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A class of multivariate distributions

related to distributions with a Gaussian

component

Abram M. Kagan1 and Lev B. Klebanov2

Abstract: A class of random vectors (X, Y), X ∈ R
j , Y ∈ R

k with charac-
teristic functions of the form

h(s, t) = f(s)g(t) exp{s′Ct}
where C is a (j × k)-matrix and prime stands for transposition is introduced
and studied. The class contains all Gaussian vectors and possesses some of their
properties. A relation of the class to random vectors with Gaussian components
is of a particular interest. The problem of describing all pairs of characteristic
functions f(s), g(t) such that h(s, t) is a characteristic function is open.

1. Introduction

In the paper we study properties of random vectors (X, Y) taking values in R
m,

m = j + k with characteristic functions h(s, t) = E exp i{s′X+ t′Y} of the form

(1) h(s, t) = f(s)g(t) exp{s′Ct}.
Here s ∈ R

j , t ∈ R
k, C is a (j × k)-matrix, prime stands for transposition, and

f(s), g(t) are the (marginal) characteristic functions of X and Y.
The class of m-variate distributions with characteristic functions (1) includes all
Gaussian distributions and, trivially, all distributions of independent X and Y (for
the latter C = 0). The dependence between X and Y is, in a sense, concentrated
in the matrix C and it seems natural to call this form of dependence Gaussian-like.
Note that if E(|X|2) < ∞, E(|Y2) < ∞, −C is the covariance matrix of X and
Y, −C = cov(X, Y). We call the distributions with characteristic functions (1)
GL-distributions.

When f(s), g(t) are characteristic functions, (1) is, in general, not a characteristic
function. For example, in case of j = k = 1 if f(s) = sin s/s is the characteristic
function of a uniform distribution on (−1, 1), then for any characteristic function
g(t) (1) is not a characteristic function unless C = 0 (if C �= 0, h(s, t) is unbounded).

In the next section it is shown that if f(s), g(t) have Gaussian components,
(1) is a characteristic function for all C with sufficiently small elements. We know
of no other examples of f(s), g(t) when h(s, t) is a characteristic function. Note
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in passing that the absence of Gaussian components plays an important role in
problem of the arithmetic of characteristic functions (see, e. g., [3]).

The vectors (X, Y) with characteristic functions (1) have some nice properties.

2. Properties of the GL-distributions

Proposition 1. If (X1, Y1), (X2, Y2) are independent random vectors having
GL-distributions and a, b constants, (X, Y) = a(X1, Y1) + b(X2, Y2) also has a
GL-distribution.

Proposition 2. If (X, Y) has a GL-distribution and X1 (resp. Y1) is a subvector
of X (resp. Y), then (X1, Y1) also has a GL-distribution.

Proof. Assuming X1 (resp. Y1) consisting of the first j1 (resp. k1) components of
X (resp. Y) and denoting C1 the submatrix of the first j1 rows and k1 columns
of the matrix C from the characteristic function (1) of (X, Y), s1 (resp. t1) the
vector of the first j1 (resp. k1) components of s (resp. t), the characteristic function
of X1, Y1) is

h1(s1 t1) = f1(s1)g1(t1) exp{s′1C1t1}
with f1(s1) = f(s1,0), g1(t1) = g(t1,0).

Proposition 3. Let (X, Y) have a GL-distribution and E(|X|2) < ∞,
E(|Y|2) < ∞. If linear forms L1 = a′X, L2 = b′Y where a ∈ R

j , b ∈ R
k are

constant vectors, are uncorrelated, they are independent.

Proof. In the characteristic function (1), −C = cov(X, Y) whence cov(L1, L2) =
−a′Cb. Thus, uncorrelatedness of L1 and L2 means a′Cb = 0. But then for u, v ∈ R

E exp{i(uL1 + vL2)} = f(ua)g(vb) exp{uva′Cb} = f(ua)g(vb).

Proposition 3 is related to Vershik’s (see, [5]) characterization of of Gaussian
vectors. Let Z be an m-variate random vector with covariance matrix V of rank
≥ 2. If any two uncorrelated linear forms a′Z, b′Z are independent, Z is a Gaussian
vector [5]. The reverse is a well known property of Gaussian vectors.

The property stated in Proposition 3 is not characteristic of the random vectors with
GL-distributions. However, if to assume additionally that (X, Y) are the vectors
of the first and second components, respectively, of independent (not necessarily
identically distributed) bivariate random vectors (X1, Y1), . . . , (Xn, Yn), the GL-
distributions are characterized by “uncorrelatedness of a′X and b′Y implies their
independence” property. The following result holds.

Theorem 2.1. If E(X2
j + Y 2

j ) < ∞, j = 1, . . . , n and any two uncorrelated linear
forms

L1 = a1X1 + . . .+ anXn, L2 = b1Y1 + . . .+ bnYn

are independent, then (i) cov(Xj , Yj) = 0 implies independence of Xj and Yj (a
trivial part), (ii) if, additionally, #{i : cov(Xi, Yi) �= 0} ≥ 3, the characteristic
function hj(s, t) of any uncorrelated (Xj , Yj) in a vicinity of s = t = 0 has the
form of

(2) hj(s, t) = fj(s)gj(t) exp{Cjst}
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for some constant Cj, (iii) if neither of those hj(s, t) vanishes, (2) holds for all
s, t ∈ R.

Proof. See [1]

Theorem 2.1 and the next result also proved in [1] show that some characteristic
properties of the Gaussian distributions, after being modified for the setup of par-
titioned random vectors, become characteristic properties of the GL-distributions.

Theorem 2.2. If (X1, Y1), . . . , (Xn, Yn) is a sample of size n ≥ 3 from a bivariate
population and the sample mean X̄ of the first components is independent of the
vector of the residuals (Y1 − Ȳ , . . . , Yn − Ȳ ) of the second components and (not
or) Ȳ is independent of (X1 − X̄, . . . , Xn − X̄), then the population characteristic
function h(s, t) in a vicinity of s = t = 0 has the form

(3) h(s, t) = f(s)g(t) exp{Cst}

for some C. If h(s, t) does not vanish, (3) holds for all s, t ∈ R.

The next two properties demonstrate the role of Gaussian components in GL-
distributions.
Recall that a random vector ξ with values in R

s has a Gaussian component if

(4) ξ = η + ζ

where η and ζ are independent random vectors and ζ has an s-variate Gaussian
distribution. In terms of characteristic functions, if f(u), u ∈ R

s is the characteristic
function of ξ, (4) is equivalent to

(5) f(u) = f1(u) exp{−u′V u/2}

where V is a Hermitian (s × s)-matrix and f1(u) is a characteristic function. In
view of (5), they say also that f(u) has a Gaussian component.

Theorem 2.3. If f(s), s ∈ R
j , g(t), t ∈ R

k are characteristic functions having
Gaussian components and C = [crq] is a (j × k)-matrix, then for sufficiently small
|crq|, r = 1, . . . , j; q = 1, . . . , k the function

h(s, t) = f(s)g(t) exp{s′Ct}.

is the characteristic function of a random vector (X, Y) with values in R
m, m =

j + k. Plainly,

h(s, 0) = f(s), h(0, t) = g(t)

are the (marginal) characteristic functions of X and Y.

Note that if F(F, G) is the Fréchet class of m-variate distribution functions
H(x, y) with H(x, ∞) = F (x), H(∞, y) = G(y), Theorem 2.3 means that if
X ∼ F (x) and Y ∼ G(y) have Gaussian components, the class F(F, G) contains
H(x, y) with the characteristic function

h(s, t) =

∫
Rm

exp{i(s′x+ t′y)}dH(x, y)

of the form (3) for all C with sufficiently small elements.
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Proof. By assumption,

f(s) = f1(s) exp{−s′V1s/2}, g(t) = g1(t) exp{−t′V2t/2}

where V1, V2 are (j×j) and (k×k) Hermitian matrices respectively, and f1(s), g1(t)
are characteristic functions. Let now ζ ′ = (ζ1, ζ2)

′ be an m-dimensional Gaussian
vector with mean vector zero and covariance matrix

V =

[
V1 C
C ′ V2

]

where Vi is the covariance matrix of ζi, i = 1, 2 and C = [crq] = cov(ζ1, ζ2) is a
(j × k)-matrix.

The matrix

V =

[
V1 0
0 V2

]

is positive definite. Hence, for all sufficiently small |crq| (their smallness is deter-
mined by V1, V2) the matrix

V =

[
V1 C
C ′ V2

]
+

[
0 C
C ′ 0

]
(6)

is also positive definite so that (6) is Hermitian and may be chosen as a covariance
matrix. Indeed, the property of a matrix to be positive definite is determined by
positivity of a (finite) number of submatrices and plainly is preserved under small
additive perturbations as in (6).

Now one sees that the function (3) rewritten as

h(s, t) = f1(s)g1(t) exp

{
−1

2
(s′V1s− 2s′Ct+ t′V2t)

}

is a product of three characteristic functions, f1(s), g1(t) and

ϕ(s, t) = exp

{
−1

2
(s′V1s− 2s′Ct+ t′V2t)

}
,

the latter being the characteristic function of an m-variate Gaussian distribution
N(0, V ), and thus is a characteristic function itself.

Remark. In case of j = k = 1, the smallness of |C| required in Theorem 2.3 can
be quantified. Namely, if the variances of the Gaussian components ζ1 and ζ2 are
σ2
1 and σ2

2 , suffice to assume |C| < σ1σ2. In this case, C = ρσ1σ2 for some ρ, |ρ| < 1
and

h(s, t) = f1(s)g1(t) exp

{
−1

2
(σ2

1s
2 − 2ρσ1σ2st+ σ2

2t
2)

}

with the third factor on the right being the characteristic function of a bivariate
Gaussian distribution.

Theorem 2.4. If (X, Y) has a GL-distribution with C �= 0 and X is a Gaussian
vector, then any linear form b′Y either is independent of X or has a Gaussian
component.
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Proof. Fix b ∈ R
k. If for any a ∈ R

j , a′Cb = 0, then for any u ∈ R

E exp{iu(a′X+ b′Y)} = h(ua) = f(ua)g(ub) exp{u2a′Cb} = f(ua)g(ub).

Thus, in this case b′Y is independent of any a′X implying independence of b′Y
and X. Indeed, for any u ∈ R, u �= 0 and v ∈ R

j ,

E exp{i(v′X+ ub′Y)} = E exp{iu(a′X+ b′Y)} = f(ua)g(ub) = f(v)g(ub).

Suppose now that there exists an a ∈ R
j such that a′Cb �= 0. Then, denoting V

the covariance matrix of X,

E exp{iu(a′X+ b′Y)} = g(ub) exp{−u2

2
(a′V a− 2a′Cb)}.

One can always choose |b| large enough (replacing, if necessary, b with λb) so that

a′V a− 2a′Cb = −σ2 < 0.

Now
g(ub) = h(ua, ub) exp{−σ2u2/2}

and since h(ua, ub) is a characteristic function, the random variable b′Y with the
characteristic function g(ub) has a Gaussian component.

As a direct corollary of Theorem 2.4 note that in case j = k = 1, if (X, Y ) has
a GL-distribution and X is Gaussian, either Y is independent of X (in which case
its distribution may be arbitrary) or it has a Gaussian component.

Cramér classical theorem (see, e. g., Linnik and Ostrovskii (1977) [4]) claims
that the components of a Gaussian random vector are necessarily Gaussian (the
components of a Poisson random variable are necessarily Poisson and the com-
ponents of the sums of independent Poisson and Gaussian random variables are
necessarily of the same form so that the above is not a characteristic property of
the Gaussian distribution). A corollary of Theorems 2.3 and 2.4 shows that the
class of GL-distributions is not closed with respect to deconvolution.

Corollary 1. There exist independent bivariate vectors (X1, Y1), (X2, Y2) whose
distributions are not GL while their sum (X1+Y1, X2+Y2) has a GL-distribution.

Proof. There are examples of independent random variables Y1, Y2 without Gaus-
sian components whose sum Y1 + Y2 has a Gaussian component. In [4] was shown
that independent identically distributed random variables Y1, Y2 with the charac-
teristic function f(t) = (1− t2)e−t2/2 have no Gaussian component while their sum

Y1 + Y2 whose characteristic function is (1 − t2)2e−t2 has a Gaussian component

with the characteristic function e−t2/4.
Il’inskii [2] showed that any non-trivial (i. e., with ab �= 0) linear combination

aY1+bY2 of the above Y1, Y2 has a Gaussian component. It leads to that any vector
(aX1 + bY1, aX2 + bY2) with ab �= 0, Y1, Y2 from Il’inski’si example and Gaussian
X1, X2 has a GL-distribution.

Let now (X1, Y1), (X2, Y2) be independent random vectors with Gaussian first
components and such thatXi and Yi, i = 1, 2 are not independent (their dependence
may be arbitrary). Due to Theorem 2.4, in case of j = k = 1 the distributions of
the vectors (Xi, Yi), i = 1, 2 are not GL. At the same time, both components of
their sum (X, Y ) = (X1 +X2, Y1 + Y2) have Gaussian components so that due to
Theorem 2.3 the vector (X, Y ) has a GL-distribution.



110 A.M. Kagan, L. B. Klebanov

Combining Theorems 2.1 and 2.4 leads to a characterization of distributions with
a Gaussian component by a property of linear forms.

Corollary 2. Let (X1, Y1), . . . , (Xn, Yn), n ≥ 3 be independent random vectors
with Gaussian first components. Assume that for i = 1, . . . , n

E|Yi|2 < ∞, cov(Xi, Yi) �= 0

and the characteristic functions hi(s, t) of (Xi, Yi) do not vanish. Then uncorre-
latedness of pairs L1 = a1X1 + . . . + anXn, L2 = b1Y1 + . . . + bnYn in the first
and second components is equivalent to their independence if and only if Y1, . . . , Yn

have Gaussian components.

Proof. From Theorem 2.1 (assuming E(Xi) = 0),

hi(s, t) = e−σ2
i s

2/2gi(t) exp{Cist}
where σ2

i = E(X2
i ), gi(t) is the characteristic function of Yi and Ci = −cov(Xi, Yi) �=

0. Then by Theorem 2.4 Yi has a Gaussian component. For the sufficiency part see
Proposition 3.

To the best of the authors’ knowledge, it is the first example of characterization
of distributions with Gaussian components.

For simplicity, let us consider the case of two-dimensional vector (X,Y ) with a
GL-distribution.

Hypothesis Vector (X,Y ) has GL-distribution if and only if both X and Y have
Gaussian components.

To support this Hypothesis note that it is true for infinitely divisible characteristic
function h(s, t).

This fact is rather simple, and its proof follows from Lévy Chinchine represen-
tation for infinitely divisible characteristic functions.

Let us give another example of characterization of distributions with a Gaussian
component, supporting the Hypothesis. To this aim consider a set ξ1, . . . , ξn of
independent random variables, and two sets a1, . . . , an, b1, . . . , bn of real constants.
Denote

(7) J = {j : ajbj �= 0}, J1 = {1, . . . , n} \ J.
Theorem 2.5. Let

X =

n∑
j=1

ajξj , Y =

n∑
j=1

bjξj .

Denote by h(s, t) the characteristic function of the pair (X,Y ) and suppose that the
set J �= ∅. The pair (X,Y ) has a GL-distribution if and only if all ξj with j ∈ J
have Gaussian distribution. In this case

(8) h(s, t) = f(s)g(t) exp{cst},
where both f and g have Gaussian components or are Gaussian.

Proof. Let us calculate h(s, t). We have

(9) h(s, t) = E exp{isX + itY } = E exp

⎧⎨
⎩

n∑
j=1

i(saj + tbj)ξj

⎫⎬
⎭ =

n∏
j=1

hj(saj + tbj),
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where hj is the characteristics function of ξj (j = 1, . . . , n). From (8) and (9) it
follows that

(10)

n∏
j=1

hj(saj + tbj) = f(s)g(t) exp{cst}.

The equation (10) is very similar to that appearing in known Skitovich–Darmois
Theorem. The same method shows us that the functions hj with j ∈ J are charac-
teristic functions of Gaussian distributions. Therefore, the functions f(s) and g(t)
are represented as the products of Gaussian characteristic functions (hj with j ∈ J)
and some other functions (hj with j ∈ J1).

Reverse statement is trivial.

GL-distributions may be of some interest for the theory of statistical models.
Let F (x) and G(y) be a j- and k-variate distribution functions with

∫ |x|2dF (x) <
∞,

∫ |y|2 dG(y) < ∞. Does there exist an m-variate, m = j + k, distribution
function H(x, y) with marginals F and G such that if (X, Y) ∼ H, the covariance
matrix cov(X, Y) is a given (j × k)-matrix C? In other words, is it possible to
assume as a statistical model the triple (F, G; C)?

Since for any variables ξ, η with σ2
ξ = var(ξ) < ∞, σ2

η = var(η) < ∞,

(11) |cov(ξ, η)| ≤ σξση,

the elements of C must satisfy conditions à la (11). Even in case of j = k = 1, (11)
is not always (i. e., not for all F, G) sufficient.

Proposition 4. If X ∼ F, Y ∼ G have Gaussian components with covariance ma-
trices V1, V2, there exist models (F, G; C) for all C with sufficiently small elements,
their smallness is determined by V1 and V2.

Proof. As shown in Theorem 2.3, the function

h(s, t) = f(s)g(t) exp{±s′Ct}
where f(s), g(t) are the characteristic functions of X and Y, is for all C with
sufficiently small elements the characteristic function of a distribution H(x, y)
with marginals F and G. Simple calculation shows that cov(X, Y) = ∓C.

Certainly, the presence of Gaussian components in X and Y is an artificial
condition for the existence of a model (F, G; C). And besides, the statistician
would prefer to work with the distribution function or the density and not with the
characteristic function.

H. Furstenberg, Y. Katznelson and B.Weiss (private communication) showed
that if j- and k-dimensional random vectors X ∼ F, Y ∼ G with finite second
moments are such that for any unit vectors a ∈ R

j , b ∈ R
k

E(|a′X|) > A, E(|b′Y|) > A,

then for all sufficiently small (depending on A) absolute values of the elements of
an (j × k)-matrix C there exists an m = (j + k)-variate distribution H(x, y) with
marginals F (x) and G(y) and cov(X,Y) = C. Their proof is based on the convexity
of the Fréchet class F(F, G) that allows constructing the required H as a convex
combination of Hrq ∈ F(F, G) where for a given pair(r, q),

∫ m

R

xryq dHrq(x ,y) = ±ε
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for some ε > 0 while for all other pairs (r′, q′) �= (r, q),

∫ m

R

xr′yq′ dHrq(x ,y) = 0.

The resulting H, though given in an explicit form, is not handy for using in appli-
cations and would be interesting to construct (in case of absolutely continuous F
and G) an absolutely continuous H with the required property.
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