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Abstract: For the general Bayesian model uncertainty framework, the focus
of this paper is on the development of model space priors which can compensate
for redundancy between model classes, the so-called dilution priors proposed
in George (1999). Several distinct approaches for dilution prior construction
are suggested. One is based on tessellation determined neighborhoods, another
on collinearity adjustments, and a third on pairwise distances between models.

1. Introduction

Suppose a space of models Γ is considered for modeling data Y . Under model γ ∈ Γ,
Y is assumed to have density f(Y |θγ , γ) where θγ is a vector of unknown parameters.
(Although we refer to γ as a model, it is more precisely, a set of models indexed
by θγ). Bayesian formulations for this setup proceed by describing the uncertainty
about γ with a prior π(γ) on the model space Γ, and the conditional uncertainty
about θγ given γ with a prior π(θγ | γ) on the parameter space of model γ. Posterior
model probabilities are then obtained via Bayes rule as

(1) π(γ | Y ) =
m(Y | γ)π(γ)∑

γ∈Γ m(Y | γ)π(γ)
,

where

(2) m(Y | γ) =
∫

f(Y | θγ , γ)π(θγ | γ) dθγ

is the marginal distribution of Y given γ.
The posterior distribution π(γ | Y ) provides a comprehensive post-data represen-

tation of model uncertainty which can be used to solve a variety of problems. For
example, a commonly used strategy for Bayesian model selection is to select the
maximum posterior model [5, 6] or the median posterior model [1]. For the purpose
of predicting a quantity of interest Δ, one might use the Bayesian model average

(3) E(Δ | Y ) =
∑
γ∈Γ

E(Δ | Y, γ)π(γ | Y )

[9]. When the number of models is very large and the full posterior is intractable,
attention is usually restricted to a manageable subset of models S ⊂ Γ, such as
might be obtained by MCMC sampling. In this case, the maximum or the median
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posterior model in Γ would be approximated by the maximum or the median poste-
rior model in S, and the unconditional probability E(Δ | Y ) would be approximated
by something of the form

(4) Ê(Δ | Y ) =
∑
γ∈S

E(Δ | Y, γ)π̂(γ | Y, S).

The potential of the Bayesian approach lies in the formulation of the ingredients
on which it is based - the model space, the model space prior and all the parameter
priors. Of substantial interest for this problem are the so-called objective prior for-
mulations intended for use as defaults in the absence of bonafide prior information.
For this purpose, the development of objective parameter space priors π(θγ | γ) has
received considerable attention in the literature. In contrast, the development of
objective model space priors π(γ) has received less attention in part because of the
availability of some simple and convenient choices. For instance, a simple and com-
monly used model space prior is the discrete uniform prior, πU (γ) ≡ 1/K, where K
is the number of models in Γ. Although often treated as a natural representation of
ignorance, this uniform prior does not account for similarities among the models.
As a consequence and as will be seen in the next section, the uniform prior may
assign excess probability to neighborhoods of redundant models.

The focus of this paper is on the development of objective model space priors
which can compensate for model space redundancy, the so-called dilution priors pro-
posed by George [7]. Instead of assigning prior probability uniformly across models,
the goal of such priors is to assign probability more uniformly across neighborhoods
of models. The label “dilution” stems from the observation that such priors work by
diluting the neighborhood probabilities across the models within them. We begin
in Section 2 with an extreme example to illustrate why and where dilution priors
may be useful. In Sections 3, 4 and 5, we suggest three very distinct approaches
for the general construction of dilution priors. The hope is that these approaches
will help pave the way for the future development and implementation of dilution
priors for model uncertainty problems.

2. The case for dilution

Suppose the class of linear regression subset models is considered for the relationship
between n observations on Y and a set of p predictors X1, . . . , Xp. In this case, the
γth model would be

(5) Y = Xγβγ + ε where ε ∼ Nn(0, σ2I),

where the qγ columns of Xγ correspond to a particular subset of the predictors. An
early standard model space prior form for this setup was the independence prior

(6) πI(γ) =
p∏

i=1

wδi
i (1 − wi)1−δi ,

where δi = I(Xi in γ) and wi = π(Xi in γ), e.g., see Clyde, Desimone and Parmi-
giani (1996), [5, 6] and [10]. Note that the discrete uniform prior πU (γ) ≡ 1/2p is a
special case of (6).

To reveal the potential shortcomings of such an independence prior, consider the
following extreme example (cf. [7] and [3]). Suppose that X1 was uncorrelated with
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X2, . . . , Xp, and that X2, . . . , Xp were so highly multicollinear that they were all
nearly identical proxies for each other. As a result, any subset of X2, . . . , Xp would
then have an equivalent effect in the model, (a conclusion which does not make
use of Y ). Effectively, adding X2, . . . , Xp to the mix is tantamount to adding an
equivalent single new potential predictor.

Thus, a reasonable model space prior for this situation, say π∗, would put 1/2
probability on the inclusion of X1 in the model, 1/2 total probability on the in-
clusion of any subset of X2, . . . , Xp in the model, and would treat these as two
independent prior events. Indeed, this would make sense because the 2p different
models here collapse into four sets of equivalent models: the null model, the model
containing only X1, the models containing only at least one of X2, . . . , Xp, and the
models containing X1 and at least one of X2, . . . , Xp. Denoting these four sets by
Γ0, Γ1, Γ2, Γ12 respectively, note that π∗ would assign probability 1/4 to each of
these mutually exclusive sets.

π∗ is a dilution prior in the sense that the probability assigned to each of Γ2

and Γ12 is diluted across the models within these sets. Such dilution is desirable
because it maintains the allocation of total prior probability to each of the four sets
Γ0, Γ1, Γ2, Γ12 of equivalent models. For example, the prior probability allocated to
the set of all subsets of X2, . . . , Xp should remain the same regardless of the size
of p.

In sharp contrast to π∗, the uniform prior here would assign πU (Γ0) = πU (Γ1) =
1/2p and πU (Γ2) = πU (Γ12) = 1/2 − 1/2p. Indeed, this and all other cases of the
independence priors πI in (6) lack any dilution property. To see this, consider what
would happen if a new Xp+1, high correlated with X2, . . . , Xp, were added to the
mix in our example. In effect, all the model probabilities under πI would be reduced
by wp+1 for models in which Xp+1 is included, and by (1 − wp+1) for models in
which Xp+1 is excluded. In particular, the probability of the X1 only model would
be reduced by (1 − wp+1). And further, if we continued to introduce more proxies
for X2, . . . , Xp, the probability of the X1 only model could be made arbitrarily
small, a disturbing feature if Y was in fact related only to X1. We note in passing
that fully Bayes elaborations of (6) obtained by putting priors on the w′

is would
continue to lack any dilution property.

The effect of a dilution prior on the posterior is manifested of course through
Bayes rule π(γ | Y ) ∝ m(Y | γ)π(γ). Because the marginal m(Y | γ) is unaffected by
changes to the model space, any dilution effect is therefore controlled completely by
the model space prior π(γ). Indeed, no dilution of posterior probabilities will occur
under the uniform prior since it leads to π(γ | Y ) ∝ m(Y | γ). Instead the posterior
probability of every γ is reduced while all pairwise posterior odds are maintained.

When will dilution priors be useful? Dilution priors avoid placing too little prob-
ability on good, but unique, models as a consequence of massing excess probability
on large sets of bad, but similar, models. Thus dilution priors may be useful for
model averaging over the entire posterior to avoid biasing averages such as (3) away
from good, but isolated, models. They also may be useful for MCMC sampling be-
cause such Markov chains gravitate toward regions of high probability. Failure to
dilute the probability across clusters of many bad models would bias both model
search and model averaging approximations (4) toward those bad models. That
said, it should be noted that dilution priors would not be appropriate for pairwise
model comparisons because the relative strengths of two models should not depend
on whether another is considered. For this purpose, Bayes factors (corresponding
to selection under uniform priors) seem preferable.

A prior construction that dilutes naturally is the tree generating process prior
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proposed by Chipman, George and McCulloch [2] in the context of Bayesian CART
model selection. There, each CART model corresponds to a binary tree model Tγ

that partitions the range of X1, . . . , Xp into regions determined by a sequence of
splitting rules associated with the interior nodes of Tγ . The conditional distrib-
utions of Y given Tγ are typically simple models such as Y ∼ N(μγi, σ

2
γi) when

(X1, . . . , Xp) falls in the ith region determined by Tγ . The dilution prior on Tγ is
determined by the following three step tree generating process: (1) ‘grow’ a tree by
random successive splitting, (2) randomly (uniformly) assign available predictors
to nodes, and then (3) randomly (uniformly) assign available split points to the
assigned predictors. Note that in step (3), if a predictor with many available split
points (i. e. realized values) has been assigned to a node, the probabilities associ-
ated with the split point assignments will be smaller, thereby downweighting such
trees because there are more of them. This is precisely the dilution property at
work balancing the prior probabilities across sets of similar modes. It should also
be remarked that although Chipman, George and McCulloch [2] use this dilution
prior to guide their MCMC search, for model selection they ignore the prior and
instead use only the marginal likelihood m(Y | γ).

Although dilution priors may occasionally arise naturally, such the CART tree
generating process, in other settings such as the linear model selection problem
above, the construction of dilution priors seems to require at least a bit more craft-
ing. In the next three sections, we will suggest three distinct approaches for the
construction of dilution priors.

3. Tessellation defined dilution priors

In this section, we begin with the following tessellation defined construction of a
natural class of dilution priors for the linear model variable selection setup (5).
Motivated by the idea that a dilution prior should assign uniform probabilities to
neighborhoods of models, this class is obtained by identifying such neighborhoods
with appropriate tessellations of the surface of a high dimensional sphere. This is
facilitated by considering such a specification conditionally on the model dimension
q,

(7) πV (γ) = π(γ | qγ = q)π(q),

where π(q) is any discrete prior with support on {0, 1, . . . , p}. Now let

• Ap ≡ surface of the unit radius p dimensional sphere in the space spanned by
X1, . . . , Xp

• Vγ ≡ subspace spanned by the columns of Xγ

• Sγ ≡ {a ∈ Ap : ‖ a − Vγ ‖ ≤ ‖ a − Vγ′ ‖ for qγ′ = qγ }
and define

(8) π(γ | qγ = q) ∝ | Sγ | ,

where | Sγ | is the area of Sγ .
Essentially, each Sγ is the subset of points on Ap that are closer to Vγ than to

any other Vγ′ . The set of regions Sγ such that qγ = q forms a Voronoi tessellation
of Ap, hence the label πV . Thus πV assigns uniform probability to neighborhoods
rather than to models, thereby diluting the probability of clusters of similar models.
Such uniformity may be a more reasonable representation of “ignorance” than the
“ignorance” often associated with πU .
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A useful representation of πV is obtained by the following “Spinner Process”,
which provides an intuitive method for sampling from πV (γ):

1. First, sample the model dimension q from π(q)
2. Simulate Y ∗ ∼ Nn(0, I)
3. Select the Xγ with qγ = q that is ‘closest’ to Y ∗ by minimizing Y ∗[I −

Xγ(X ′
γXγ)−1Xγ ]Y ∗.

Step 3 is equivalent to selecting the γ that maximizes R2 for the regression of Y ∗

on Xγ , and effectively minimizes the smallest angle between Y ∗ and Vγ . Selection
by the random direction of Y ∗, which can be thought of as imaginary data, is a
natural way of describing prior ignorance about the actual data Y . Intuitively, Y ∗

is a high dimensional random spinner. This process makes it easy to see that the
probability of selecting Xγ is diminished by the presence of other Xγ′ which span
a nearby subspace - the dilution property.

The Spinner Process provides a method of constructing πV (γ) by repeated sim-
ulation, a useful starting point for the study of πV (γ). Interesting directions for
future research would include the study of πV (γ) with different covariance struc-
tures, the predictive advantages of using these πV (γ) with some of the standard
parameter prior formulations, the extent to which πV (γ) can be considered to be
a least favorable distribution for particular decision theoretic frameworks, and how
πV (γ) may be extended for different model classes. For example, for a class of gen-
eralized linear models, the distribution on Y ∗ might be changed and the selection
distance in step 3 of the Spinner Process might be replaced by the deviance.

To avoid the need for a prior specification of π(q), an alternative to the above is
the following modified One-Step Spinner Process, which avoids initial sampling of
q from π(q):

1. Simulate Y ∗ ∼ Nn(0, I)
2. Select the Xγ ‘closest’ to Y ∗ by minimizing Y ∗[I − Xγ(X ′

γXγ)−1Xγ ]Y ∗/g(qγ)

for some decreasing function g(·). Such a g(qγ) serves to adjust the distance between
Y ∗ and Xγ for the dimensionality qγ . A natural choice is the familiar degrees
of freedom correction, g(qγ) = (n − qγ) for which the selection corresponds to
maximizing adjusted R2 for the regression of Y ∗ on Xγ . More stringent choices
such as g(qγ) = (n − qγ)2 would also merit consideration.

From a practical point of view, the calculation of πV is computationally ex-
pensive. Although the simulation of the Spinner Processes can be streamlined by
reducing the problem to p dimensions from n dimensions, the real difficulty is that
πV is globally defined. Thus, all 2p models must be considered for its construction,
an impediment to obtaining easily implementable transition kernels π(γ → γ′)
for MCMC exploration of the posterior. However, an approximate alternative for
MCMC that might be considered is the Local Spinner Process:

1. Simulate Y ∗ ∼ Nn(0, I)
2. For Xγ′ in a ‘neighborhood’ of Xγ , select the one that is ‘closest’ to Y ∗ by

minimizing Y ∗[I − Xγ′ (X ′
γ′ Xγ′ )−1Xγ′ ]Y ∗/g(qγ)

The choice of neighborhood here might be something like the set Xγ′ obtained
by added or deleting a variable from Xγ as is used in the random walk Metropolis
algorithm, see Raftery, Madigan and Hoeting (1996). This would at least accomplish
dilution within such neighborhoods.
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4. Collinearity adjusted dilution priors

Another route to the construction of dilution priors for the linear model is to con-
sider downweighting the probability of γ for the collinearity in Xγ . For each γ, let
Rγ be the correlation matrix such that Rγ ∝ X ′

γXγ . Note that |Rγ | is an overall
measure of collinearity. Indeed, |Rγ | = 1 when the columns of Xγ are orthogonal,
and |Rγ | decreases to 0 as the columns of Xγ become more redundant. This suggests
modifications of the independence prior (6) of the form

(9) πR(γ) ∝ h(|Rγ |)
p∏

i=1

wδi
i (1 − wi)1−δi

for some monotone function h satisfying h(1) = 1 and h(0) = 0. (Recall δi =
I(Xi in γ)). Simple natural choices for h, which controls the size of the down-
weighting, would be h(r) = r and h(r) = r1/2.

Compared to πV and the related priors above, πR offers great computational
advantages. Except for the norming constant, πD is easily computable. Thus it is
ideal for Metropolis-Hastings algorithms where the norming constant is not needed.
Furthermore, fast methods for sequential updating of |Rγ | are available, and can
be used with proposal distributions that transition by adding or deleting variables .
The previous Local Spinner Process may in fact be an effective Metropolis-Hastings
proposal with this prior.

Although πR is a dilution prior in the sense of downweighting redundant models,
it is not a dilution prior in the sense of assigning uniform probability to neighbor-
hoods as does πV . This is because πR does not account for nearby similar models
that use very different sets of variables. Thus, it is more like the Local Spinner
Process in that its dilution occurs over some, but not all, nearby models. It should
also be mentioned that the penalization of redundancy by πR may be of interest in
and of itself.

5. Model distance based dilution priors

A very different and more general route than the previous dilution prior construc-
tions is obtained by basing it on a distance function between models. Because such a
distance can be obtained for any class of models, such constructions are not limited
to the set of linear models.

Let D(γ, γ′) be a “distance” between models γ and γ′. Such distances arise
naturally. For example, one might consider distances between marginal distributions

m(Y | γ) =
∫

f(Y | θγ , γ) π(θγ | γ) d θ

for particular prior choices of π(θγ | γ) such as the Hellinger distance

DH(γ, γ′) =
∫

[m1/2(Y | γ) − m1/2(Y | γ′)]2 dy.

For the linear model class (5) coupled with conjugate priors βγ ∼ N(0,
σ2c(XT

γ Xγ)−1), the Hellinger distance yields

DH(γ, γ′) ∝ 1 − |I + cPγ |1/4|I + cPγ′ |1/4

|I + (c/2)(Pγ + Pγ′ )|1/2
,
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where Pγ ≡ Xγ(XT
γ Xγ)−1XT

γ .
Of course, many other distances are also available. Again for the linear model

class, one might consider distances between subspaces Vγ spanned by the columns
of Xγ . When Vγ and Vγ′ are both q dimensional, natural choices might be the
geodesic distance

DG(γ, γ′) = (θ2
1 + · · · + θ2

q)1/2

or the chordal distance

DC(γ, γ′) = (sin2 θ1 + · · · + sin2 θq)1/2,

where θ1, . . . , θq are principal angles between Vγ and Vγ′

The challenge is to construct π(γ) based on any such set of distances {D(γ, γ′)}.
The following potentially promising idea was suggested to me by J. M. Steele [per-
sonal communication]. Define

πD(γ) ∝ aγ ,

where aγ =
∑

γ′ D(γ, γ′), the sum of the distances from γ to every other model.
Such a prior will give more weight to distant, isolated models and less weight to
models that are closely surrounded by other models. For a simple example, suppose
we had three equidistant models. Then

πD(γ1) = πD(γ2) = πD(γ3) = 1/3.

Suppose now γ3 → γ2 so that D(γ2, γ3) → 0. Then πD(γ1) → 1/2 and πD(γ2),
πD(γ3) → 1/4, which is exactly the kind of dilution we want to happen.

Furthermore, the computational features of πD are appealing. When |Γ|, the
number of models in Γ, is small, πD(γ) along with its norming constant can be
easily computed. When |Γ| is moderate so that at least aγ can be computed, πD(γ)
can be easily incorporated into M-H algorithms since

πD(γ)
πD(γ′)

=
aγ

aγ′
.

When |Γ| is large so that even computing a single aγ would be expensive, any aγ

can be easily estimated by

āγ =
1
m

∑
aγi

where γ1, . . . , γm is an iid sample from Γ − γ. This yields an inexpensive approx-
imation of πD(γ)/πD(γ′) by āγ/āγ′ that can again be incorporated into an M-H
scheme.

6. Discussion

The contribution of this paper has been to suggest three distinct approaches for
the construction of dilution priors, a tessellation defined approach, a collinearity
adjustment approach and a pairwise model distance approach. Hopefully these ap-
proaches will ultimately lead to the development and implementation of dilution
priors. But there is clearly much more work to be done. The main ideas of these
approaches have only been outlined here and there are many variations and possi-
bilities that need to be developed and studied. Indeed, it is probably the case that
better and richer approaches are needed. With that in mind, I should like to men-
tion a very interesting recent paper by Garthwaite and Mubwandarikwa [4] that
further advances the case for dilution priors and proposes some other promising
approaches to dilution prior construction based on predictive and empirical Bayes
ideas.
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