)−1hn(|ξ|) exp(−‖ξ − z‖2/2)dξ∫
D

{hn(|ξ|)}2 exp(−‖ξ − z‖2/2)dξ
.(4.10)

Since hn(|ξ|)I(ξ ∈ D, 0 ≤ |ξ| ≤ n) ≤ hn(ξ2)I(0 ≤ ξ1 ≤ n, 0 ≤ ξ2 ≤ n), we observe
that ∫

D

{hn(|ξ|)}2 exp(−‖ξ − z‖2/2)dξ

≤
∫

0≤ξ1≤n, 0≤ξ2≤n

{hn(ξ2)}2 exp(−‖ξ − z‖2/2)dξ

≤
∫ ∞

0

exp(−(ξ1 − z1)2/2)dξ1

∫ n

0

{hn(ξ2)}2 exp(−(ξ2 − z2)2/2)dξ2,

which is used to evaluate the second term in the r.h.s. of the equation (4.10). Hence
from (4.10),

0 ≤
∫

D

(ξ1 − z1)f2(ξ)dξ −
∫

D

(ξ1 − z1)f1(ξ)dξ

≤
∫

ξ∈D,1≤ |ξ|≤n
(|ξ| log n)−1hn(|ξ|) exp(−‖ξ − z‖2/2)dξ∫

D
{hn(|ξ|)}2 exp(−‖ξ − z‖2/2)dξ

.

Using the Cauchy-Schwarz inequality, we can see that{ ∫
D

ξ1f2(ξ)dξ −
∫

D

ξ1f1(ξ)dξ
}2

≤
{
∫

ξ∈D, 1≤ |ξ|≤n
(|ξ| log n)−1hn(|ξ|) exp(−‖ξ − z‖2/2)dξ}2

{
∫

D
{hn(|ξ|)}2 exp(−‖ξ − z‖2/2)dξ}2

≤
∫

ξ∈D, 1≤ |ξ|≤n
(|ξ| log n)−2 exp(−‖ξ − z‖2/2)dξ∫

D
{hn(|ξ|)}2 exp(−‖ξ − z‖2/2)dξ

,

which implies

Δ+ = 2CA2

∫ {∫
D

ξ1f2(ξ)dξ −
∫

D

ξ1f1(ξ)dξ
}2

×
∫

D

exp{−‖ξ − z‖2/2}{hn(|ξ|)}2dξdz

≤ 2CA2

∫ ∫
ξ∈D, 1≤ |ξ|≤n

(|ξ| log n)−2 exp(−‖ξ − z‖2/2)dξdz

= 2CA2(2π)
∫

ξ∈D, 1≤ξ1+ξ2≤n

(ξ1 + ξ2)−2dξ(log n)−2.
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Making the transformations u = ξ1 + ξ2 and w = ξ1/(ξ1 + ξ2), we see that∫
ξ∈D, 1≤ξ1+ξ2≤n

(ξ1 + ξ2)−2dξ =
∫ 1

0

dw

∫ n

1

u−1du = log n,

so that
Δ+ ≤ 2CA2(2π)(log n)−1,

which goes to zero as n → ∞. Similarly, we have Δ− ≤ 2CB2(2π)(log n)−1. There-
fore, the admissibility of θ̂GB∗ is established.

Finally, we give an expression of the risk function of θ̂GB∗. As seen from (4.3)
and (4.4), the estimator θ̂GB∗ corresponds to the case k = 2 in the generalized
Bayes estimator θ̂GB against the uniform prior over D given in (1.3). Thus, we
begin with the estimator θ̂GB . First, the generalized Bayes estimator of the mean
vector μ against the uniform prior is given by μ̂GB = X − φGB(X), where

φGB(X) =

∫
D

(X − ξ) exp{−‖X − ξ‖2/2}dξ∫
D

exp{−‖X − ξ‖2/2}dξ

for ξ = (ξ1, . . . , ξk)t. It can be seen that φGB(X) = (φGB
1 (X1), . . . , φGB

k (Xk))t

where φGB
i (Xi) =

∫ ∞
0

(Xi − ξi) exp{ −(Xi − ξi)2/2}dξi/
∫ ∞
0

exp{−(Xi − ξi)2/2}dξi.
The function φGB

i (Xi) can be further rewritten as

(4.11) φGB
i (Xi) = φGB

i =

∫ Xi

− ∞ u exp{ −u2/2}du∫ Xi

− ∞ exp{ −u2/2}du
= − exp{−X2

i /2}∫ Xi

− ∞ exp{−u2/2}du
,

which is negative. In the context of the simultaneous estimation of μ, Hartigan
(2004) derived an expression of the risk function of μ̂GB, which is given by

R(μ, μ̂GB) = E[‖μ̂GB − μ‖2] = k + Eμ

[ k∑
i=1

μiφ
GB
i (Xi)

]
.

This demonstrates that μ̂GB dominates X, namely, μ̂GB is minimax for any di-
mension k. In contrast, the dominance results obtained in Section 3 mean that
the generalized Bayes estimator θ̂GB is not necessarily minimax. Using the same
arguments as in Hartigan (2004), we can get a similar expression of the risk func-
tion. Using the same notation as in (4.11), we can express the generalized Bayes
estimator θ̂GB of θ = atμ as

θ̂GB = atμ̂GB = atX − atφGB(X),

whose risk function is given in the following proposition.

Proposition 4.2. The risk function R(μ, θ̂GB) = E[(θ̂GB − θ)2] has the form

(4.12) R(μ, θ̂GB) = ata+Eμ

[ k∑
i=1

a2
i μiφ

GB
i (Xi)+2

k∑
i=1

∑
j>i

aiajφ
GB
i (Xi)φGB

j (Xj)
]
.

Proof. For notational simplicity, let φi = φGB
i (Xi) and φ = (φ1, . . . , φk)t. Let

Δ = R(μ, θ̂GB) − R(μ, atX). Since R(μ, atX) = ata, it is easy to see that

Δ = atE[−(X − μ)φt − φ(X − μ)t + φφt]a.
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Applying the Stein identity to a cross product term gives

E[(X − μ)φt] = E[diag i

(
(Xi − μi)φi

)
]

= E[diag i

(
1 −

∫ ∞
0

(Xi − ξi)2 exp{−(Xi − ξi)2/2}dξi∫ ∞
0

exp{−(Xi − ξi)2/2}dξi

+ φ2
i

)
],

where diag i(di) denotes diag (d1, . . . , dk). Since (Xi − μi)(Xi − ξi) = (Xi − ξi)2 +
(ξi − μi)(Xi − ξi), the other cross product term can be written as

E[φ(X − μ)t] = E[diag i

(∫ ∞
0

(Xi − ξi)2 exp{−(Xi − ξi)2/2}dξi∫ ∞
0

exp{−(Xi − ξi)2/2}dξi

)

+ diag i

(∫ ∞
0

(ξi − μi)(Xi − ξi) exp{−(Xi − ξi)2/2}dξi∫ ∞
0

exp{−(Xi − ξi)2/2}dξi

)
].

From integration by parts, it is observed that∫ ∞

0

(ξi − μi)(Xi − ξi) exp{ −(Xi − ξi)2/2}dξi

= μi exp{ −X2
i /2} −

∫ ∞

0

exp{−(Xi − ξi)2/2}dξi,

From (4.11), it follows that∫ ∞
0

(ξi − μi)(Xi − ξi) exp{ −(Xi − ξi)2/2}dξi∫ ∞
0

exp{ −(Xi − ξi)2/2}dξi

= −μiφi − 1.

Combining the above observations gives

Δ = atE[−diag i({φi}2 − μiφi) + φφt]a,

which yields expression (4.12).

When μi is zero, it is seen that E0[φi(Xi)] = E0[φ1(X1)] for i = 2, . . . , k. Ac-
cording to Proposition 4.2,

R(0, θ̂GB) = ata + 2
k∑

i=1

∑
j>i

aiaj {E0[φGB
1 (X1)]}2,

which implies that a necessary condition for the minimaxity is
∑k

i=1

∑
j>i aiaj ≤ 0

or k = 1. As seen from Propositions 3.1 and 3.3, this is a sufficient condition as
well. However, Proposition 3.5 shows that it is not sufficient in the case of k ≥ 3.

As in the case of k = 2 in Proposition 4.2, we can provide an expression of the
risk of the generalized Bayes and minimax estimator θ̂GB∗ given in (4.4),

R(μ, θ̂GB∗) = A2
2 + B2

2 + Eμ

[
A2θ1φ

GBs(z1) + B2θ2φ
GBs(z2)

]
− 2Eμ

[√
A2B2φ

GB∗(z1)φGB∗(z2)
]
.

5. A relation to the Stein problem in variance estimation

In this section, we explain that the estimation of the restricted mean in a normal
distribution is related to the Stein problem in the estimation of variance. This fact
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was established by Rukhin (1992) in a canonical form of a normal distributional
model. We here use the same arguments to clarify the conditions on the parameters
under which the Stein estimator of variance in a linear regression model asymptot-
ically reduces to the truncated estimator of the restricted normal mean. We also
show that the Stein problem in estimation of ratio of variances converges to the
estimation of the difference of two restricted normal means.

Let us consider the linear regression model

(5.1) y = Xβ + ε,

where y and X are n × 1 and n × p matrices, respectively, and β is a p-vector
of the regression parameters and ε is an n-vector of errors having a distribution
N (0, σ2In). It is assumed that X is of full rank. Let β̂ = (XtX)−1Xty and S =
(y − Xβ̂)t(y − Xβ̂), which are distributed as N (β, σ2Ip) and σ2χ2

m for m = n − p.
Stein (1964) showed that the best scale estimator based on S is inadmissible and
is improved on by using information contained in β̂. For instance, the unbiased
estimator σ̂2U = S/m is improved on by the truncated estimator

σ̂2S = {S/m, (S + β̂
t
XtXβ̂)/n}

relative to an entropy loss function. Rukhin (1992) showed that this dominance
result can be viewed as the estimation of a positive mean in a normal distribution.

Consider the asymptotic approximation under the following setup which is a
slightly different framework from that of Rukhin (1992):

(A1) The dimension p behaves as p = n − dn where dn > 0 and dn = O(nδ) for
0 ≤ δ < 1.

(A2) XtX/n converges to a positive definite matrix, and there is a positive con-
stant θ such that

lim
n→∞

√
mβtXtXβ/(nσ2) =

√
2θ.

Under (A1), it is easy to see that m = O(nδ) and m → ∞ as n → ∞. Let
Z = (S − mσ2)/(

√
2mσ2) and U = (XtX)1/2(β̂ − β)/σ. Then U have Np(0, I).

Since E[S] = mσ2 and V ar[S] = 2mσ4, it is seen that Z converges to N (0, 1) as
m → ∞. Thus,

(5.2)
√

m(σ̂2U − σ2)/σ2 =
√

2Z = −
√

2(Y − θ),

where Y = −Z + θ and it converges to N (θ, 1). Since β̂
t
XtXβ̂ = σ2U tU +

2σβt(XtX)1/2U + βtXtXβ, it can be seen that
√

m(σ̂2S − σ2)/σ2

=
√

m(σ̂2U − σ2)/σ2 −
√

mmax{0,
p

nm
S − β̂

t
XtXβ̂

n
}

=
√

2Z − max{0,
p

n
(

√
2Z +

√
m) −

√
m

n
U tU

− 2
√

m

σ
√

n
βt(XtX/n)1/2U −

√
mβtXtXβ

nσ2
}

=
√

2Z − max{0,
p

n

√
2Z +

√
mp

n

√
p(U tU/p − 1)

− 2
√

m

σ
√

n
βt(XtX/n)1/2U −

√
mβtXtXβ

nσ2
}.
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From the assumptions, it is observed that p/n → 1,
√

mp/n = O(n(δ−1)/2) → 0
and

√
p(U tU/p − 1) = Op(1), so that (

√
mp/n)

√
p(U tU/p − 1) → 0. Note that

√
m

σ
√

n
βt(XtX/n)1/2U =

√√
m/n

√√
mβtXtXβ/n

βt(XtX/n)1/2U√
βt(XtX/n)β

.

Since βt(XtX/n)1/2U/
√

βt(XtX/n)β ∼ N (0, 1) and
√

m/n = O(nδ/2−1), it is

seen that {
√

m/σ
√

n}βt(XtX/n)1/2U → 0. Thus,
√

m(σ̂2S − σ2)/σ2 →
√

2Z − max{0,
√

2Z −
√

2θ}
= −

√
2(max{Y, 0} − θ),(5.3)

where Y = −Z+θ converges to N (θ, 1) for θ > 0. This shows that Stein’s truncated
estimator of σ2 converges to the nonnegative estimator max(Y, 0) of θ where Y ∼
N (θ, 1) for θ > 0.

We next consider the estimation of ratio of variances in two linear models, given
by yi = Xiβi + εi, i = 1, 2, where εi ∼ Nn(0, σ2

i In), βi is a p × 1 vector and the
other variables are defined similarly to (5.1). Let β̂i and Si be defined as similar
statistics as in model (5.1). Kubokawa (1994b), Kubokawa and Srivastava (1996)
and Iliopoulos and Kourouklis (1999) showed that the best multiple by the ratio
S1/S1 can be improved on by using information on β̂1 and β̂2 in the estimation of
the ratio ρ = σ2

2/σ2
1 . Let σ̂2U

i = Si/m and σ̂2S
i = min{σ̂2U

i , (Si + β̂
t

iX
t
iXiβ̂i)/n} for

i = 1, 2 and m = n − p. For instance, the ratio of the unbiased estimators σ̂2U
2 /σ̂2U

1

should be improved on by the ratio of the truncated estimators σ̂2S
2 /σ̂2S

1 . To derive
the asymptotic approximations of these ratio estimators, it is noted that for two
estimators σ̂2

1 and σ̂2
2 ,

√
m(σ̂2

2/σ̂2
1 − σ2

2/σ2
1) =

√
m(σ̂2

2 − σ2
2)/σ2

2 +
√

m

(σ̂2
1 − σ2

1)/σ2
1 + 1

σ2
2

σ2
1

−
√

m
σ2

2

σ2
1

=
σ2

2

σ2
1

( √
m(σ̂2

2 − σ2
2)/σ2

2

(σ̂2
1 − σ2

1)/σ2
1 + 1

−
√

m(σ̂2
1 − σ2

1)/σ2
1

(σ̂2
1 − σ2

1)/σ2
1 + 1

)
.(5.4)

Assume the condition (A1) and

(A2′) For i = 1, 2, Xt
iXi/n converges to a positive definite matrix, and there is

positive constant θi such that

lim
n→∞

√
mβt

iX
t
iXiβi/(nσ2

i ) =
√

2θi.

For i = 1, 2, let Zi = (Si −mσ2
i )/(

√
2mσ2

i ) and Yi = −Zi+θi, which has N (θi, 1).
Hence from (5.2) and (5.4), it is observed that

√
m(σ̂2U

2 /σ̂2U
1 − σ2

2/σ2
1) → (σ2

2/σ2
1){(Y1 − Y2) − (θ1 − θ2)}.

Also from (5.3) and (5.4),
√

m(σ̂2S
2 /σ̂2S

1 − σ2
2/σ2

1) → (σ2
2/σ2

1){(max(Y1, 0) − max(Y2, 0)) − (θ1 − θ2)}.

This shows that the estimation of the ratio of the variances can be approximated
by the estimation of the difference of the positive means of normal distributions.
Thus, the estimation of the mean difference can be motivated from the estimation
of ratio of variances.
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