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Abstract: This article gives a theoretical treatment of the asymptotics of the
L1 error of a model-based estimate of a density f(x|θ) on a finite dimensional
Euclidean space Rk.

The dimension p of the parameter vector θ is considered arbitrary but
fixed in Section 2. Two theorems in Section 2 lay out the weak limits of a
suitably scaled L1 error, with a general estimating sequence θ̂ and a general
family of smooth densities f(x|θ) dominated by some σ-finite measure, the
discrete case included. We show that the L1 error converges at the coarsest
rate corresponding to the different coordinates of the parameter vector θ. Four
applications are detailed in Section 3, a special one being a new confidence
interval for a Poisson mean.

Section 4 considers the high and the ultra high dimensional case, where p
grows with n. The exact critical growth rate for p when maximum likelihood
starts to falter is derived. Maximum likelihood is shown to exhibit a trichotomy
of behavior; the desired behavior below the threshold, problematic behavior at
the threshold, and disastrous behavior above the threshold.

It is then shown that regularization, if coupled with the right amount of
sparsity, can return consistent density estimation, even at the best possible
n−1/2 rate. We give a complete description of the limiting behavior of the
regularized density estimate under different sparsity conditions. Section 4 is
specialized to the Gaussian case due to its special importance and well known
links to function estimation.
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1. Introduction

Inspired by practical problems in several subject matter fields, a large amount of
theoretical work is currently being done on the so called increasing dimension in-
ferential problems. Depending on the exact context, the number of parameters p is
assumed to increase at a suitable rate with the number of observations n in these
problems. Maximum likelihood, which is asymptotically unbeatable in the fixed
dimension case under enough conditions, fails when p increases too rapidly with
n. To have any hope of accurate inference in such problems, even asymptotically,
one must regularize. The exact form of regularization, once again, depends on the
particular context; but the common idea is that one must use external informa-
tion about the unknown parameters and employ alternative procedures that use
the external information. If the information is correct, the regularized procedure
works better than ordinary maximum likelihood. For instance, for the seemingly
innocuous problem of estimating a normal mean vector, maximum likelihood will
be no good at all if p is large. External information in such a problem may be that
a large number of the true means are zero, or close to zero, often known as spar-
sity of the mean vector. An estimate which can exploit the sparsity will perform
better than ordinary maximum likelihood. Such an estimate is called a regularized
estimate.

The purpose of this paper is to study estimation of a parametric density in high
or ultra high dimensions, and to pin down exactly when maximum likelihood fails
and how suitable regularization, coupled with just the right amount of sparsity, can
save the situation. See Bickel and Li (2006) for a modern overview of the current
state of the area and Liu, Lafferty, and Wasserman (2007) for a specific proposal for
density estimation in such high dimensional cases. The word dimension refers to
the affine dimension of the parameter space. As we remarked above, such problems
with far too many parameters and relatively less samples have become important in
several areas of application of statistics, and are also theoretically important due to
their demonstrated connections to various nonparametric problems, as in Ibragimov
and Has’minskii (1977), Nussbaum (1996), Brown and Low (1996), Donoho and
Johnstone (1998), Johnstone (2003), and Cai and Low (2005), among numerous
others. Precise additional theoretical development is clearly needed to catch up
with the procession of methodologies.

As our criterion, we use the L1 error∫
Rk

|f̂n(x) − f(x)|dμ(x).(1.1)

We chose the L1 error for several reasons, the primary being that it allows us to make
statements simultaneously about estimating probabilities of arbitrary measurable
sets, and its well known invariance properties with respect to transformations and
the dominating measure. A standard reference is Devroye and Györfi (1984). Of
course, we may also use Lp errors for other values of p; a standard reference is
Hall (1984). Actually, the L1 error is technically more difficult to handle than the
Hellinger metric, which is topologically equivalent to the L1 error. The Hellinger
metric in the context of the problems of this paper will be treated in a future
article. An interesting fact which is not obvious, but can be proved in this particular
problem, is that consistency with respect to the L1 error is equivalent to consistency
with respect to any of the Kolmogorov metric, the L2 distance, the Hellinger metric,
and the Kullback-Leibler distance.
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Fully nonparametric density estimation is problematic in as few as five dimen-
sions. Against this background, perhaps it is not surprising that parametrics, and
especially Gaussian parametrics, have made a dramatic come back in these mod-
ern high dimensional problems. We follow that tradition while dealing with density
estimation in high dimensions. Thus, the true underlying density f is taken to be
a Radon-Nikodym derivative with respect to a suitable σ-finite measure on some
Rk, 1 ≤ k < ∞, and is assumed to be indexed by a p-dimensional parameter. As is
usual, we assume that we have n iid observations X1, X2, · · · , Xn to estimate the
true f . All results in the paper are in an asymptotic paradigm, i.e., as n → ∞.

As regards p, the dimension of the parameter space, the results are clearly di-
vided into two different setups. Section 2 details our results on consistency and
weak limits of the L1 error when p is arbitrary but fixed. In other words, p does
not grow with n in Section 2. The densities are general smooth densities, and the
assumptions required are fairly minor. In Section 3, the theorems of Section 2 are
applied to four concrete examples. One example uses a theorem in Section 2 to
propose a new confidence interval for a Poisson mean. Le Cam (1990) had pre-
viously suggested construction of confidence sets by using metrics on probability
measures. Two other examples lay out the general location-scale parameter problem
as a special example of the general theorem. A fourth example applies a general the-
orem in Section 2 to robust estimation of a p-dimensional location parameter and
demonstrates a striking robustness property of the L1 median. Section 2 also gives a
theorem for the two-sample case, for which we use as our criterion the corresponding
L1 error ∫

Rk

|f̂1,n(x) − f̂2,m(x)|dμ(x),(1.2)

where f̂1,n(x), f̂2,m(x) are two different estimate sequences of a common true un-
derlying f(x). Usually, this common f will come from some sort of a null hypothesis
that two populations have an underlying common distribution.

In Section 4, we make our transition to the high and ultra high dimensions. In
other words, now p grows with n. We make the restriction to a Gaussian density
in this section. Clearly, the Gaussian case should be the first case to try, although
some of the results in Section 4 should admit easy generalizations. We show that
p ∼ n is when maximum likelihood starts to fail. If p ∼ n, maximum likelihood fails
to deliver even consistent density estimates. If p = o(n), then maximum likelihood
works and it converges at the n− 1

2 rate. If p grows faster than n, then we show that
maximum likelihood not only fails, but fails miserably.

We then show that regularization can save us when p grows at the rate of n, or
even if it grows faster than n. However, the faster it grows, the more sparse will
have to be the underlying Gaussian mean vector. As a sample of one such result,
we show that at whatever rate p grows, if n

p (θ′θ) → 0 and n(θ′θ) → b ≥ 0 (but
b < ∞), the regularized density estimate will still succeed in not only delivering on
consistency, but in also producing the best possible n− 1

2 rate.
We have regularized the MLE by using the James-Stein estimate. The sparsity

conditions corresponding to this specific regularization work out to conditions on
the L2 norm of the mean vector θ. It is certainly desirable to use other methods of
regularization, e.g., hard thresholding. If we do, the sparsity conditions will work
out to something else. This is not explored here, and is currently under investiga-
tion.
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2. Asymptotics for fixed dimensions

The basic problem of this section is the following: f(x|θ) is a density with respect
to some dominating measure μ on a finite dimensional Euclidean space Rk. The
parameter θ is a p-dimensional Euclidean vector for some fixed but arbitrary p < ∞.
Based on an iid sample X1, X2, · · · , Xn from f(x|θ), we first estimate θ by using
some fairly general estimator sequence θ̂ = θ̂(X1, X2, · · · , Xn). We then look at
the implied model-based density estimate f(x|θ̂), and study consistency and weak
convergence of the L1 error

∫
Rk |f(x|θ̂) − f(x|θ)|dμ(x). The results are then used

in four concrete applications. The two sample case is also supplied.

2.1. The theorems

Let Pθ, θ ∈ Θ ⊂ Rp be a parametric family of distributions on (Rk, B(Rk)) such
that Pθ 	 μ for some σ-finite measure μ on (Rk, B(Rk)), where B(Rk) denotes the
Borel σ-field on Rk, 1 ≤ k < ∞. Let fθ ≡ dPθ

dμ . Let Z+ = {0, 1, . . .} denote the set
of all nonnegative integers. For a matrix Γ, let Γ′ denote its transpose. We define
the derivative

Dαfθ(x) =
∂α

∂θα1
1 · · · ∂θ

αp
p

fθ(x),

where α = (α1, . . . , αp) ∈ Z p
+ with |α| =

∑p
j=1 αj . Let θ̂n be an estimator of θ and

let r be a given positive integer such that at the true value θ = θ0, the following
conditions hold:

(A.1) There exist a nondegenerate random vector Z and a sequence of constants
cn → ∞ such that

cn(θ̂n − θ0)
L⇒ Z as n → ∞.

(A.2)r There exists a set A ∈ B(Rk) with μ(Ac) = 0 such that, for all x ∈ A, fθ(x)
is (r + 1)-times continuously differentiable in some neighborhood of θ0, and
for all α ∈ Z p

+ such that 1 ≤ |α| ≤ r,∫
A

‖Dαfθ0(x)‖μ(dx) < ∞(2.1) ∫
A

sup
‖t−θ0‖ ≤δ, |α|=r+1

‖Dαft(x)‖μ(dx) < ∞ for some δ > 0.(2.2)

Conditions (A.1) and (A.2)r are satisfied in many applications. In this section, we
shall use condition (A.2)r with r = 1 only. We verify these conditions in some
examples in the next Section.

Under the above conditions, the first theorem below gives the limiting distribu-
tion of the L1 error for the plug-in parametric density estimator.

Theorem 2.1. (The One Sample Case). Suppose that conditions (A.1) and
(A.2)r hold with r = 1. Then

cn‖f
θ̂n

− fθ0 ‖1
L⇒

∫
|Z ′f

(1)
θ0

(x)|μ(dx),(2.3)

where the random integral on the right is defined in a pointwise sense and f
(1)
θ (x)

denotes the vector of first order partial derivatives of fθ(x) w.r.t θ.
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Proof. In (A.2)1, for notational simplicity, set Ac = ∅. Then,

‖f
θ̂n

− fθ0 ‖1

=
∫

|fθ̂n
− fθ0 |dμ

=
∫

| {fθ0(x) + (θ̂n − θ0)′f
(1)
θ0

(x) + Rn(x)} − fθ0(x)|μ(dx)

=
∫

|(θ̂n − θ0)′f
(1)
θ0

(x) + Rn(x)|μ(dx)(2.4)

{
≥

∫
|(θ̂n − θ0)′f

(1)
θ0

(x)|μ(dx) −
∫

|Rn(x)|μ(dx)
≤

∫
|(θ̂n − θ0)′f

(1)
θ0

(x)|μ(dx) +
∫

|Rn(x)|μ(dx),
(2.5)

where Rn(x) denotes the remainder term. By (A.1) and (A.2)1,∫
|Rn(x)|μ(dx)

≤ const. ‖ θ̂n − θ0 ‖2

∫
sup

‖t−θ0‖ ≤ ‖θ̂n −θ0‖,|α|=2

|Dαft(x)|μ(dx)

= Op(c−2
n ).(2.6)

Next, note that the mapping

h(t) ≡
∫

|t′f
(1)
θ0

(x)|μ(dx), t ∈ Rp

is continuous on Rp. This follows from the DCT (the dominated convergence the-
orem):

h(t + s) ≡
∫

|(t + s)′f
(1)
θ0

|μ(dx)

→
∫

|t′f
(1)
θ0

(x)|μ(dx) as ‖ s ‖→ 0.

Hence, by (7) and (8), (5) follows.

The corresponding theorem for the two-sample case is the following. Theorem 2.2
is useful for testing on the basis of independent samples from Fθ and Fλ that θ = λ.
The hypothesis can be rejected if ‖fθ̂1,n

− fθ̂2,n
‖1 is large, with the cut-off value

coming from the limiting null distribution given below in Theorem 2.2.

Theorem 2.2. (The Two Sample Case). Suppose that the conditions of Theo-
rem 2.1 hold.

(a) Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn
iid∼ Pθ0 , all observations being mutually

independent. Let θ̂1,n = θ̂1,n(X1, X2, . . . , Xn), and θ̂2,n = θ̂2,n(Y1, Y2, . . . , Yn) be two
estimators, each satisfying the conditions in Theorem 2.1 with the same sequence
{cn}. Then,

cn‖fθ̂1,n
− fθ̂2,n

‖1
L⇒

∫
|(Z1 − Z2)′f

(1)
θ0

(x)|μ(dx),(2.7)

where Z1, Z2 are independent, being as in assumption (A.1).
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(b) Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn
iid∼ Pθ0 , all observations being mutually

independent. Let θ̂1,m = θ̂1,m(X1, X2, . . . , Xm), and θ̂2,n = θ̂2,n(Y1, Y2, . . . , Yn) each
satisfy the conditions in Theorem 2.1 with the the same sequence {cn}. Assume
further that there exists a function c(.) of regular variation at ∞ with exponent
γ > 0 such that cn = c(n), and that m, n → ∞ in a way that m

m+n → τ for some
0 ≤ τ ≤ 1. Then,

cmcn

cm+n
‖fθ̂1,m

− fθ̂2,n
‖1

L⇒
∫

|[(1 − τ)γZ1 − τγZ2]′f
(1)
θ0

(x)|μ(dx),(2.8)

where Z1, Z2 are independent, and as in assumption (A.1).

Proof. We only outline the proof of part (b). First note that cn

cm+n
=

c( n
m+n (m+n))

c(m+n) .
Since n

m+n → 1 − τ and c(.) is of regular variation at ∞ with exponent γ, by
the local uniformity of the regular variation property (see pp. 17, Resnick (1987)),

cn

cm+n
→ (1 − τ)γ . Similarly, cm

cm+n
→ τγ . Part (b) of Theorem 2.2 now follows on

writing cmcn

cm+n
‖fθ̂1,m

− fθ̂2,n
‖1 as

∫
| cn

cm+n
cm(fθ̂1,m

− fθ0) − cm

cm+n
cn(fθ̂2,n

− fθ0)|μ(dx),
and by using the Taylor series argument exactly as in Theorem 2.1.

3. Examples

Next we consider a number of examples that illustrate Theorem 2.1.

Example 1 (A New Poisson Confidence Interval). Let Pθ = POISSON(θ),
θ ∈ (0, ∞), and let θ̂n = X̄n. The standard estimate of θ is indeed the MLE Xn. If
we estimate Pθ by the Poisson distribution with mean X, then the total variation
distance between Pθ and PX is related to the L1 error by the expression

dTV (POI(θ), POI(X)) =
1
2

‖fθ − fX ‖1.

We work out the limiting distribution of this total variation distance in this example.
Possible practical applications of this limiting distribution are indicated at the end
of this example.

By the central limit theorem,
√

n(θ̂n − θ) L⇒ N(0, θ)

for all θ and hence, (A.1) holds. Next note that (writing D for ∂
∂θ ),

fθ(x) ≡ e−θ θx

x!
, x = 0, 1, . . .

⇒ Dfθ(x) =

{
e−θ

(
θx−1

(x−1)! − θx

x!

)
, if x = 1, . . .

−e−θ if x = 0,

D2fθ(x) =

⎧⎪⎨⎪⎩
e−θ

[(
θx−2

(x−2)! − θx−1

(x−1)!

)
−

(
θx−1

(x−1)! − θx

x!

)]
, x = 2, 3 . . .

e−θ[−1 − (1 − θ)], x = 1
e−θ, x = 0

=

⎧⎪⎨⎪⎩
e−θ

[
θx

x! − 2θx−1

(x−1)! + θx−2

(x−2)!

]
, x = 2, 3 . . .

e−θ(θ − 2), x = 1
e−θ, x = 0.
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Hence, it follows that

sup
|t−θ|≤δ

|D2ft(x)|

≤ e−(θ−δ)

[
(θ + δ)2

x!
+

(θ + δ)x−2

(x − 2)!
I(x = 2, . . .)

]
,

which, in turn, implies that∫
sup

|t−θ|≤δ

|D2ft(x)|μ(dx)

≤ e−(θ−δ)

[ ∞∑
x=0

(θ + δ)x

x!
+

∞∑
x=2

(θ + δ)x−2

(x − 2)!

]
= e−(θ−δ)[2e(θ+δ)]
= 2e2δ < ∞.

Thus, the second assumption in (A.2)1 holds.
Also,

τ1(θ)
def

≡
∫

|Dfθ(x)|μ(dx)

= e−θ +
∞∑

x=1

∣∣∣e−θ

(
θx−1

(x − 1)!
− θx

x!

) ∣∣∣
= e−θ +

∞∑
x=1

e−θ θx

x!

∣∣∣x
θ

− 1
∣∣∣

=
∞∑

x=0

e−θ θx

x!

∣∣∣x
θ

− 1
∣∣∣

= Eθ

∣∣∣X1

θ
− 1

∣∣∣,
which implies the first assumption in (A.2)1. Hence,

√
ndTV

(
POI(X̄n), POI(θ)

)
L⇒ |N(0, θ)| · τ1(θ)

2
for all θ ∈ (0, ∞).

Interestingly, there is an exact expression for τ1(θ). Indeed, τ1(θ) = 2e−θθ[θ]

[θ]! ;
see Diaconis and Zabell (1991). Here, [θ] denotes the integer part of θ. Thus,√

ndTV (POI(X̄), POI(θ)) converges to the absolute value of a normal random
variable with mean 0 and variance

v(θ) =
e−2θθ2[θ]+1

([θ]!)2
.(3.1)

The function v(θ) has an interesting shape and is plotted below. We notice from
the plot that as distributions, POI(X̄) and POI(θ) are the closest together when θ
is an integer, and the farthest apart when θ is a half-integer. It would be interesting
to give an intuitive explanation for this finding.
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2 4 6 8 10
theta

0.025

0.05

0.075

0.1

0.125

0.15

0.175

v(theta) The Variance Function v(theta) of Example 1

Discussion. What is a possible application of this result? As mentioned in the in-
troduction, the result can be used to construct an asymptotically correct confidence
set for a Poisson mean θ. There are a few possibilities here. The most obvious one
is to construct the confidence set as{

θ :
√

ndTV

(
POI(X), POI(θ)

)
≤

√
v(X)χα

}
,(3.2)

where v(.) is the function described above and χ2
α is the (1 − α)th percentile of

a χ2(1) distribution. Another possibility is to exploit the connection of v(θ) to
the mean absolute deviation function E(|X1 − θ|) and directly estimate the mean
absolute deviation by the sample mean absolute deviation, namely 1

n

∑n
i=1 |Xi −

X|. This will also result in an asymptotically correct confidence set. The Wald

confidence interval X ± zα/2

√
X
n is a textbook confidence set for θ, which has been

shown to have poor coverage properties in Brown, Cai, and DasGupta (2003). It
would be interesting to further pursue these two confidence intervals for θ and study
their coverage properties.

Example 2 (The General Location-Scale Family). Let

Fθ(x) = F0

(
x − μ

σ

)
, θ = (μ, σ)′ ∈ R × (0, ∞).

Suppose that θ̂n is some sequence of estimates such that

(A.1)′ √
n(θ̂n − θ) L⇒ N(0, Σ0), and

(A.2)′
1 for some δ > 0 and for i = 0, 1, 2,∫

sup
‖θ−t‖ ≤δ

∣∣∣∣[ 1
t2

f
(i)
0

(
x − t1

t2

)]∣∣∣∣ μ(dx) < ∞,

where t = (t1, t2)′ and where f
(i)
0 denotes the ith derivative of f0 for i ≥ 1

and where f
(0)
0 = f0.
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A word of notational caution is that the location parameter and the dominating
measure have both been denoted as μ, to preserve the consistency of notation for
the dominating measure.

Now,

fθ(x) =
1
σ

f0

(
x − μ

σ

)

⇒
{

d
dμfθ(x) = − 1

σ2 f
(1)
0

(
x−μ

σ

)
d

dσ fθ(x) = −1
σ2 f0

(
x−μ

σ

)
+ μ

σ3 f
(1)
0

(
x−μ

σ

)

⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d2

dμ2 fθ(x) = 1
σ3 f

(1)
0

(
x−μ

σ

)
d2

dσdμfθ(x) = 2
σ3 f

(1)
0

(
x−μ

σ

)
− μ

σ4 f
(2)
0

(
x−μ

σ

)
d2

dσ2 fθ(x) =
[

2
σ3 f0

(
x−μ

σ

)
− μ

σ4 f
(1)
0

(
x−μ

σ

)]
− 3μ

σ4 f
(1)
0

(
x−μ

σ

)
+ μ2

σ5 f
(2)
0

(
x−μ

σ

)
.

Thus (2.4) of (A.2)1 follows from (A.2)′
1. Next, note that

2∑
j=1

∫
|Djfθ(x)|μ(dx) ≤

[∫
1
σ2

|f (1)
0

(
x − μ

σ

)
|μ(dx)

]

+
[∫

1
σ2

f0

(
x − μ

σ

)
μ(dx) + | μ

σ3
|
∫

|f (1)
0

(
x − μ

σ

)
|μ(dx)

]
=

1
σ

∫
|f (1)

0 |μ(dx) +
[

1
σ

+
|μ|
σ2

∫
|f (1)

0 (x)|μ(dx)
]

< ∞, by (A.2)′.

Thus, (2.3) of (A.2)1 holds. Hence, by Theorem 2.1,

√
n‖f

θ̂n
− fθ ‖1

L⇒
∫ ∣∣∣Z1

(
− 1

σ2
f

(1)
0

(
x − μ

σ

))
+ Z2

(
− 1

σ2
f0

(
x − μ

σ

)
+

μ

σ3
f

(1)
0

(
x − μ

σ

))∣∣∣μ(dx)

=

∫ ∣∣∣Z1

σ
f

(1)
0 (x) + Z2

(
1

σ
f0(x) − μ

σ2
f

(1)
0 (x)

)∣∣∣μ(dx),

where Z = (Z1, Z2)′ ∼ N(0, Σ0). Notice that the limiting random variable is
the L1 - norm (wrt μ) of a Gaussian process. In general, writing the distribu-
tion of the L1-norm of a Gaussian process is hard. For special choices of the
density f0, we can pin it down. We do so in a number of further examples be-
low.

Example 3 (The Gaussian Case in Explicit Form). This example is a natural
illustration of our general result in Example 2. Let X1, X2, . . . , Xn be iid from
N(μ, σ2), and as estimates of μ, σ, consider the usual estimates X, s. The limiting
distribution of

√
ndTV (Pθ, Pθ̂n

) will be worked out in this example. Note that this
distribution is independent of the true values of μ, σ due to the equivariant nature
of the estimates X, s. We thus set μ = 0, σ = 1 in applying the general result
enunciated in Example 2.
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By a direct calculation, the integrand in the result of Example 2 works out to:

Z1f
(1)
0 (x) + Z2f0(x) =

1√
2π

e−x2/2|Z2 − Z1x|.(3.3)

This can be integrated in closed form, resulting in the fact that in this exam-
ple,

√
ndTV (Pθ, Pθ̂n

) converges in distribution to the distribution of |Z1|
2 [2CΦ(C)+

2φ(C) − C], where C = Z2
Z1

, Z1, Z2 being as in Example 2 (i.e., Z1, Z2 are indepen-
dent normals with means zero and variances 1 and 2 respectively.

Fortunately, we can make further analytical progress. The reason is that the
function H(C) = 2CΦ(C) + 2φ(C) − C is an even function of C and monotone
increasing for C > 0. As a consequence, the CDF of our limiting distribution,
namely,

P (
|Z1|
2

H(C) ≤ x) = P (|C| ≤ H−1(
2x

|Z1| ))

= E[P (|C| ≤ H−1(
2x

|Z1| ))|Z1] = 2E[Φ(
|Z1|√

2
H−1(

2x

|Z1| ))] − 1,

on using the fact that the conditional CDF of |C| given Z1, P (|C| ≤ a|Z1 = z) =
2Φ(a|z|√

2
) − 1, which can be established by a simple calculation. On differentiation,

the density function of our limiting CDF equals the expression

2
√

2
∫ ∞

− ∞

φ(zH−1( 2x
|z| )/

√
2)φ(z)

H ′(H−1( 2x
|z| ))

dz,(3.4)

where H ′ denotes the derivative of H. Thus, the density of our limiting CDF can
in fact be written as a one dimensional integral, which is easy to compute and plot.
We computed this density at a finite grid of arguments and then smoothed it by
using a default smoother on Mathematica. We provide a (smoothed) plot of this
limiting density below. It is not certain that the bumps in the plot are real, because
the plot is a smoothed version of a discrete set of values.

0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

Density of Asymptotic Distribution of Total Variation Distance in the Normal Case
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Example 4 (Application to Robust Estimation). This example illustrates the
utility of our approach in evaluating the robustness of estimators. It also shows a
rather remarkable property of the L1 median as an estimator of a multidimensional
location parameter. For instance, the property is not shared by the sample mean
vector.

Let X1, X2, . . . , Xn be iid observations from a location parameter density f(x −
θ) in Rp. We consider the spherically symmetric case for illustration. Thus, the
null density f(x) = h(r), for some function h(r), where r = | |x| |. It is assumed
that h is once differentiable in order that Theorem 2.1 can be applied. We will
compare the limiting distributions of

√
ndTV (Pθ, Pθ̂n

) for two choices of θ̂n, namely
θ̂n = X, and θ̂n = Mn, the L1 median. The L1 median is chosen as a specific
illustration. See Brown (1983), and Small (1990) for various properties of the L1

median.

It is well known that for a general location parameter distribution in p-dimensions,
√

n(Mn − θ) L⇒ N(0, B−1AB−1), where A = EF
XXT

||X||2 , and B = EF

I− XXT

| |X| |2

||X|| ,
where X denotes a single observation from the null distribution, here denoted
as F . See Brown (1983), Hettmansperger and McKean (1998). Specialized to the
spherically symmetric case, the expressions for A, B simplify to A = 1

pI, and B =
p−1

p (EF
1

||X|| )I. Thus, in the notation of Theorem 2.1, Z ∼ N(0, p
(p−1)2(EF

1
| |X| | )2

I).

According to Theorem 2.1, we need to find the limiting distribution of
1
2

∫
|Z ′f

(1)
0 (x)|dx, where f

(1)
0 (x) is the gradient vector of the null density f(x) =

h(r). Thus, f
(1)
0 (x) = xh′(r)

r .
We now make use of a general multidimensional integral formula in order to

evaluate
∫

|Z ′x|f (1)
0 (x)dx. The formula we use is the following:

For any two functions p, q such that the integrals below exist,∫
Rp

p(z′x)q(| |x| |)dx = Ap−1(B)
∫ ∞

0

∫ π

0

p(r| |z| | cos η)(sin η)p−2rp−1q(r)dηdr,

where Ap−1(B) = 2π
p−1
2

Γ( p−1
2 )

is the surface area of the unit sphere B in p−1 dimensions.
This formula results from a polar transformation of the rectangular coordinates
x1, x2, . . . , xp.

Applying the formula to the function p(z′x) = |z′x|, and q(r) = h′(r)
r , we get∫

|Z ′f
(1)
0 (x)|dx = Ap−1(B)

∫ ∞

0

rp−1|h′(r)|dr

( ∫ π

0

| cos η|(sin η)p−2dη

)
| |Z| |.

On the other hand, for the case of the L1 median, | |Z| |2 ∼ p
(p−1)2(EF

1
| |X| | )2

χ2(p), of

which EF
1

||X|| = 2π
p
2

Γ( p
2 )

∫ ∞
0

rp−2h(r)dr, by just a polar transformation. Plugging the

respective expressions for
∫

|Z ′f
(1)
0 (x)|dx and p

(p−1)2(EF
1

| |X| | )2
, on some algebra one

gets the general result that for iid observations X1, X2, . . . , Xn from a spherically
symmetric density f(x − θ) = h(| |x − θ| |),

nd2
TV (Pθ, PMn) L⇒ p

π(p − 1)4

(
Γ(p

2 )
Γ(p−1

2 )

)2(∫ ∞
0

rp−1|h′(r)|dr∫ ∞
0

rp−2h(r)dr

)2

χ2(p).
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Asymptotic Densities of n*(d_TV)^2 using L_1 Median and Sample Mean; p = 3

Suppose now we make the additional assumption at this final stage that f is
unimodal, so that h(r) is decreasing and that f is bounded so that h(0) < ∞.
Then, the final simplification comes from integrating rp−1|h′(r)| by parts, giv-
ing

∫ ∞
0

rp−1|h′(r)|dr = −
∫ ∞
0

rp−1h′(r)dr = (p − 1)
∫ ∞
0

rp−2h(r)dr, as the con-
stant term vanishes due to the assumption h(0) < ∞. This simplification re-
sults in the fact that for all spherically symmetric unimodal densities in Rp with
a bounded density, nd2

TV (Pθ, PMn) has the same limiting distribution given by
p
4π

( Γ( p
2 )

Γ( p+1
2 )

)2
χ2(p). This is a very interesting robustness property of the L1 me-

dian.
By an analogous calculation, for general spherically symmetric densities (without

requiring unimodality),

nd2
TV (Pθ, PX) L⇒ 2π

3
2 p−1

Γ(p
2 )(Γ(p+1

2 ))2

( ∫ ∞

0

rp−1|h′(r)|dr

)2( ∫ ∞

0

rp+1h(r)dr

)
χ2(p).

Notice that, unlike the L1 median, even if we assume unimodality, the limit distri-
bution is not free of h.

The densities of the two limiting distributions corresponding to Mn, and X are
plotted above for the underlying density h(r) = ce−r, with c denoting the nor-
malizing constant. We can see from the plot that Mn results in a stochastically
smaller limit distribution. The advantage in using the L1 median increases very
significantly as the number of dimensions increases, but even for a small p = 3, the
plot illustrates the huge advantage in using the L1 median compared to the sample
mean for this case. Of course, the choice of h(r) = ce−r was an artifact, and any
other heavy-tailed choice would illustrate the result as well.



Density estimation in high and ultra high dimensions 13

4. Increasing dimensions

Principally due to certain problems in applications to do with astronomy, network
data, and genetics, there has been a tremendous increase in the interest in inference
problems in very high dimensions in the last decade or so. Typically, in the mathe-
matical formulation of these problems, the affine dimension p of the parameter space
is allowed to depend on n, the sample size, and additionally, p = pn is assumed to
converge to ∞ as n → ∞. Nonparametrics in such very high dimensional problems
continue to remain problematic, and there has been a reemergence of Gaussian
parametrics in the context of these modern very high dimensional problems. There
are other reasons that the increasing dimension or the infinite dimension Gaussian
mean setup is important. Results in Ibragimov and Has’minskii (1977), Brown and
Low (1996), Nussbaum (1996), Ingster (2001; 2002), among others, show that the
infinite or the increasing dimension Gaussian mean problem relates in a fundamen-
tal way to various other nonparametric problems, such as nonparametric density
estimation and nonparametric regression. A massive literature has already accumu-
lated, and for the most part, the theoretical developments have focused on point or
confidence estimation or hypothesis testing about the parameter vector. The liter-
ature is too huge to cite. A few key references are Donoho and Johnstone (1998),
Johnstone (2003), Bickel and Li (2006), Bickel and Levina (2008), Bickel, Ritov,
and Tsybakov (2009), Cai and Low (2005), Cai, Xu, and Zhang (2009), Hall and
Jin (2008), Fan, Hall, and Yao (2007), Fan, Samworth, and Wu (2009), Wasserman
(2006), and Wasserman and Roeder (2009). A particularly relevant recent reference
is Johnstone (2010), which addresses various Bayesian asymptotics problems in the
increasing dimension Gaussian setup.

We treat estimation of the entire density itself under such high or ultra high
dimensions. By considering the L1 risk in the density estimation, we can make
statements simultaneously about estimating the probability of arbitrary Borel sets.
The results will clearly bring out the advantages of regularization, the necessity for
sparsity when the dimensions are ultra high, and the failure of ordinary maximum
likelihood to provide even consistent density estimation when the dimensions cross
a threshold rate of growth. The exact threshold will be explicitly pinned down; so
will be the precise extent of sparsity needed in order that regularization can succeed
when maximum likelihood fails. First order asymptotic theory will be established
without leaving any open cases. We believe that this is the first formal development
of theory for density estimation in high and ultra high dimensions.

Here is the setup and the notation that we will follow throughout this sec-
tion. We have X1, X2, · · · , Xn iid p = pn-dimensional Gaussian random vectors,
each with mean vector θ and a known nonsingular covariance matrix Σ: Xi

iid∼
Np(θ, Σ). The dependence of p (and θ and Σ) on n will be suppressed for nota-
tional ease. The common density function of our sample observations is f(x|θ) =

1
(2π)p/2|Σ|1/2 e− 1

2 (x−θ)′Σ−1(x−θ), x ∈ Rp. Our problem, as in the previous sections, is
to estimate this density function itself, by using the sample data X1, X2, · · · , Xn.
Also, as in the previous sections, we continue to use the L1 risk as our criterion.
Because the covariance matrix Σ is assumed to be known, it may in fact be taken
to be the just the p × p identity matrix, as can be quickly seen by making a linear
transformation of the sample observations. This is a useful notational reduction,
and Σ will be taken to be Ip×p in the rest of the section.
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Here is some more notation that will be used for the rest of this section. ρn

will denote the L1 distance between f(x|θ) and f(x|θ̂) for a generic estimate se-
quence θ̂ = θ̂n; that is, ρn =

∫
Rp |f(x|θ) − f(x|θ̂)|dx. The MLE X will be denoted

as θ̂1n, and for regularization we use the canonical James-Stein estimator (James
and Stein (1961)) θ̂2n = (1 − αn

nX
′
X

)X. The original choice of James and Stein
was αn = (p − 2); we use αn = p, which leads to the same asymptotic results
as for αn = (p − 2), but reduces the algebraic complexity of the calculations. Of
course, regularization can be done by using various other estimates, such as the
positive-part James-Stein estimator (see Strawderman (2000)), or hard threshold-
ing regularization procedures, as in Donoho and Johnstone (1995). However, we
consider only the canonical James-Stein estimator in this article due to reasons of
space. Let

√
n(X − θ) = Zn;

Z ′
nZn − p√

2p
= Wn.(4.1)

Additionally, the notation W will be used to denote a generic standard normal
variable. Note that for each fixed n, Z ′

nZn ∼ χ2
p; hence, as n → ∞, Wn

L⇒ W ∼
N(0, 1). In particular, Wn is an Op(1) sequence.

It is helpful to have a preview of what the entire set of results in this section
says, which we present first before giving the theorems.

4.1. Preview of the results

(a) When p → ∞, but at a slower rate than n, i.e., p = o(n), both the MLE
θ̂1n and the regularized estimate θ̂2n lead to consistent density estimation.
Furthermore, the first order asymptotic theory for ρn, the L1 risk, coincides
(under a condition), and ρn goes to zero at the best possible rate, namely,
n−1/2. The interpretation is that in the slowly increasing dimensional case,
regularization is not really necessary, and maximum likelihood itself does the
job.

(b) If p ∼ n, then maximum likelihood starts to falter and ρn (with θ̂n = MLE)
does not even converge in probability to zero. We already lose consistency. If,
in particular, p = c2n, then ρn

P⇒ 4[Φ( c
2 ) − 1

2 ], and
√

n(ρn − 4[Φ( c
2 ) − 1

2 ]) L⇒
N(0, 2φ2( c

2 )).
(c) If p grows faster than n, i.e., p

n → ∞, then maximum likelihood completely

falls apart and ρn
P⇒ 2, whatever be the parameter vector θ. Sparsity of the

parameter vector is not going to save maximum likelihood in these ultra high
dimensional cases. Thus, p ∼ n is the threshold where maximum likelihood
breaks down, and in the ultra high dimensional case, the true density and the
density estimated by using maximum likelihood will sit essentially on disjoint
subsets of Rp.

(d) However, these problematic cases for the maximum likelihood estimate do not
create problems for the regularized estimate, as long as the parameter vector
θ is just sufficiently sparse (in the sense that ‖θ‖ → 0 at a suitable rate).
Thus, regularization and sparsity join hands together to rescue the situation
that maximum likelihood cannot deal with.

(e) Precisely, here is how the rate of growth of p and sparsity of the parame-
ter vector together determine the asymptotic fate of the regularized density
estimate:
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(i) If n
p θ′θ → 0 and nθ′θ → ∞, then ρn

||θ||
P⇒

√
2
π .

(ii) If n
p θ′θ → 0 and nθ′θ → b2 (0 < b < ∞), then

√
nρn

L⇒
√

2
π [b2 + 2W 2].

(iii) If n
p θ′θ → 0 and nθ′θ → 0, then

√
nρn

L⇒ 2√
π

|W |.

Case (i) in (e) corresponds to the case where the dimensions are ultra high, and
the parameter vector is not adequately sparse. In this case, ρn goes to zero at the
slower rate of | |θ| |, which is the loss in quality of estimation due solely to the lack
of adequate sparsity. Note the important fact that if | |θ|| �→ 0, then in spite of
regularization, we will lose consistency. Cases (ii) and (iii) in (e) correspond to the
adequately sparse case, and here we notice that the sparser the parameter vector is,
i.e., the smaller b is, the smaller is the weak limit of ρn stochastically. In addition,
when we have this sort of adequate sparsity, we can still have convergence at the
best possible n−1/2 rate. This is the exact gain in regularizing the estimate when
we reach the ultra high dimensions.

As graphical illustration of the advantages of regularization, we provide below
two histograms of simulated values of the variation distance ρn. In each plot, p =
n = 100. In the first plot, θ1 = · · · = θ10 = .1, and the rest of the θi are zero.
Thus, n

p θ′θ = .1 and nθ′θ = 10. This corresponds to medium sparsity. From the
histogram, we see that the advantages of regularization are very substantial. If we
do not regularize, ρn ranges between .33 and .48 (that is what the scale means),
while if we do regularize, then ρn ranges between .08 and .23. The ranges are
nonoverlapping. In the second plot, θ1 = · · · = θ50 = .1, and the rest of the θi are
zero. Thus, n

p θ′θ = .5 and nθ′θ = 50. This corresponds to mild sparsity. From the
histogram, we see that the advantages of regularization are still substantial, but
now the ranges overlap. It appears that regularization would be a good idea when
p is large even under mild sparsity.
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Histogram of Variation Distance: JS vs. MLE; p = n = 100
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Histogram of Hellinger Distance under Small Sparsity; p = n =100
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4.2. The theorems

The results indicated in the preview above are proved in this section. The technique
is to use an all at one time exact explicit formula for the L1 risk ρn and then use
it to carefully write stochastic expansions for ρn. Under the various configurations
of p

n and θ′θ, different terms in the stochastic expansion become the stochastically
dominant term, which then determine the precise asymptotics. The exact formula
for ρn is given first. The key to writing this formula is the convenient fact that
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a linear function of a Gaussian vector is a univariate normal, which allows one
to replace a seemingly complicated p-dimensional integral by a one dimensional
integral, and it then turns out that this one dimensional integral can be done in
closed form. Here is the formula.

Lemma 1. Let f(x|θ) be the density of the Np(θ, Ip×p) distribution. Then, for any
estimate θ̂, the L1 distance ρn admits the formula

ρn =
∫

Rp |f(x|θ) − f(x|θ̂)|dx = 2
[
2Φ(

| |θ̂ − θ| |
2

) − 1
]
.(4.2)

Proof. By its definition,

ρn =
1

(2π)p/2

∫
Rp

|e− 1
2 (x−θ)′(x−θ) − e− 1

2 (x−θ̂)′(x−θ̂)|dx

=
1

(2π)p/2

∫
Rp

|e− 1
2 (y−(θ̂−θ))′(y−(θ̂−θ)) − e− 1

2 y′y |dy

=
e− 1

2 (θ̂−θ)′(θ̂−θ)

(2π)p/2

∫
Rp

e− 1
2 y′y |e(θ̂−θ)′y − e

1
2 (θ̂−θ)′(θ̂−θ)|dy

=
e− 1

2 (θ̂−θ)′(θ̂−θ)

√
2π| |θ̂ − θ| |

∫ ∞

− ∞
e

− 1
2

y2

| |θ̂−θ| |2 |ey − e
| |θ̂−θ| |2

2 |dy

(this is the reduction to a one dimensional integral that was mentioned above)

=
e− 1

2 (θ̂−θ)′(θ̂−θ)

√
2π

∫ ∞

− ∞
e− z2

2 |e||θ̂−θ||z − e
| |θ̂−θ| |2

2 |dz

= e− 1
2 ||θ̂−θ||2

[
1√
2π

∫ | |θ̂−θ| |
2

− ∞
e− z2

2 (e
| |θ̂−θ| |2

2 − e||θ̂−θ||z)dz

+
1√
2π

∫ ∞

| |θ̂−θ| |
2

e− z2
2 (e||θ̂−θ||z − e

| |θ̂−θ| |2
2 )dz

]
.

Each of these two integrals in the line above can be calculated in closed form, by
completing the squares in the exponents in order to turn them into some other uni-
variate normal density, and then write the integrals in terms of the standard normal
CDF. Indeed, the two integrals are equal, and on simplification the e− 1

2 ||θ̂−θ||2 term
outside the integrals cancels, resulting finally in the formula given in the statement
of the lemma.

It is clear from this lemma that ρn
P⇒ 0 iff | |θ̂ − θ| | P⇒ 0. Since convergence

in probability of a nonnegative sequence {Yn} is metrized by E Yn

1+Yn
, we have the

following interesting connection between estimation of fθ and estimation of θ.

ρn
P⇒ 0 iff Eθ

| |θ̂ − θ| |
1 + | |θ̂ − θ| |

→ 0.

In other words, the density estimation problem is equivalent to the estimation of
the mean with the bounded loss function ||a−θ||

1+||a−θ|| .

We now present the main theorems of this section.
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Theorem 4.1 (Performance of Maximum Likelihood).

(a) (Slow growth of p). Suppose p = o(n). Then under any sequence of mean
vectors θ, √

n

p
ρn

P⇒
√

2
π

.

(b) (i) If p = o(n2/3), then

√
p [

√
n

p
ρn −

√
2
π

] L⇒ N(0,
1
π

);

(ii) If p
n2/3 → 1, then

√
p [

√
n

p
ρn −

√
2
π

] L⇒ N(− 1
12

√
2π

,
1
π

);

(iii) If p
n2/3 → ∞, then

√
p [

√
n

p
ρn −

√
2
π

+
p

n

1
12

√
2π

] L⇒ N(0,
1
π

).

(c) If p
n �→ 0, then ρn does not converge in probability to zero.

(d) (The Boundary). Suppose p = c2n for some fixed c. Then

√
n

(
ρn − 4[Φ(

c

2
) − 1

2
]
)

L⇒
√

2φ(
c

2
)W,

where W ∼ N(0, 1).
(e) (Ultra High p). Suppose p

n → ∞. Then

ρn
P⇒ 2.

Proof. We use the formula of Lemma 1. When θ̂ = X, the MLE, using the notation
defined at the beginning of this section,

| |θ̂ − θ| |2 =
Z ′

nZn

n
=

p

n
(1 +

√
2
p
Wn)

⇒ ρn = 4
[
Φ

( √
p

2
√

n

√
1 +

√
2
p
Wn

)
− 1

2

]

= 4
[
Φ(

√
p

2
√

n
+

Wn

2
√

2n
) − 1

2

]
+ Op(

1
√

np
).(4.3)

This representation will be useful to us for establishing each part of this theorem.
First, for part (a), from this last representation, when p → ∞, p

n → 0,

ρn = 4
[
Φ(0) + (

√
p

2
√

n
+

Wn

2
√

2n
)φ(0) − 1

2

]
+ Op((

p

n
)3/2) + Op(

1
√

np
)

⇒
√

n
√

p
ρn = 2φ(0) +

√
2

√
p
φ(0)Wn + Op(

p

n
) + Op(

1
p
) = 2φ(0) + op(1).
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Therefore,
√

n√
p ρn

P⇒ 2φ(0) =
√

2
π , which proves part (a).

By expanding
√

1 +
√

2
pWn and also expanding Φ(z) around z = 0, we get the

stochastic expansion
√

n
√

p
ρn − 2φ(0) = φ(0)

√
2
p
Wn +

φ′ ′(0)
12

p

n
+ Op(

√
p

n
)

⇒
√

n
√

p
ρn − 2φ(0) = φ(0)

√
2
p
Wn +

φ′ ′(0)
12

p

n
+ op(min(

1
√

p
,

√
p

n
)).

Each result in part (b) follows from this last line, by considering the cases (i), (ii),
(iii) separately. The detail is omitted due to limited space.

Part (c) also follows from the representation for ρn derived above. For, if p
n �→ 0,

there must be a subsequence
pnj

nj
→ c2 for some c ∈ (0, ∞]. The representation

ρn = 4
[
Φ(

√
p

2
√

n
+

Wn

2
√

2n
) − 1

2

]
+ Op(

1
√

np
)

shows that along this subsequence, ρn converges in probability to 4
[
Φ( c

2 ) − 1
2

]
,

which is strictly positive for any c ∈ (0, ∞].
The proof of part (d) is essentially the same as that of part (c). Writing p

n = c2,
the representation for ρn works out to

ρn = 4
[
Φ(

c

2
) − 1

2
+

Wn

2
√

2n
φ(

c

2
)
]

+ Op(
1
n

)

⇒ ρn − 4
[
Φ(

c

2
) − 1

2

]
=

√
2
n

φ(
c

2
)Wn + Op(

1
n

).

Since Wn
L⇒ W ∼ N(0, 1), the result of part (d) follows.

Part (e) follows immediately from the same representation for ρn. This completes
the proof of this theorem.

Remarks. It should be pointed out that if in part (d) we only assume that p
n →

c2(0 < c < ∞), then the final result will depend on the exact rate of convergence
of p

n − c2 to zero. That is the reason that p
n was taken as equal to c2 in part

(d). An important special case is p = n, and part (d) tells us that if p = n,
√

n(ρn − .7659) L⇒ N(0, .248).

Part (a) of Theorem 4.1 says that if p = o(n), then ρn
P⇒ 0. Thus, theoretically, if

p grows slower than n, then for large n, ρn should be small and ordinary maximum
likelihood ought to work fine. This can be a bit misleading in practice. The following
plot gives the plots of 2500 simulated values of 1

2ρn when n = 500 and p is, from top
to bottom, n3/4, n2/3,

√
n, and n1/4. For example, when p = n3/4 = 105 (the top

curve), we see that the values of 1
2ρn vary between .13 and .23. This is unsatisfactory.

Only for the lowest curve (p = n1/4), the values are at all acceptably small. Thus,
there can be a divide between practical performance and predicted performance, as
asserted in the theorem, unless n is very very large. The theorem gives qualitative
insight, but it should not be taken literally.
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The next result derives the asymptotics of the regularized estimate. The various
parts of this next theorem show how regularization can help in achieving consis-
tency in high or even ultra high dimensions, as long as the ill effects of the high
dimensionality are neutralized by the right amount of sparsity in a delicate balanc-
ing act. The theorem reinforces the inevitable need for regularization when the curse
of dimensionality strikes.

Theorem 4.2 (Performance of the Regularized Estimate).

(a) (Slow growth of p). Suppose p = o(n) and that n
p (θ′θ) → ∞. Then√

n

p
ρn

P⇒
√

2
π

.

(b) (Slow growth of p plus some sparsity). Suppose p = o(n) and that n
p (θ′θ) → a2

for some a ∈ (0, ∞). Then √
n

p
ρn

P⇒ a
√

2√
π(1 + a2)

.

(c) (Connection to Pinsker’s Theorem). Suppose p = n and θ′θ → c2(0 < c < ∞).
Then

ρn
P⇒ 2

[
2Φ(

c

2
√

1 + c2
) − 1

]
.

(d) (Arbitrary growth of p).

(i) (Some sparsity). Suppose n
p (θ′θ) → 0, but n(θ′θ) → ∞. Then

1
| |θ| | ρn

P⇒
√

2
π

.

(ii) (Medium sparsity). Suppose n
p (θ′θ) → 0, and n(θ′θ) → b2 for some

b ∈ (0, ∞). Then
√

nρn
L⇒

√
2
π

(b2 + 2W 2),
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where W ∼ N(0, 1).

(iii) (High sparsity). Suppose n(θ′θ) → 0 (and hence n
p (θ′θ) automatically

goes to zero). Then
√

nρn
L⇒ 2√

π
|W |,

where W ∼ N(0, 1).

Proof. Once again, we use the notation outlined at the beginning of this section
and we use the explicit formula for ρn derived in Lemma 1. The estimate of θ in
this theorem is the James-Stein estimate

θ̂ = (1 − αn

nX
′
X

)X.

This gives, on some algebra, which is omitted here,

| |θ̂ − θ| |2 = | |X − θ| |2 − 2αnX
′
(X − θ)

nX
′
X

+
α2

nX
′
X

n2(X
′
X)2

=
Z ′

nZn

n
+

α2
n − 2nαn(θ + Zn√

n
)′ Zn√

n

n2(θ + Zn√
n
)′(θ + Zn√

n
)

This expression is valid for any choice of αn. If we use αn = p, this becomes

| |θ̂ − θ| |2 =
p +

√
2pWn

n
− p2 + 2p

√
n(θ′Zn) + 2

√
2p3/2Wn

n2(θ′θ) + 2n3/2(θ′Zn) + np +
√

2pnWn
.(4.4)

The task is now to identify the dominant terms in this stochastic representation
under the various parts of this theorem, which then determine the asymptotics.
We will provide here the derivations only for part (a) and part (d)(ii) due to space
reasons.

First consider part (a). In this case, ultimately the term p+
√

2pWn

n will turn
out to be the dominant term in | |θ̂ − θ| |2, which is what happened in part (a)
of Theorem 4.1, and that is why the result is also the same as in part (a) of
Theorem 2.1. The reason that p+

√
2pWn

n is the dominant term is that the second term
p2+2p

√
n(θ′Zn)+2

√
2p3/2Wn

n2(θ′θ)+2n3/2(θ′Zn)+np+
√

2pnWn
is oP ( p

n ). This requires some careful bookkeeping.
We show that in this expression p2 is the dominant term in the numerator and
n2(θ′θ) is the dominant term in the denominator. For example, in the denominator,

np +
√

2pnWn

n2(θ′θ)
= Op(

np

n2(θ′θ)
) = Op(

1
n
p (θ′θ)

) = oP (1).

Next, by the Cauchy-Schwarz inequality,(
n3/2(θ′Zn)

)2

n4(θ′θ)2
= OP

(
n3(Z ′

nZn)
n4(θ′θ)

)
= OP

(
n3p

n4(θ′θ)

)
= OP

(
1

n
p (θ′θ)

)
= oP (1).

On the other hand, in the numerator, p3/2Wn = oP (p2) because Wn = OP (1),
and p

√
n(θ′Zn) = oP (p2) by another application of the Cauchy-Schwarz inequality,

Hence, putting these all together,
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p2 + 2p
√

n(θ′Zn) + 2
√

2p3/2Wn

n2(θ′θ) + 2n3/2(θ′Zn) + np +
√

2pnWn
= OP (

p2

n2(θ′θ)
)(4.5)

= OP (
p

n

1
n
p (θ′θ)

) = oP (
p

n
),

because n
p (θ′θ) → ∞ by assumption in part (a). This proves the result of part (a).

Consider next part (d)(ii) of the theorem. In this case, unlike part (a), the term
p+

√
2pWn

n is no longer negligible, and we must deal with the entire expression for
| |θ̂ − θ| |2. Indeed, on a few lines of algebra and careful cancellations, the expression
for n| |θ̂ − θ| |2 reduces to

n| |θ̂ − θ| |2 =
2pW 2

n + np(θ′θ) +
√

2p(nθ′θ)Wn + 2
√

2
√

np(θ′Zn)Wn

(nθ′θ) + 2
√

n(θ′Zn) + p +
√

2pWn
.(4.6)

It will now ultimately turn out that 2pW 2
n +np(θ′θ) is the dominant term in the nu-

merator, and p is the dominant term in the denominator. Therefore, the asymptotics
will be determined by those of 2pW 2

n+np(θ′θ)
p = 2W 2

n + b2, due to the assumption in
part (c)(ii) that n(θ′θ) → b2. Once we have this, the result of part (d)(ii) falls out
immediately by invoking our formula for ρn given in Lemma 1.

The verifications that 2pW 2
n + np(θ′θ) and p are the respective dominant terms

in the numerator and the denominator are not difficult. The only term in the
denominator that requires checking is 2

√
n(θ′Zn). Again, by the Cauchy-Schwarz

inequality,

(
√

n(θ′Zn))2 = OP (nθ′θ(Z ′
nZn)) = O(1)OP (p) = OP (p),

as was required. In the numerator, the term
√

2p(nθ′θ)Wn is disposable because
nθ′θ = O(1) by assumption and Wn = Op(1). Likewise, the term 2

√
2

√
np(θ′Zn)Wn

is also negligible by an application of the Cauchy-Schwarz inequality and the fact
that Wn = OP (1). This completes our proof of part (d)(ii) of the theorem.
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