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Abstract: Consider the task of estimating a regression function for describing
the relationship between a response and a vector of p predictors. Often only
a small subset of all given candidate predictors actually effects the response,
while the rest might inhibit the analysis. Procedures for variable selection aim
to identify the true predictors. A method for variable selection when the di-
mension p of the regressor space is much larger than the sample size n is Sure
Independence Screening (SIS). The number of predictors is to be reduced to
a value less than the number of observations before conducting the regres-
sion analysis. As SIS is based on nonrobust estimators, outliers in the data
might lead to the elimination of true predictors. Hence, a robustified version
of SIS called RoSIS was proposed which is based on robust estimators. Here,
we give a modification of RoSIS by using the MCD estimator in the new al-
gorithm. The new procedure MCD-RoSIS leads to better results, especially
under collinearity. In a simulation study we compare the performance of SIS,
RoSIS and MCD-RoSIS w.r.t. their robustness against different types of data
contamination as well as different degrees of collinearity.

1. Introduction

In the analysis of high dimensional data the curse of dimensionality Bellmann [1]
is a phenomenon which hinders an accurate modeling of the relation between a re-
sponse variable Y ∈ R and a p-dimensional vector of predictors X = (X1, . . . , Xp)

T

∈ R
p. There are essentially two ways to handle the problem: we either use a re-

gression method that is able to cope with high dimensional data, or we apply a
dimension reduction technique that projects the p-dimensional predictor onto a
subspace of lower dimension K � p followed by a usual regression procedure.

For the later approach, Li [10] proposed the model

(1.1) Y = f(b1X, . . . , bKX, ε),

where f : RK → R is an unknown link function to be estimated from observations
(xT

i , yi)
T , i = 1, . . . , n, and ε is an error term that is independent from X. The

vectors bi, i = 1, . . . ,K, are called effective dimension reduction (edr) directions
which span a K-dimensional subspace SY |X assumed to be the central subspace in
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the sense of Cook [2, 3]. Under model (1.1) the projection of X onto SY |X captures
all relevant information that is given by the original data. In this paper we further
restrict the link function by assuming a linear model Y = bTX + ε with b ∈ R

p.
Commonly, variable selection is conducted simultaneously to the regression anal-

ysis — it is part of the model selection Li et al. and Cox and Snell [11, 4]. Here, we
focus on variable selection as a prestep to the regression and assume model (1.1).
A special case of dimension reduction arises if all edr directions are projections
onto one component of X each. Hence, out of the p predictors at hand only KV S

canonical unit vectors bi ∈ R
p, i = 1, . . . ,KV S , KV S � p, are classified as being

relevant and are solely used in the following regression analysis.
These days, we face a more difficult situation than the one described above more

and more often: The sample size n can be much smaller than the dimension p of
the regressor space. The accomplishment of this challenge is an important part of
current research. Fan and Lv [6] provide a procedure for variable selection espe-
cially for this situation. They can even show that their method Sure Independence
Screening (SIS) possesses the sure screening property. That is, after the selection
of n − 1 or n/ log(n) variables by SIS, all true predictors are in the chosen subset
with a very high probability when some conditions are fulfilled.

However, SIS is based on nonrobust estimators such that outliers in the data
might influence the selection of predictors negatively, i. e. variables with an effect
on Y are not extracted or noise variables are selected as being relevant. Hence,
Gather and Guddat (2008) provide a robust version of SIS called RoSIS — Robust
Sure Independence Screening. Here, we suggest a further modification which results
in the new procedure MCD-RoSIS being in many situations even more robust than
RoSIS and also working better under collinearity. We show this by a simulation
study where we replace observations by outliers in the response as well as in the
predictors and vary the sample size and the dimension of the regressor space. Also,
we investigate different degrees of collinearity.

2. SIS and RoSIS

Sure Independence Screening (SIS; Fan and Lv [6]) is a procedure for variable se-
lection that is constructed for situations with p � n. Assuming the linear model,
the method is based on the determination of the pairwise covariances of each stan-
dardized predictor Zj , j = 1, . . . , p, with the response. Aim is to reduce the number
of predictors to a value KSIS which is smaller than the sample size n. Therefore,
those variables whose pairwise covariance with Y belong to the absolutely largest,
are selected for the following regression analysis.

The empirical version of Zj = (Xj − μj)/σj results from the substitution of the
expectation μj and the variance σ2

j of Xj by the corresponding arithmetic mean

Xj and the empirical variance s2j , j = 1, . . . , p, respectively. For the estimation of
the covariance Cov(Zj , Y ), j = 1, . . . , p, the empirical covariance is used. All these
estimators are sensitive against outliers as we know. Hence, it is possible that out-
liers lead to an underestimation of the relation between a true predictor and Y or
to an overestimation of the relation between a noise variable and Y , respectively.
In the case of a strong deviation between true and estimated covariance, the elimi-
nation of a true predictor results. To avoid this, Gather and Guddat [7] introduce
a robust version of SIS which is based on a robust standardization of the predic-
tors and a robust estimation of the covariances using the Gnanadesikan–Kettenring
estimator Gnanadesi and Kankettenring [8] employing the robust tau-estimate for
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estimating the univariate scale Maronna and Zamar [12]. First comparisons of this
new method Robust Sure Independence Screening (RoSIS) with SIS have shown
promising results Gather and Guddat [7].

However, as previous results indicate that the Gnanadesikan-Kettenring esti-
mator is not the best choice under collinearity for example, we suggest a version
of RoSIS which employs the Minimum Covariance Determinant (MCD) estimator
Rousseeuw [14] coping with this situation much better. We call this version MCD-
RoSIS and refer to RoSIS in the following as GK-RoSIS for a better distinction.
After a robust standardization and the estimation of the pairwise covariances by
the MCD estimator the resulting values are ordered by their absolute size. Those
predictors belonging to the KSIS largest results are selected for the following anal-
ysis. The number KSIS is to be chosen smaller than the sample size, e. g. Fan and
Lv [6] suggest KSIS = n− 1 or KSIS = n/log(n).

Definition 2.1. Let {(XT
1 , Y1)

T . . . , (XT
n , Y

T
n )T } be a sample of size n in R

p+1,
where p >> n, and KSIS ∈ {1, . . . , n} given. MCD-RoSIS selects the variables as
follows:

(i) Robust standardization of the observations of the predictors by Median and
MAD.

(ii) Robust estimation of the pairwise covariances Cov(Zj , Y ) by
ω̂rob,j = CMCD({z1,j , . . . , zn,j}, {y1, . . . , yn}), j = 1, . . . , p,
by means of the MCD estimator.

(iii) Ordering of the estimated values by their absolute size:
|ω̂rob,j1 |(1) ≤ |ω̂rob,j2 |(2) ≤ . . . ≤ |ω̂rob,jp |(p).

(iv) Selection of KSIS variables:

U =
{
Zj : |ωrob,jKS

|(KS) ≤ |ωrob,j |, 1 ≤ j ≤ p
}
.

In the following section we examine to which extent SIS, GK-RoSIS and MCD-
RoSIS are robust against large aberrant data points by means of a simulation study
and compare the performance of both methods in different situations regarding
the dimension p, the sample size n, the types of outliers as well as the degree of
collinearity.

3. Comparison of SIS and MCD-RoSIS

In order to examine the effect of outliers on the correct selection of predictors, we
simulate different outlier scenarios. We look at the effect of outliers in predictor
variables and in the response variable while we vary the dimension p, the sample size
n as well as the degree of collinearity. The following subsection contains a detailed
description of the data generating processes. All simulations are carried out using
the free software R (2008).

We look at three different models. The setup is the same as Fan and Lv [6]
chose for checking the performance of SIS. The n observations of the p predictors
X1, . . . , Xp are generated from a multivariate normal distribution N (0,Σ) with
covariance matrix Σ = (σij) ∈ R

p×p having the entries σii = 1, i = 1, . . . , p,
and σij = ρ, i �= j. The observations of ε are drawn from an independent standard
normal distribution. The response is assigned according to the model Y = f(X)+ε
where f(X) is the link function chosen as presented in Model 1 through Model 3.
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Model 1: Y = 5X1 + 5X2 + 5X3 + ε,
Model 2: Y = 5X1 + 5X2 + 5X3 − 15ρ1/2X4 + ε,

where Cov(X4, Xj) = ρ1/2 , j = 1, 2, 3, 5, . . . , p

Model 3: Y = 5X1 + 5X2 + 5X3 − 15ρ1/2X4 +X5 + ε
where Cov(X4, Xj) = ρ1/2 , j = 1, 2, 3, 5, . . . , p,
and Cov(X5, Xj) = 0 , j = 1, 2, 3, 4, 6 . . . , p.

The models are taken over from Fan and Lv [6] simulations. The link function
in Model 1 is linear in three predictors and a noise term. The second link function
includes a fourth predictor which has correlation ρ1/2 with all the other p − 1
candidate predictors, but is uncorrelated with the response. Hence, SIS can pick
all true predictors only by chance. In the third model a fifth variable is added that
is uncorrelated with the other p − 1 predictors and that has the same correlation
with Y as the noise has. Depending on ρ, X5 has weaker marginal correlation with
Y than X6, . . . , Xp and hence has a lower priority of being selected by SIS.

We consider a dimension of p = 100 and 1000; the sample size is set to be n = 50
and 70; collinearity is varied by ρ = 0, 0.1, 0.5, 0.9. The number of repetitions is
200. We apply SIS, GK-RoSIS and MCD-RoSIS to each generated data set for the
selection of n− 1 variables.

For contaminating the data we replace 10% of the simulated observations by
values, which are on the boundary of specific tail regions according to the notion of
α-outliers Davies and Gather ([5]). For a contamination of the response we replace
yi by f(x) + z1−α/2 with z1−α/2 the (1 − α/2)-quantile of the error distribution

and α = 1 − 0.999
1
n depending on the sample size n, keeping xi as it is. Concern-

ing contamination of X we distinguish between two different directions. We place
outliers in X1- or in X1+X2+X3-direction by choosing a contamination such that
xTΣ−1x = χ2

0.999
1
n ,p

, with χ2

0.999
1
n ,p

the quantiles of the χ2-distribution with p de-

grees of freedom. For the X1-direction we keep the values xi,2, ...,xi,p and use the
largest solution of the equation with respect to the first entry of x as replacement
for xi,1. For the X1 +X2 +X3-direction we insert xi,4, ...,xi,p, set the first three
entries of x equal and take the largest solution as replacement for xi,1,xi,2,xi,3.

As the goal of a method for variable selection is to detect the predictors which
have an influence on the response a natural measure of performance is the number
of correctly selected as well as the number of falsely selected predictors. As we fix
the number of variables to be selected as KSIS = n − 1 it is sufficient to look at
the number of correctly selected variables.

In the following we shortly summarize the resulting performance of SIS, GK-
RoSIS and MCD-RoSIS. Generally, we found that the new method MCD-RoSIS
identifies all true predictors in almost 100% of the cases for all settings when the
data are contaminated in one of the X-directions while the classical procedure SIS
fails here very often. Especially, under high collinearity or when the dimension p
is large the performance of SIS is very bad. In these situations partly none of the
predictors can be identified by SIS in many cases. GK-RoSIS works mostly better
than SIS, but not as good as MCD-RoSIS.
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Fig 1. SIS, GK-RoSIS and MCD-RoSIS in Model 1 with p = 100, n = 70, ρ = 0.5

Comparing both procedures when the data are uncontaminated or contaminated
in Y -direction we have to distinguish between the models. While for Model 1 MCD-
RoSIS is only almost as good as SIS, it is generally speaking the better choice for
Model 2 and 3. GK-RoSIS is rather on the same level as SIS but suffers strongly
from high collinearity.

Figure 1 shows the performance of SIS GK- and MCD-RoSIS for Model 1 with
parameters p = 100, n = 70 and ρ = 0.5. As described before, all three procedures
perform similarly good for uncontaminated data and when outliers are given in the
response. For the situations with outliers in X the superiority of MCD-RoSIS is
obvious.

Concerning Model 2 Figure 2 shows the case of parameters p = 100, n = 70 and
ρ = 0.9. In all data situation SIS and GK-RoSIS correctly select all predictors in
around 50− 60% of the cases, whereas MCD-RoSIS has a rate of more than 95%.

In Figure 3 we find the results for Model 3 with parameters p = 1000, n = 50
and ρ = 0.1. This model includes a predictor that has only a very small correlation
with the response. That is why SIS is not able to identify this variable X5 even
when the data are generated from the assumed model. Clearly, MCD-RoSIS finds
more true predictors.

To complement the treated parameter situations, Table compares all methods,
data situations and models for parameters p = 1000, n = 50 and ρ = 0. For all
other simulations results see Guddat et al. [9].

We have seen that the MCD-RoSIS and GK-RoSIS are the better procedures
for variable selection when outliers in X are present while MCD-RoSIS is at least
a little weaker in the uncontaminated situations. It has also turned out that GK-
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Fig 2. SIS, GK-RoSIS and MCD-RoSIS in Model 2 with p = 100, n = 70, ρ = 0.9

RoSIS suffers from collinearity as it shows inferior results in the respective situations
of contamination. The reason presumably lies in the fact that the Gnandesikan–
Kettenring estimator is based on univariate scale estimators. We have also observed
that MCD-RoSIS is more suitable even for uncontaminated data when true predic-
tors have only a small or no correlation with the response.

At first sight it is a little bit unexpected that the robustified procedures do not
perform generally better when there is a contamination in Y -direction. The reason
is that the size of α-outliers is dependent on the dimension. As the response is one
dimensional, the magnitude of outlying observations in this direction is compara-
tively small. Hence, the application of robust estimators in the algorithm for variable
selection is not beneficial yet. But the superiority of MCD-RoSIS increases along
with the magnitude of the outliers. Altogether, we can conclude that MCD-RoSIS
is a very good alternative for the variable selection in high dimensional settings.

4. Summary

We provide a robustified version of Sure Independence Screening (SIS) introduced
by Fan and Lv [6] which is a procedure for variable selection when the number of
predictors is much larger than the sample size. Aim is the reduction of the dimension
to a value which is smaller than the sample size such that usual regression methods
are applicable. We modify the algorithm by using robust estimators. To be precise,
we employ Median and MAD for standardization as well as the MCD covariance
estimator for the identification of the important variables. This leads to the new
procedure MCD Robust Sure Independence Screening (MCD-RoSIS).
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Fig 3. SIS, GK-RoSIS and MCD-RoSIS in Model 3 with p = 1000, n = 50, ρ = 0.1

In a simulation study we compare the performance of the classical procedure
SIS and of the robustified versions GK- and MCD-RoSIS in different scenarios. We
observe that MCD-RoSIS is the better choice for variable selection under strong con-
tamination of the data. But we can also detect that MCD-RoSIS is at least almost
as good as the classical procedure in the uncontaminated situations. GK-RoSIS is
in many contaminated situations better than SIS, but it is also very sensible against
collinearity. In case of predictors that have only small correlation with the response
MCD-RoSIS always finds more often all true predictors even when the data are
uncontaminated. Under comparatively small deviations the robustified procedure
is not always the better choice. In these situations the behavior corresponds to that
in the uncontaminated case. Obviously, as in other data situations the outliers must
be of some size such that the use of robust estimators is profitable.
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Table. Simulation results for p = 1000, n = 50, ρ = 0

No. of correctly sel. predictors
Model 1

method
0 1 2 3

uncontaminated SIS 0.000 0.000 0.010 0.990
GK-RoSIS 0.020 0.130 0.225 0.625
MCD-RoSIS 0.025 0.020 0.005 0.950

Y -direction SIS 0.000 0.000 0.015 0.985
GK-RoSIS 0.010 0.115 0.280 0.595
MCD-RoSIS 0.030 0.030 0.005 0.935

X1-direction SIS 0.000 0.005 0.865 0.130
GK-RoSIS 0.035 0.130 0.365 0.470
MCD-RoSIS 0.000 0.000 0.000 1.000

(X1 +X2 +X3)- SIS 0.590 0.120 0.080 0.210
direction GK-RoSIS 0.245 0.175 0.115 0.465

MCD-RoSIS 0.000 0.000 0.000 1.000

No. of correctly sel. predictors
Model 2

method
0 1 2 3 4

uncontaminated SIS 0.000 0.000 0.010 0.940 0.050
GK-RoSIS 0.015 0.130 0.230 0.605 0.020
MCD-RoSIS 0.010 0.035 0.000 0.005 0.950

Y -direction SIS 0.000 0.000 0.015 0.940 0.045
GK-RoSIS 0.005 0.120 0.265 0.565 0.045
MCD-RoSIS 0.020 0.030 0.010 0.010 0.930

X1-direction SIS 0.000 0.005 0.820 0.170 0.005
GK-RoSIS 0.035 0.120 0.375 0.450 0.020
MCD-RoSIS 0.000 0.000 0.000 0.000 1.000

(X1 +X2 +X3)- SIS 0.560 0.145 0.085 0.195 0.015
direction GK-RoSIS 0.245 0.175 0.115 0.435 0.030

MCD-RoSIS 0.000 0.000 0.000 0.000 1.000

No. of correctly sel. predictors
Model 3

method
0 1 2 3 4 5

uncontaminated SIS 0.000 0.000 0.015 0.830 0.150 0.005
GK-RoSIS 0.015 0.100 0.260 0.545 0.080 0.000
MCD-RoSIS 0.020 0.010 0.005 0.000 0.010 0.955

Y -direction SIS 0.000 0.000 0.025 0.825 0.145 0.005
GK-RoSIS 0.005 0.115 0.295 0.500 0.085 0.000
MCD-RoSIS 0.005 0.010 0.005 0.005 0.020 0.955

X1-direction SIS 0.000 0.010 0.735 0.215 0.040 0.000
GK-RoSIS 0.050 0.075 0.430 0.385 0.060 0.000
MCD-RoSIS 0.000 0.000 0.000 0.000 0.000 1.000

(X1 +X2 +X3)- SIS 0.495 0.200 0.080 0.175 0.050 0.000
direction GK-RoSIS 0.205 0.190 0.160 0.380 0.065 0.000

MCD-RoSIS 0.000 0.000 0.000 0.000 0.000 1.000
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