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Robust generalized Bayes minimax

estimators of location vectors for

spherically symmetric distributions

with unknown scale

Dominique Fourdrinier1,∗ , William E. Strawderman2

Université de Rouen and Rutgers University

Abstract: We consider estimation of the mean vector, θ, of a spherically sym-
metric distribution with unknown scale parameter σ under scaled quadratic
loss. We show minimaxity of generalized Bayes estimators corresponding to
priors of the form π(‖θ‖2)ηb where η = 1/σ2, for π(·) superharmonic with
a non decreasing Laplacian under conditions on b and weak moment condi-
tions. Furthermore, these generalized Bayes estimators are independent of the
underlying density and thus have the strong robustness property of being si-
multaneously generalized Bayes and minimax for the entire class of spherically
symmetric distributions.

1. Introduction

Let (X, U) be a random vector in R
p × R

k with density

1
σp+k

f

(
‖x − θ‖2 + ‖u‖2

σ2

)
,(1.1)

where θ ∈ R
p and σ ∈ R

∗
+ are unknown. We assume throughout that p ≥ 3.

We consider generalized Bayes estimators of θ for priors of the form

π(‖θ‖2) ηb,(1.2)

where η = 1/σ2, under the quadratic loss

η ‖δ − θ‖2.(1.3)

We first show that, under weak moment conditions, such generalized Bayes esti-
mators are robust in the sense that they do not depend on the underlying density f .
Furthermore, we exhibit a large class of superharmonic priors π for which these gen-
eralized Bayes estimators dominate the usual minimax estimator X for the entire
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class of densities (1.1). Hence this subclass of estimators has the extended robust-
ness property of being simultaneously generalized Bayes and minimax for the entire
class of spherically symmetric distributions.

Note that the above model arises as the canonical form of the general linear
model Y = V β + ε where V is a (p + k) × p design matrix, β is a p × 1 vector of
unknown regression coefficients, and ε is an (p+k) × 1 error vector with spherically
symmetric density f(‖ε‖2/σ2)/σp+k.

In the following, for a real valued function g(x, u), we denote by �xg(x, u) and
�xg(x, u) the gradient and the Laplacian of g(x, u) with respect to the variable x.
Analogous notations hold with respect to the variable u. When g(x, u) is a vector
valued function, divxg(x, u) is the divergence with respect to x (here dim g(x, u) =
dimx).

Stein [20] shows that, when the density in (1.1) is normal with known scale, the
generalized Bayes estimator corresponding to a prior π(θ), for which the square root
of the marginal density m(x) is superharmonic, is minimax under the loss (1.3).
Fundamental to this result is the development of an unbiased estimator of risk based
on a differential expression involving m(x) which has become a basic tool to prove
minimaxity. This differential expression has been extended to non normal models
such as (1.1) by several authors (see, for example, [5, 6, 2, 3, 4, 12, 13, 14, 16, 9]
and [10]).

A notable aspect of many of the papers dealing with model (1.1), in particular in
the presence of a residual vector U, is the development of robust estimators in the
sense that they are minimax for a wide class of spherically symmetric distributions
(see particularly, for example, [5, 4, 13]).

The general line of research pertinent to this paper is the development of Bayes
and generalized Bayes minimax estimators. In the case of a normal distribution
with known scale, see for example, [21, 7, 1, 11]. When the scale is unknown, see
[22]. For variance mixture of normals with known scale and no residual vector, see
[23, 16, 8]. For general spherically symmetric distributions (with no residual vector),
see [9].

Maruyama [15] showed that, for spherically symmetric distributions with a resid-
ual vector U and unknown scale parameter, the generalized Bayes estimator with
respect to a prior on θ and η proportioned to ‖θ‖2−p (i.e. the fundamental harmonic)
is independent of the density f and is minimax under weak moment conditions (see
also [18, 17] and [19]).

The goal of this paper is to extend the phenomenon in [15] to a broader class
of priors of the form π(‖θ‖2)ηb with π(‖θ‖2) superharmonic. In particular, in Sec-
tion 2.2, we show that the generalized Bayes estimators do not depend on the density
f under weak moment conditions and, in Section 2.3, we prove that these gener-
alized Bayes estimators are minimax provided the prior π(‖θ‖2) is superharmonic
and its Laplacian Δπ(‖θ‖2) is a non decreasing function of ‖θ‖2, under conditions
on b, p and k.

In the case of a known scale parameter in model (1), [9] studied the same class
of priors π(‖θ‖2) and proved minimaxity of generalized Bayes estimators for a large
subclass of unimodal densities. We rely strongly on the techniques of that paper.

Our main result is given in Section 2 while, in Section 3, examples illustrate
the theory. Section 4 contains some concluding remarks and the last section is an
appendix.
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2. Main result

2.1. Risk considerations

Any estimator δ = δ(X, U) of θ is evaluated by its risk associated to the loss (1.3),
that is by

R(θ, η, δ) = Eθ,η

[
η ‖δ(X, U) − θ‖2

]
,(2.4)

where Eθ,η denotes the expectation with respect to the density (1.1) with η = 1/σ2.
For the rest of this paper, we assume

Eθ,η

[
‖X − θ‖2

]
< ∞,(2.5)

which guarantees that the standard estimator X has finite risk and is minimax.
As δ(X, U) can be written as δ(X, U) = X + g(X, U), the finiteness of its risk is
guaranteed by

Eθ,η

[
‖g(X, U)‖2

]
< ∞.(2.6)

To express the risk difference between δ(X, U) and X, we introduce first the
function F defined, for any t > 0, by

F (t) =
1
2

∫ ∞

t

f(u) du.

Note that, according to (2.5), we have

c =
∫

Rp+k

F (‖x‖2 + ‖u‖2) dx du < ∞.

A version of the following lemma can be found in [12].

Lemma 2.1. Assume that the function g(x, u) is weakly differentiable from R
p+k

into R
p. Then

Eθ,η [(X − θ)′g(X, U)] = cE∗
θ,η [divXg(X, U)] ,

where E∗
θ,η is the expectation with respect to the density

ηp+k

c
F

(
η

(
‖x − θ‖2 + ‖u‖2

))
,

provided either of the above expectations exists.

Similarly, for any weakly differentiable function h from R
p+k into R

p,

Eθ,η [U ′h(X, U)] = c E∗
θ,η [divUh(X, U)] ,

provided either of these expectations exists.
Thanks to Lemma 2.1, an expression of the risk difference between δ(X, U) and

X is given in the following proposition.

Proposition 2.1. Assume that Eθ,η

[
‖g(X, U)‖2

]
< ∞. The risk difference �θ,τ

between δ(X, U) = X + g(X, U) and X equals

�θ,η = R(θ, η, δ) − R(θ, η, X) = c ηE∗
θ,y [Og(X, U)] ,

where

(2.7) Og(X, U) = 2 divXg(X, U) +
k − 2

‖U ‖2
‖g(X, ‖U ‖2)‖2 +

U ′

‖U ‖2
∇U ‖g(X, U)‖2.
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Proof. A straightforward calculation gives

�θ,η = η Eθ,η

[
2 (X − θ)′g(X, U) + ‖g(X, U)‖2

]
= η Eθ,η

[
2 (X − θ)′g(X, U) + U ′ U

‖U ‖2
‖g(X, U)‖2

]
.

Using Lemma 2.1 on each term in the brackets, we obtain

�θ,η = η c E∗
θ,η

[
2 divXg(X, U) + divU

(
U

‖U ‖2
‖g(X, U)‖2

)]

= η c E∗
θ,η

[
2 divXg(X, U) +

k − 2
‖U ‖2

‖g(X, U)‖2 +
U ′

‖U ‖2
∇U ‖g(X, U)‖2

]

by the divergence formula.

2.2. Form of the Bayes estimators

We will see that, for priors of the form (1.2), the generalized Bayes estimators do
not depend on the density (1.1); more precisely their expressions depend only on π
and b provided that ∫ ∞

0

f(τ)τ (p+k)/2+b+1 dτ < ∞,(2.8)

which is equivalent to

E0,1

[
(‖X‖2 + ‖U ‖2)2(b+2)

]
< ∞.

Proposition 2.2. For a prior of the form (1.2), the generalized Bayes estimator
δ(X, U) = X + g(X, U) is such that, for any (x, u) ∈ R

p × R
k,

g (x, u) =

∫
Rp

θ−x
(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 π(‖θ‖2) dθ∫

Rp
1

(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 π(‖θ‖2) dθ
,(2.9)

provided (2.8) holds and (2.9) exists.

Remark 2.1. Note that g(x, u) in (2.9) depends on u only through ‖u‖2 so that
we write g(x, u) = g(x, ‖u‖2). Note also that it arises as

∇xM(x, ‖u‖2)
m(x, ‖u‖2)

,

where m(x, ‖u‖2) is the marginal associated to π and the density

ϕ
(

‖x − θ‖2 + ‖u‖2
)

∝ 1
(‖x − θ‖2 + ‖u‖2)(p+k)/2+b+2

,(2.10)

and M is the marginal associated to φ with

φ(t) =
1
2

∫ ∞

t

ϕ(v) dv.(2.11)
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Therefore, for each fixed u, δ(X, u) = X + g(X, u) with g(X, u) in (2.9) can be
interpreted as the Bayes estimator of θ under the density ϕ and the prior π for
fixed scale parameter (‖u‖). This observation will be important in the next section
since it will allow us to use results in [9] which are developed for the case of known
scale parameter.

Finally, note that existence of (2.9) will be guaranteed by the stronger finiteness
risk condition developed in the proof of Theorem 2.1 in the appendix. More gen-
erally, it suffices that π be locally integrable and have tails that do not grow too
fast at infinity. In particular, superharmonic priors are locally integrable and have
bounded tails.

Proof of Proposition 2.2. The Bayes estimator under loss (1.3) is

δ(X, U) =
E[η θ|X, U ]
E[η|X, U ]

= X + g(X, ‖U ‖2),

with, for any (x, u) ∈ R
p × R

k,

g(x, ‖u‖2) =
E[η (θ − x) | x, u]

E[η|x, u]

=

∫ ∞
0

∫
Rp η (θ − x) η(p+k)/2 f(η (‖x − θ‖2 + ‖u‖2)) π(‖θ‖2) ηb dθ dη∫ ∞
0

∫
Rp η(p+k)/2+1 f(η (‖x − θ‖2 + ‖u‖2)) π(‖θ‖2)ηb dθ dη

=

∫
Rp

∫ ∞
0

η(p+k)/2+b+1 f(η (‖x − θ‖2 + ‖u‖2)) dη (θ − x) π(‖θ‖2) dθ∫
Rp

∫ ∞
0

η(p+k)/2+b+1 f(η (‖x − θ‖2 + ‖u‖2)) d η π(‖θ‖2) dθ
,

by Fubini’s theorem. Now, through the change of variable τ = η (‖x − θ‖2 + ‖u‖2)
in the innermost integrals, we obtain

g(x, ‖u‖2) =

∫
Rp

∫ ∞
0

τ (p+k)/2+b+1 f(τ) dτ (θ−x) π(‖θ‖2)
(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 dθ∫

Rp

∫ ∞
0

τ (p+k)/2+b+1 f(τ) dτ π(‖θ‖2)
(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 dθ

=

∫
Rp

(θ−x) π(‖θ‖2)
(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 dθ∫

Rp

π(‖θ‖2)
(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 dθ

thanks to (2.8).

2.3. Minimaxity of generalized Bayes estimators

According to the expression of g(X, U) in Remark 2.1, we give an expression of the
differential operator Og(X, U) in (2.7).

Proposition 2.3. For g(X, ‖U ‖2) = ∇XM(X,‖U ‖2)
m(X,‖U ‖2) , (2.7) can be expressed as

Og(X, ‖U ‖2) = 2
ΔXM(X, ‖U ‖2)

m(X, ‖U ‖2)
− 2

∇Xm(X, ‖U ‖2)′ ∇XM(X, ‖U ‖2)
m2(X, ‖U ‖2)(2.12)

+
k − 2

‖U ‖2

∥∥∥∥ ∇XM(X, ‖U ‖2)
m(X, ‖U ‖2)

∥∥∥∥
2

+ 2
∂

∂s

∥∥∥∥ ∇XM(X, s)
m(X, s)

∥∥∥∥
2
∣∣∣∣∣
s=‖U ‖2

,
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where, for any (x, u) ∈ R
p × R

k,

m(x, ‖u‖2) =
∫

Rp

ϕ(‖x − θ‖2 + ‖u‖2) π(‖θ‖2) dθ,(2.13)

and

M(x, ‖u‖2) =
∫

Rp

φ(‖x − θ‖2 + ‖u‖2) π(‖θ‖2) dθ(2.14)

with ϕ and φ given by (2.10) and (2.11).

Proof. The proof of Proposition 2.3 follows from straightforward calculations.

[9] studied Bayes minimax estimation of a location vector in the case of spheri-
cally symmetric distributions with known scale parameter. For a subclass of spher-
ically symmetric densities, they proved minimaxity of generalized Bayes estimators
for spherically symmetric priors of the form π(‖θ‖2) under the following assump-
tions.

Assumptions 2.1. (a) π′(‖θ‖2) ≤ 0 i.e. π(‖θ‖2) is unimodal;
(b) Δπ(‖θ‖2) ≤ 0 i.e. π(‖θ‖2) is superharmonic;
(c) Δπ(‖θ‖2) is non decreasing in ‖θ‖2.
Note that Condition (b) in fact implies Condition (a) by the mean value property

of superharmonic functions.
Our main result below is that a generalized Bayes estimator of θ for a density

(1.1), a prior (1.2) and the loss (1.3) is minimax under weak moment conditions
and conditions on b, provided the prior satisfies Assumptions (2.1). We remind
the reader that, according to Proposition 2.2, the generalized Bayes estimator is
independent of the sampling density, f , provided the assumption (2.8) holds. Hence,
each such estimator is simultaneously generalized Bayes and minimax for the entire
class of spherically symmetric distributions.

Before developing our minimaxity result, we give a theorem which guarantees
the risk finiteness of the generalized Bayes estimators.

Theorem 2.1. Assume that π satisfies Assumption 2.1.b; assume also that b >
−(k

2 + 1). Then the generalized Bayes estimator associated to π has finite risk.

Proof. The proof is postponed to the Appendix.

We will need the following result which essentially gathers results in Lemmas
3.1–3.3 of [9].

Lemma 2.2. Let m(x, ‖u‖2) and M(x, ‖u‖2) be as defined in (2.13) and (2.14)
and let · be the inner product in R

p. Then we have
(1)

x · ∇xm(x, ‖u‖2) = −2
∫ ∞

0

H(v, ‖x‖2) vp/2 ϕ′(v + ‖u‖2) dv,

and

x · ∇xM(x, ‖u‖2) =
∫ ∞

0

H(v, ‖x‖2)vp/2 ϕ(v + ‖u‖2) dv,

where, for v > 0,

H(v, ‖x‖2) = λ(B)
∫

B√
v,x

x · θ π′(‖θ‖2) dV√
v,x(θ)(2.15)



Robust generalized Bayes minimax estimators 255

and V√
v,x is the uniform distribution on the ball B√

v,x of radius
√

v centered at x
and λ(B) is the volume of the unit ball.

(2) for any x ∈ R
p, the function H(v, ‖x‖2) in (2.15) is non decreasing in v

provided that Δπ(‖θ‖2) is non decreasing in ‖θ‖2. (Assumption 2.1.c).
(3) for any v > 0 and any x ∈ R

p, the function H(v, ‖x‖2) in (2.15) is non
positive provided π′(‖θ‖2) ≤ 0. (Assumption 2.1.a).

Given these preliminaries, we present our main result.

Theorem 2.2. Suppose that π satisfies Assumptions 2.1. Then the generalized
Bayes estimator associated to π(‖θ‖2) ηb is minimax provided that b ≥ 2p−k−2

4 .
(Note that assumptions of Theorem 2.1 are satisfied.)

Proof. It suffices to show that Og(X, U) in (2.12), with m(X, ‖U ‖2) and M(X,
‖U ‖2) given respectively by (2.13) and (2.14), is non positive since the assumptions
guarantee that the generalized Bayes estimator δ is of the form δ(X, U) = X +

∇XM(X,‖U ‖2)
m(X,‖U ‖2) and has finite risk.
Due to the superharmonicity of π(‖θ‖2), for any (x, u) ∈ R

p × R
k, we have

ΔxM(x‖u‖2) ≤ 0 so that

Og(x, ‖u‖2) ≤ −2
∇xm(x, ‖u‖2)′ ∇xM(x, ‖u‖2)

m2(x, ‖u‖2)

+
k − 2

‖u‖2

∥∥∥∥ ∇xM(x, ‖u‖2)
m(x, ‖u‖2)

∥∥∥∥
2

+ 2
∂

∂s

∥∥∥∥ ∇xM(x, s)
m(x, s)

∥∥∥∥
2 ∣∣∣∣

s=‖u‖2

.

Note that

m2(x, s)
∂

∂s

∥∥∥∥ ∇xM(x, s)
m(x, s)

∥∥∥∥
2

=
∂

∂s
‖∇xM(x, s)‖2 + ‖ ∇xM(x, s)‖2

m2(x, s)
∂

∂s

1
m2(x, s)

≤ ∂

∂s
‖∇xM(x, s)‖2 + (p + k + 2b + 4)

1
s

‖∇xM(x, s)‖2
,

since

∂

∂s

1
m2(x, s)

=
−2

m3(x, s)

∫
Rp

−[(p + k)/2 + b + 2]
(‖x − θ‖2 + s)(p+k)/2+b+3

π(‖θ‖2) dθ

=
p + k + 2b + 4

m3(x, s)
1
s

×
∫

Rp

s

‖x − θ‖2 + s

1
(‖x − θ‖2 + s)(p+k)/2+b+2

π(‖θ‖2) dθ

≤ p + k + 2b + 4
m2(x, s)

1
s
.

Therefore

m2(x, s) Og(x, s) ≤ −2 ∇xm(x, s)′ ∇xM(x, s)(2.16)

+
k − 2 + 2(p + k + 2b + 4)

s
‖∇xM(x, s)‖2

+ 2
∂

∂s
‖ ∇xM(x, s)‖2

.
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As m(x, s) and M(x, s) depend on x only through ‖x‖2, it is easy to check that
(as in [9])

∇xm(x, s)′ ∇xM(x, s) =
x′ ∇xm(x, s) x′ ∇xM(x, s)

‖x‖2

and

‖ ∇xM(x, s)‖2 =
(x′ ∇xM(x, s))2

‖x‖2
.

Thus the right hand side of (2.16) will be non positive as soon as

(2.17) −2x′ ∇xm(x, s) +
2p + 3k + 4b + 6

s
x′ ∇xM(x, s) + 4

∂

∂s
x′ ∇xM(x, s) ≥ 0,

since, according to Lemma 2.2, the common factor x′ ∇xM(x, s) is non positive.
Using again Lemma 2.2, the left hand side of (2.17) equals

4
∫ ∞

0

H(v, ‖x‖2) vp/2 ϕ′(v + s) dv

+
2p + 3k + 4b + 6

s

∫ ∞

0

H(v, ‖x‖2) vp/2 ϕ(v + s) dv

+ 4
∫ ∞

o

H(v, ‖x‖2)vp/2ϕ′(v + s)dv(2.18)

=
∫ ∞

0

vp/2 ϕ(v + s) dv

{
8E

[
H(v, ‖x‖2)

ϕ′(v + s)
ϕ(v + s)

]

+
2p + 3k + 4b + 6

s
E

[
H(v, ‖x‖2)

] }
,

where E denotes the expectation with respect to the density proportional to v �−→
vp/2ϕ(v + s).

As

ϕ′(v + s)
ϕ(v + s)

=
−((p + k)/2 + b + 2)

v + s
(2.19)

is non decreasing in v and, according to Lemma 2.2, H(v, ‖x‖2) is also non decreas-
ing in v, the first expectation in (2.18) satisfies

E

[
H(v, ‖x‖2)

ϕ′(v + s)
ϕ(v + s)

]
≥ E

[
H(v, ‖x‖2)

]
E

[
ϕ′(v + s)
ϕ(v + s)

]

by the covariance inequality. Therefore Inequality (2.17) will be satisfied as soon as

8 E

[
ϕ′(v + s)
ϕ(v + s)

]
+

2p + 3k + 4b + 6
s

≤ 0,(2.20)

since H(v, ‖x‖2) ≤ 0 by Lemma 2.2.
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From (2.19) we have

E

[
ϕ′(v + s)
ϕ(v + s)

]
= −

(
(p + k)/2 + b + 2

)
E

[
1

v + s

]
(2.21)

= −
(
(p + k)/2 + b + 2

) ∫ ∞
o

1
v+s vp/2 1

(v+s)(p+k)/2+b+2 dv∫ ∞
0

vp/2 1
(v+s)(p+k)/2+b+2 dv

= −
(
(p + k)/2 + b + 2

) 1
s

∫ ∞
0

zp/2

(z+1)(p+k)/2+b+3 dz∫ ∞
0

zp/2

(z+1)(p+k)/2+b+2 dz

= −
(
(p + k)/2 + b + 2

) 1
s

B(p/2 + 1, k/2 + b + 2)
B(p/2 + 1, k/2 + b + 1)

,

where B(α, β) is the beta function with parameters α > 0 and β > 0. Then (2.21)
becomes

E

[
ϕ′(v + s)
ϕ(v + s)

]
= − ((p + k)/2 + b + 2)

s

× Γ((k/2 + b + 2))
Γ((p + k)/2 + b + 3)

Γ((p + k)/2 + b + 2)
Γ(k/2 + b + 1)

(2.22)

=
−(k/2 + b + 1)

s
.

It follows from (2.22) that (2.20) reduces to

b ≥ 2p − k − 2
4

,

which is the condition given in the theorem.

The condition on b in Theorem 2.2 can be alternatively expressed as k ≥ 2p −
4b − 2 which dictates that the dimension, k, of the residual vector, U , increases with
the dimension, p, of θ. This dependence can be (essentially) eliminated provided the
generalized Bayes estimator in Proposition 2.2 satisfies the following assumption:

Assumptions 2.2. The function g(x, u) in (2.9) can be expressed as

g(x, u) =
∇xM(x, ‖u‖2)

m(x, ‖u‖2)
= − r(‖x‖2, ‖u‖2)‖u‖2

‖x‖2
x,

where r(‖x‖2, ‖u‖2) is non-negative and non-increasing in ‖u‖2.

Assumption 2.2 is satisfied, for example, by the generalized Bayes estimator
corresponding to the prior on (θ, η) proportional to π(‖θ‖2) =

(
1/‖θ‖2

)b/2
ηa for

0 < b ≤ p − 2 and a > − k
2 − b

2 − 2, in which case the function r(‖x‖2, ‖u‖2) =
φ

(
‖x‖2/‖u‖2

)
, where φ(t) is increasing in t, and hence r(‖x‖2, ‖u‖2) is decreasing

in ‖u‖2 (see, e.g. 1 [15]).
We have the following corollary:

Corollary 2.1. Suppose π satisfies Assumptions 2.1 and the assumptions of The-
orem 2.2 and suppose also that the generalized Bayes estimator (which does not
depend on the underlying density f) satisfies Assumption 2.2. Then the generalized
Bayes estimator is minimax provided b ≥ − k+2

4 .
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Proof. Assumption 2.2 guarantees that

∂

∂s

(
1
s2

∥∥∥∥ ∇xM(x, s)
m(x, s)

∥∥∥∥
2
)

=
∂

∂s

(
r2(‖x‖2, s)

‖x‖2

)
≤ 0.

Since

∂

∂s

∥∥∥∥ ∇xM(x, s)
m(x, s)

∥∥∥∥
2

=
∂

∂s

(
s2

s2

∥∥∥∥ ∇xM(x, s)
m(x, s)

∥∥∥∥
2
)

=
2
s

∥∥∥∥ ∇xM(x, s)
m(x, s)

∥∥∥∥
2

+ s2 ∂

∂s

(
1
s2

∥∥∥∥ ∇xM(x, s)
m(x, s)

∥∥∥∥
2
)

,

the inequality for Og(X, ‖U ‖2) in the proof of Theorem 2.2 can be replaced by

Og(x, ‖u‖2) ≤ −2
∇xm(x, ‖u‖2)′ ∇xM(x, ‖u‖2)

m2(x, ‖u‖2)
+

k + 2
‖u‖2

∥∥∥∥ ∇xM(x, ‖u‖2)
m(x, ‖u‖2)

∥∥∥∥
2

.

It follows that inequality condition (2.17) becomes

−2 x′ ∇xm(x, s) +
k + 2

s
x′ ∇xM(x, s) ≥ 0,

and that inequality condition (2.20) becomes

4 E

[
ϕ′(v + s)
ϕ(v + s)

]
+

k + 2
s

≤ 0,

which, by (2.22), becomes

4
[

−
(

k/2 + b + 1
s

)]
+

k + 2
s

≤ 0,

which is equivalent to b ≥ −(k + 2)/4.

3. Examples

Several examples of priors which satisfies Assumptions 2.1 are given in [9]. We
briefly summarize these.

Example 1 (priors related to the fundamental harmonic prior). Let
π(‖θ‖2) = ( 1

A+‖θ‖2 )c with A ≥ 0 and 0 ≤ c ≤ p
2 − 1.

Example 2 (mixtures of priors satisfying Assumption 2.2). Let (πα)αεA

be a family of priors such that Assumption 2.1 is satisfied for any α ∈ A. Then
any mixture of the form

∫
Y

πα(‖θ‖2) dH(α) where H is a probability on Y satisfies
Assumption 2.1 as well. For instance, Example 1 with c = 1, p ≥ 4, A = α and the
gamma density α �−→ β1−v

Γ(1−v)α
−ve−βα with β > 0 and 0 < v < 1 leads to the prior

‖θ‖ −2−v eβ‖θ‖2
Γ(v, β‖θ‖2),

where
Γ(v, y) =

∫ ∞

y

e−xxv−1 dx

is the complement of the incomplete gamma function.



Robust generalized Bayes minimax estimators 259

Example 3 (variance mixtures of normals). Let

π(‖θ‖2) =
∫ ∞

O

( u

2π

)p/2

exp
(

−u‖θ‖2

2

)
h(u) du

a mixture of normals with respect to the inverse of the variance. As soon as, for
any u > 0,

uh′(u)
h(u)

≤ −2,

the prior π(‖θ‖2) satisfies Assumptions 2.1. Note that the priors in Example 1 arise
as such a mixture with h(u) ∝ αuk−p/2−1 exp(− A

2 u).
Other examples can be given and a constructive approach is proposed in [9].

4. Concluding remarks

This paper shows that generalized Bayes estimators corresponding to priors of the
form π(‖θ‖2)ηb are robust in that they are independent of the underlying density
η(p+k)/2f(η(‖x − θ‖2 + ‖u‖2)). Furthermore, provided π(‖θ‖2) is superharmonic
with a non decreasing Laplacian, under weak moment conditions and conditions on
b, these generalized Bayes estimator are minimax for the entire class of spherically
symmetric distributions.

[15] developed similar results for priors of the form ‖θ‖−a ηb for 0 ≤ a ≤ p − 2
using techniques developed for Baranchik type estimators. This paper relies on
techniques developed for the known scale case in [9] and its main contribution is to
extend the minimaxity result to priors of the more general form π(‖θ‖2) ηb where
π(‖θ‖2) is superharmonic, but not necessarily homogeneous.

A critical difference between the results of this paper and [9] (and other pa-
pers studying minimaxity in the known scale case) is that the minimax generalized
Bayes estimators in the known scale case depend on the form of the underlying
density ηp f(η ‖x − θ‖2), and of course, also on the scale. On the other hand, when
the scale is unknown and residual vector is available, the form of the generalized
Bayes estimator is independent of the form of the density f(·) provided the prior
distribution has the form π(θ) ηb. It is not necessary that π(θ) be spherically sym-
metric. It would be desirable to extend the minimaxity results to priors which are
not necessarily spherically symmetric.

Appendix: Proof of Theorem 2.1

According to (2.9), the risk finiteness condition (2.6) is satisfied as soon as

Eθ,η

⎡
⎢⎢⎢⎣

∥∥∥∥∥∥∥∥

∫
Rp

(θ − X)
π(‖θ‖2)

(‖X − θ‖2 + ‖U ‖2)(p+k)/2+b+2
dθ∫

Rp

π(‖θ‖2)
(‖X − θ‖2 + ‖U ‖2)(p+k)/2+b+2

dθ

∥∥∥∥∥∥∥∥

2⎤⎥⎥⎥⎦

≤ Eθ,η

⎡
⎢⎢⎣

∫
Rp

‖θ − X‖2 π(‖θ‖2)
(‖X − θ‖2 + ‖U ‖2)(p+k)/2+b+2

dθ∫
Rp

π(‖θ‖2)
(‖X − θ‖2 + ‖U ‖2)(p+k)/2+b+2

dθ

⎤
⎥⎥⎦(A1)

< ∞.
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Note that, for any (x, u) ∈ R
p × R

k and for any non negative function h on
R+ × R+, ∫

Rp

π(‖θ‖2) h(‖x − θ‖2, ‖u‖2) dθ

(A2)
=

∫ ∞

0

∫
SR,x

π(‖θ‖2) dUR,x(θ) σ(S) Rp−1h(R2, ‖u‖2) dR,

where UR,x is the uniform distribution on the sphere SR,x of radius R and centered
at x and σ(S) is the area of the unit sphere. Through the change of variable R =

√
v,

the right hand side of (A2) can be written as∫ ∞

0

Sπ(
√

v, x) vp/2−1 h(v, ‖U ‖2) dv,

where

Sπ(
√

v, x) =
σ(S)

2

∫
S√

v,x

π(‖θ‖2) dU√
v,x(θ)

is non increasing in v by the superharmonicity of π(‖θ‖2).
Now we can express the last quantity in brackets in (A1) as∫ ∞

o
Sπ(

√
v, x) vp/2

(v+‖u‖2)(p+k)/2+b+2 dv∫ ∞
o

Sπ(
√

v, x) vp/2−1

(v+‖u‖2)(p+k)/2+b+2 dv

= E1[v](A3)
≤ E2[v],

where E1 is the expectation with respect to the density f1(v) proportional to

Sπ(
√

v, x)
vp/2−1

(v + ‖u‖2)(p+k)/2+b+2
,

and E2 is the expectation with respect to the density f2(v) proportional to

vp/2−1

(v + ‖u‖2)(p+k)/2+b+2
.

Indeed the ratio f2(v)
f1(v) is non decreasing by the monotonicity of Sπ(

√
v, x). In (A3),

E2[v] is

E2[v] =

∫ ∞
0

vp/2

(v+‖u‖2)(p+k)/2+b+2 dv∫ ∞
0

vp/2−1

(v+‖u‖2)(p+k)/2+b+2 dv

= ‖u‖2

∫ ∞
0

vp/2

(v+1)(p+k)/2+b+2 dv∫ ∞
0

vp/2−1

(v+1)(p+k)/2+b+2 dv

= ‖u‖2 B(p/2 + 1, k/2 + b + 1)
B(p/2, k/2 + b + 2)

,

which is finite for k/2 + b + 1 > 0.
Finally the expectations in (A1) are bounded above by K Eθ,η[‖U ‖2] where K

is a constant, and hence are finite.
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